
Plasmodium falciparum parasites have been endemic 
to Haiti for >40 years without evidence of chloroquine (CQ) 
resistance. In 2006 and 2007, we obtained blood smears 
for rapid diagnostic tests (RDTs) and fi lter paper blots of 
blood from 821 persons by passive and active case detec-
tion. P. falciparum infections diagnosed for 79 persons by 
blood smear or RDT were confi rmed by PCR for the small 
subunit rRNA gene of P. falciparum. Amplifi cation of the P. 
falciparum CQ resistance transporter (pfcrt) gene yielded 
10 samples with amplicons resistant to cleavage by ApoI. A 
total of 5 of 9 samples had threonine at position 76 of pfcrt, 
which is consistent with CQ resistance (haplotypes at posi-
tions 72–76 were CVIET [n = 4] and CVMNT [n = 1]); 4 had 
only the wild-type haplotype associated with CQ susceptibil-
ity (CVMNK). These results indicate that CQ-resistant hap-
lotype P. falciparum malaria parasites are present in Haiti.

The island of Hispaniola is the only area in the Caribbean 
Sea where Plasmodium falciparum malaria is endemic 

(1). It has been reported that up to 75% of the population of 
Haiti lives in malarious areas, especially at altitudes <300 
m above sea level (2,3). P. falciparum is the only malaria 
parasite species that causes malaria in Haiti. The last con-
fi rmed endogenous case of P. vivax malaria was in 1983 
(4); 6 cases of P. malariae malaria were reported recently 
in Haitian refugees in Jamaica (5).

Haiti has been a remarkable outlier as a country in 
which P. falciparum malaria is endemic without evidence 
of chloroquine (CQ) resistance (3,6–8). Even though Haiti 
has had no comprehensive national malaria control program 
for 20 years (9), several reports have found no evidence of 
CQ resistance in Haiti (3,6–8). Those reports are consistent 
with the conclusions of domestic and international health 
agencies, which recommend CQ for the prevention of ma-
laria in Haiti and the treatment of patients with malaria ac-
quired in Haiti (8–10).

Accordingly, the original objectives of this research 
focused not on CQ resistance but on quantifying P. fal-
ciparum infection, including the heterogeneity and multi-
plicity of infection, and on identifying factors associated 
with low-intensity transmission in the Artibonite Valley 
of Haiti (11,12). We describe secondary analyses of blood 
samples for CQ-resistant P. falciparum haplotypes from 
samples collected in 2006 and 2007 that previously tested 
positive (11–13).

Materials and Methods

Ethical Approval
The protocols for these studies were reviewed and ap-

proved by the Institutional Review Boards of Tulane Uni-
versity and the Hôpital Albert Schweitzer (Deschapelles, 
Haiti). All samples were collected after obtaining informed 
consent.

Study Site
Studies were performed in the low-lying Artibonite Val-

ley. The valley has abundant rainfall and is heavily farmed; 
80% is irrigated for the cultivation of rice and other crops. 
The major peak in malaria cases (>99% caused by P. falci-
parum) (11,14–16) is during November–January (11,12,17). 
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The population of the Artibonite Valley relies primarily 
on subsistence farming and informal trade (barter) for in-
come. This population is poor; only 18% of households 
have electricity and just 12% have piped water (12). As a 
result, members of the population rarely travel outside the 
study area, and international travel to other malaria-endemic 
countries is uncommon. The primary malaria control activi-
ties currently being implemented include improvement of 
microscopy at Hôpital Albert Schweitzer, a facility that is 
supported by the Global Fund (www.theglobalfund.org/en/
worldmalariaday/2007) and vector control (10).

Hôpital Albert Schweitzer was the base of operations 
for the household surveys, passive case detection, and 
laboratory studies (i.e., thick and thin blood smears, anti-
gen testing by using rapid diagnostic tests [RDTs], clini-
cal examinations, and clinical and laboratory follow-up of 
patients). This hospital provides comprehensive inpatient 
care at its 100-bed facility and delivers preventive and pri-
mary health services to a population of 300,000 through 
a network of health centers, dispensaries, and workers in 
the community. Data from Hôpital Albert Schweitzer in-
dicate that malaria transmission in this area of Haiti varies 
annually according to rainfall. For example, 157 of 2,739 
suspected cases were confi rmed by microscopy and treated 
with CQ in 2005 (smear positivity rate 5.7%), and only 29 
of 1,307 suspected cases were confi rmed and treated in 
2006 (smear positivity rate 2.2%). The prevalence of P. 
falciparum infection in this area of Haiti is estimated to be 
3.1% (13).

