
PetaVision

Computers emulate the way the brain processes visual
information 

The Laboratory's Synthetic Visual Cognition Team is using state of the art supercomputers
to learn how the brain sees and does other tasks.

Computers visualize like people

Brian Fishbine

The gift of sight is truly amazing. You &ldquo;instantly&rdquo; know what everything is in
your field of view without seeming to think about it, without asking yourself, &ldquo;What am
I looking at?&rdquo;But to give you this knowledge, your brain must quickly make sense of
the huge amounts of visual information constantly gathered by your eyes. How does your
brain do it?Scientists don&rsquo;t know exactly.

&ldquo;Brain research is in a pre-paradigm state,&rdquo; says Garrett Kenyon, a Los
Alamos neuroscientist and member of the Laboratory&rsquo;s Synthetic Visual Cognition
Team. &ldquo;We know lots of things about the brain, but we don&rsquo;t really know how it
works.&rdquo;

As a result, computer programs designed to emulate the way the brain processes visual
information don&rsquo;t begin to approach human levels of performance. For example, an
MIT-developed computer-vision program&mdash;currently the most-accurate program at
identifying objects&mdash;misidentifies what it sees 10 percent of&nbsp; the time.

&ldquo;Imagine that when you crossed the street, 10 percent of the time what you thought
was a billboard was actually an oncoming truck,&rdquo; says Luis Bettencourt, leader of the
Synthetic Visual Cognition Project. &ldquo;Clearly this sort of inaccuracy can be
lethal&nbsp; in the real world.&rdquo;

So what&rsquo;s missing in the computer programs? What do computers need in order to
see as well as people do?

Finding the answer could one day help robots navigate through buildings and cities without
running into walls or getting run over and let computers take the wheel of your car in an
emergency. It could also allow rapid, automated analysis of the huge volumes of data
beamed down each day from reconnaissance satellites or enable computers to identify
faces in video taken at airports&mdash;a task at which existing computer methods fail
dismally.

Understanding how the brain sees requires a good theory of how the brain works. But
neuroscientists disagree about exactly what&rsquo;s needed to formulate such a theory.
Research teams all over the world, including the Laboratory&rsquo;s Synthetic Visual
Cognition Team, are exploring various possibilities, often aided by advanced
supercomputers.

In collaboration with researchers at MIT and elsewhere, the Los Alamos team plans mainly
to explore several mechanisms that could improve our understanding of how the brain
processes visual information, which should lead to a better understanding of how the brain
does all of its tasks. One of the team&rsquo;s major goals is improving the performance of
computer-vision software to human levels.

In addition to Laboratory neuroscientists and advanced-computing specialists, the Synthetic
Visual Cognition Project features a fairly unique piece of Laboratory hardware&mdash;the
Roadrunner supercomputer. Roadrunner set the record for supercomputer speed last
summer, running software developed by the Synthetic Visual Cognition Team.

Jumping-Off Place

The starting point for several of the team's studies is the MIT computer-vision program. The
program implements a model of the primate visual cortex, which is where the brain
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processes most visual information. The visual cortex is also the best-understood part of the
brain. The model is based on experimental studies of how monkeys and humans process
visual information.

The team developed a new version of the MIT program to run on "hybrid-architecture"
computers such as the Roadrunner supercomputer and a "mini" Roadrunner at the Los
Alamos Center for Nonlinear Studies. The new program is called PetANNet, named for the
fact that its computer-simulated neurons are connected to compose what's called a neural
network, or neural net.

Like the MIT program, PetANNet implements a model of the "what" pathway, the neural
pathway that identifies objects in one's field of view. A separate pathway, the "where"
pathway, identifies the locations of objects in the visual field. The visual cortex is divided into
four major areas from back to front: V1, V2, V4, and IT. The "what" and "where" pathways
flow through all four areas, with the "what" pathway on the dorsal side (underside) of the
gray matter and the "where" pathway on the ventral (upper) side. In PetANNet, information
flows through the "what" pathway almost entirely in the forward direction from V1 to IT, that
is, in a "feed-forward" fashion (see "Learn More.")

Visual information enters the "what" pathway through the lens (cornea) of the eye. The
cornea focuses images onto the retina, at the back of the eye, where photoreceptors
convert light to the electrical signals the brain's neurons use to communicate with each
other. "Roughly speaking," Kenyon says, "your eye has about 500,000 photoreceptors,
which is about equal to a half-a-megapixel camera."