Household Survey in 2006 (Active Case Detection)
A 2-stage cluster design, in which probability was 

proportional to cluster size, was used to generate a sam-
ple of 200 households within the study area, as described 
elsewhere (11,12). Thick and thin blood fi lms and 4 blots 
of blood on fi lter paper for PCR were collected from 714 
persons >1 month of age within selected households. All 
smear-positive case-patients were treated with CQ.

Passive Case Detection in 2006 and 2007

Data for 2006
Four blots of blood on fi lter paper (each containing 

50 μL) and axillary temperatures were obtained from 55 
persons (age range 11–80 years) with clinically suspected 
cases of malaria who came to Hôpital Albert Schweitzer 
during December 2006. All 55 samples were tested for P. 
falciparum infection by using PCR.

Data for 2007
As part of pilot studies of a passive case detection sys-

tem to identify households with malaria, 4 blots of blood 
on fi lter paper and axillary temperatures were obtained be-

fore treatment with CQ. Forty-seven smear-positive persons 
2–84 years of age were seen and treated at Hôpital Albert 
Schweitzer or a nearby satellite clinic in Liancourt from No-
vember 5 through December 3, 2007. A data collection team 
was sent to households of 45 positive case-patients within 
3 days for blood sample collection from all household resi-
dents >1 month of age. Thick and thin blood fi lms, a drop 
of blood for an RDT (OptiMAL-IT; DiaMed AG, Cressier 
sur Morat, Switzerland), 4 blots of blood on fi lter paper, 
and axillary temperatures were obtained from 249 house-
hold members 2–85 years of age. Five of these persons (age 
range 5–37 years) had positive results for P. falciparum by 
RDT and were treated with CQ. Fifty-two samples from 
persons who had either a positive smear at Hôpital Albert 
Schweitzer or a positive RDT result at home were then ex-
amined for P. falciparum infection by using PCR.

Diagnosis of Malaria by Blood Smear or RDT 
and Species-Specifi c PCR for P. falciparum 
Small Subunit rRNA Gene

Thick and thin Giemsa-stained blood smears were ex-
amined for malaria parasites at Hôpital Albert Schweitzer 
by trained laboratory technologists by using standard meth-
ods (18,19). Filter paper blots were transported from Haiti 
to New Orleans where parasite DNA was extracted (20,21), 
and microscopy results were confi rmed by using a PCR for 
the P. falciparum small subunit (SSU) rRNA gene (22). 
DNA was extracted from fi lter paper blots by using the 
Charge Switch Forensic DNA Purifi cation Kit (catalog no. 
CS 11200; Invitrogen, Carlsbad, CA, USA) according to 
the manufacturer’s instructions. This extraction yielded 150 
μL of DNA in buffer (10 mmol/L Tris, pH 8.5, 1 mmol/L 
EDTA) from each specimen.

PCR for the P. falciparum SSU rRNA gene used a 
P. falciparum–specifi c forward primer (which hybridizes 
only with P. falciparum DNA) and a genus-specifi c reverse 
primer (which hybridizes with DNA from all 4 Plasmodium 
spp. that infect humans: P. falciparum, P. vivax, P. ovale, 
and P. malariae) (22) (Table 1). To perform this PCR, 4 μL 
of DNA extracted from fi lter paper blots was added to 19 
μL of PCR master mixture (Promega, Madison, WI, USA) 
and 1 μL of each primer. Parasite DNA was amplifi ed af-
ter an initial denaturation at 95°C for 15 min; 43 cycles of 
denaturation at 95°C for 45 s and annealing at 60°C for 
90 sec; and a fi nal extension at 72°C for 5 min in an i-Q 
thermocycler (Bio-Rad, Hercules, CA, USA). Positive con-
trols for these assays contained DNA from in vitro culture 
of the Haiti I/CDC strain of P. falciparum (26). Resulting 
amplicons were visualized by electrophoresis on 1% aga-
rose gels stained with ethidium bromide (27,28). Amplicon 
sizes were estimated by using a 100–600-bp DNA ladder 
(catalog no. 15628–019; Invitrogen).
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Amplifi cation of P. falciparum pfcrt Gene from 
Specimens Positive for P. falciparum SSU DNA