The electrical signals from the retina go directly to the back of the brain, to V1, and are then
processed through the visual cortex, starting with V1 and ending with IT. The field of view is
first characterized in terms of simple visual features present in small square sections of the
visual field and then in terms of combinations of simple features that represent more-
complex features present in larger sections of the visual field. As the information is
processed, individual neurons further up the processing hierarchy recognize features that
are more and more complex and present in larger and larger sections of the visual field.

Near the top of the processing hierarchy, in V4, complex features, such as ears and noses,
are recognized by individual neurons that view sizable fractions of the visual field&mdash;a
fact that has been proven through electrophysiology experiments. In IT, individual neurons
respond to objects or types of objects that appear anywhere in the visual field, regardless of
how they're lit or oriented. "The magic is that an object, say, a face, is identified in IT as
belonging to a distinct category regardless of the scene it happens to be part of," says
Bettencourt. The V1-to-IT processing hierarchy is illustrated in the figure in "Learn More."

Feed-forward processing is thought to determine the minimum time necessary for primates
to see and identify objects. Experiments show that when a scene is presented to the visual
cortex of a monkey or a human, information initially flows mainly from the back of the brain
to the front&mdash;that is, in a feed-forward fashion&mdash;rather than laterally or
backwards (through "feedback" pathways). The slower processes related to lateral and
feedback neural connections kick in after the feed-forward processes do, and those
connections are not represented in PetANNet. So it's not surprising that when a scene is
presented to a human for up to about 50 milliseconds, the human brain identifies objects
with about the same accuracy as the program does&mdash;70 to 90 percent. But when
presented with a scene for longer times, humans become nearly perfect&mdash;accurate to
at least 99.999 percent. So the question is, how can feed-forward programs be improved?

Grow the Program?

Simply making the program much bigger could help. The feed-forward architecture has
roots in the 1950s, when MIT's Marvin Minsky first simulated cortical function by hooking
together simulated neurons to form neural nets.

In those days, the limited speed and memory of computers could handle only a small
number of neurons and neural connections. Consequently, the neural nets were applied
only to very simple problems. The performance of these neural nets was not good, or the
problems they solved were trivial. But the proponents of neural nets have claimed ever
since that scaling-up the size of the system by adding more neurons to include more feature
detectors and more connections would help the simulations learn more about the world and
thereby improve their performance to the point that it might eventually rival that of biological
cortical material.

"With Roadrunner, we can actually test this hypothesis for the first time," says Bettencourt.

Another member of the Synthetic Visual Cognition Team, Steven Brumby, ran PetANNet on
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a standard workstation and found that it took about 38 seconds to process a black-and-
white image of 320 &times; 240 pixels. If the model's parameters were scaled up to human
values&mdash;for example by increasing the number of feature detectors&mdash;it would
take about a day to process a color image of a million pixels, which means that such a
simulation could process only 300 or 400 scenes per year! And even if scaling-up
significantly improved object-identification accuracy, the software would be much too slow to
be useful.

Roadrunner, however, is fast enough to simulate the operation of the entire visual cortex in
real time. There are about 10 billion neurons in the human visual cortex, and each neuron is
connected to about 10,000 others. Each neuron also fires about 10 times per second, which
for a computer means about 10 "floating-point operations" per second (called "flops").
Multiplied together, these numbers give a quadrillion flops per second, or one "petaflop" per
second. The speed record the team set with Roadrunner last summer was&nbsp; 1.14
petaflop per second.

So, Roadrunner has what it takes to prove whether scaling-up a feed-forward neural net will
improve the software's accuracy to human levels. If scaling-up is the answer, Roadrunner
will also be able to identify objects as quickly as humans do.

However, the main research challenge in simulating a system as complex as the visual
cortex is teaching the simulation about the visual world. Scaling up means that the
representations of the visual world, especially in the upper layers of the visual cortex, can be
more numerous and more precise. However, these representations are constructed only
when the simulation actually observes the visual world. So, to fully realize the potential for
creating more representations that have greater precision, the simulation must also be
exposed to the visual world as widely as possible. Thus, the "training set" of visual images
used to develop those representations must be as large and diverse as possible.

We also note that humans take months to start seeing well and years to understand what
they see. Roadrunner will be able to test new ideas of how the human brain learns about the
visual world and how&nbsp; it organizes itself, by making neural connections,&nbsp; to
recognize features and to abstract meaning from&nbsp; what it sees.

Plans B

However, team members doubt that scaling-up alone will do the trick. So they are
developing other schemes in parallel with the scaling-up approach.

One tack is based on the facts that lateral and feedback neural connections kick in after the
feed-forward processes do and that humans identify objects more accurately when scenes
are presented to them for at least 50 milliseconds. If the second fact follows from the first,
including lateral and feedback connections could improve the model.

In fact, last summer's Roadrunner speed record was set by including lateral connections in
a team-developed program called "PetaVision."

PetaVision simulated only area V1&mdash;not the entire "what" pathway. Nor did
PetaVision include feedback connections. So, PetaVision couldn't test whether lateral and
feedback connections can together or separately improve the performance of the entire
visual-cortex model. However, PetaVision did show that lateral connections can be
important in processing visual information, and the code paved the way for testing the
effects of lateral connections in models that include all four major areas of the visual cortex.
It also tested some other promising approaches.

PetaVision's neurons were edge detectors whose lateral connections to other neurons were
"weighted" to detect smooth curves in the simulated visual field; the weighting was derived
from the results of experiments. First, as in PetANNet, each small square of pixels in the
visual field was analyzed by a stack of feature detectors&mdash;in this case, only edge
detectors. However, unlike in the feed-forward model, a PetaVision neuron that detected its
targeted edge orientation sent lateral signals to other neurons. If a nearby neuron detected
an edge that made a small angle with the edge detected by the first neuron, the weighting
caused both neurons to send more signals to each other, generating a local feeding frenzy
of neural activity. In this way, the neurons corresponding to segments of a smooth curve
became highly active, while neurons corresponding to squares that were blank or contained
edges with comparatively large angles were suppressed and became listless.

This weighting of lateral connections allowed PetaVision to do something PetANNet could
never do in its present state: find the border of a circle (see figure below). This may not
seem particularly earthshattering, but finding the borders of an object in one's visual
field&mdash;which is called "segmentation"&mdash;is essential to identifying the object's
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location. Simulations of this sort could pave the way for exploring the more poorly
understood "where" pathway of the visual cortex.

Bettencourt also points out that PetaVision found the circle using a prescribed weighting.
However, the team plans to modify the software so the neurons learn how to find smooth
contours on their own, just as we do.

Finally, in contrast to the very-simple neuron model in PetANNet, the electrical signals sent
between PetaVision's neurons&mdash;and the neurons' responses to those
signals&mdash;were modeled in biological detail.

Biological neurons talk to each other by sending out impulses, "spikes," of voltage. Each
spike lasts about a millisecond. PetaVision modeled each spike's amplitude and duration,
along with the spike's precise placement in time.

Precise spike timing is known to be used by the cortical tissue that processes auditory
information, for example, in bats, "who are geniuses of sound," Bettencourt says. Some of
the neurons in the auditory cortical tissue of bats locate sounds by measuring the difference
between the placements in time of two spikes to a precision as small as 10 percent of a
spike's duration. (The distance from a source of sound is usually slightly different for each
ear, so the associated neural signals are slightly displaced from each other in time.)
Moreover, Kenyon has studied spike timing in cat retinas, where its importance has also
been shown. PetaVision's accurate spike-timing model could help the Synthetic Visual
Cognition Team see if spike timing could be important in other cortical activities as well.

Playing Off Each Other

Both Roadrunner and the brain quickly and efficiently process huge amounts of information.
There are striking similarities&mdash;and differences&mdash;in how they do so.

For example, each of Roadrunner's microprocessors performs about one billion operations
per second, whereas a neuron performs about a thousand operations per second. However,
Roadrunner&mdash;even though it is a "green" supercomputer&mdash;consumes about
2.341 megawatts of power, enough to run two thousand homes. (The imposing stack of
Roadrunner's giant cooling towers, which dissipate the huge amounts of heat generated by
the supercomputer's thousands of superfast chips, is a distinctive feature near the Los
Alamos building that Roadrunner calls home.) However, because the neurons in the brain
operate much more slowly than do a supercomputer's microprocessors and because the
brain is far more parallel than a supercomputer is, the brain uses only 20 to 30 watts!

As research programs such as the Synthetic Visual Cognition Project help us learn how
cortical circuits work, we may one day be able to build hardware that can do what the brain
does with much less power than existing supercomputers need&mdash;or that can operate
much faster than existing brains do! Meanwhile, PetANNet and PetaVision are proof that the
computational limitations of supercomputers are no longer major obstacles to studying the
brain as an integrated system.
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