Two protocols were used to amplify the P. falciparum 
CQ resistance transporter (pfcrt) gene responsible for CQ 
resistance (23–25). The fi rst protocol (single-step PCR) was 
used to screen 79 smear-positive and RDT-positive speci-
mens that were positive for P. falciparum SSU DNA (23). 
In this assay, 4 μL of DNA extracted from fi lter paper blots 
was mixed with 21 μL of PCR master mixture (Promega) 
plus 2 μL of primers (Table 1) and amplifi ed by an initial 
denaturation at 95°C for 7 min; 40 cycles of denaturation 
at 94°C for 30 sec, annealing at 57°C for 30 sec, and exten-
sion at 72°C for 30 sec; and a fi nal extension at 72°C for 10 
min in an i-Cycler thermocycler (Bio-Rad).

The second protocol (nested PCR) (24,25) was used to 
retest 58 specimens positive for SSU DNA that were nega-
tive in the single-step PCR for pfcrt. The nested PCR pro-
tocol used primers CRTP1 and CRTP2 for the fi rst round of 
amplifi cation and primers CRTD1 and CRTD2 for the sec-
ond round (24,25). Samples in the fi rst round were ampli-
fi ed by an initial denaturation at 94°C for 3 min; 45 cycles 
of denaturation at 94°C for 30 sec, annealing at 56°C for 30 
sec, and extension at 60°C for 1 min; and a fi nal extension 
at 60°C for 3 min. Samples in the second round were ampli-
fi ed by an initial denaturation at 95°C for 5 min; 30 cycles 
of denaturation at 92°C for 30 sec, annealing at 48°C for 30 
sec, and extension at 65°C for sec; and a fi nal extension at 
65°C for 3 min (Table 1).

Digestion of Amplicons from pfcrt with ApoI
For each sample positive for SSU DNA, an aliquot (10 

μL) of the pfcrt gene PCR product was digested with 10 U 
of ApoI (New England Biolabs, Beverly, MA, USA) ac-
cording to the manufacturer’s instructions. Briefl y, 10 U 
of ApoI in 1× NE buffer 3 (100 mol/L NaCl, 50 mmol/L 
Tris-HCl, 10 mmol/L MgCl2, 1 mmol/L dithiothreitol) and 

bovine serum albumin (100 μg/μL) were incubated over-
night with 10 μL of the PCR product at 50°C (23–25). 
DNA fragments from samples and positive and negative 
controls were resolved by electrophoresis on 3% agarose 
gels stained with ethidium bromide.

ApoI digests most wild-type pfcrt genes (with CVMNK 
haplotype sequences at positions 72–76) but not the CQ-
resistant mutant gene (i.e., K76, not T76) (23–25). On 
the basis of a single-step PCR for pfcrt, which yields an 
amplicon of 170 bp, amplicons with a lysine at position 
76 (K76) are digested into 2 fragments (98 bp and 72 bp). 
Amplicons from CQ-resistant parasites (i.e., parasites with 
CVIET and CVMNT sequences at positions 72–76) are not 
digested by ApoI, resulting in an unchanged amplicon of 
170 bp. The nested PCR product is slightly smaller (134 bp 
vs. 170 bp). As with the single-step PCR, most amplicons 
from CQ-susceptible parasites are digested by ApoI (in this 
instance to 30-bp and 104-bp fragments); amplicons from 
CQ-resistant parasites are not digested (unchanged ampli-
cons of 134 bp; 24,25).

Amplifi cation, Cloning, and Sequencing 
of pfcrt Genes Not Digested by ApoI

Samples not digested by ApoI for which DNA was 
available (9 of 10) were reamplifi ed under the conditions 
described above for nested pfcrt PCR, cloned into the 
pCRII-TOPO vector, and transfected into the TOP10 strain 
of Escherichia coli by using the TOPO TA Cloning Kit 
(Invitrogen) according to the manufacturer’s instructions 
(29,30). Cloned pfcrt amplicons were sequenced in both 
directions by using CRTD1 and CRTD2 primers at an auto-
mated DNA sequencing facility (Davis Sequencing, Davis, 
CA, USA). Data for >3 clones sequenced in both directions 
were compared by using the multiple sequence alignment 
function in Lasergene version 7.2 software (DNASTAR, 
Madison, WI, USA) (31,32).
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Table 1. Primers used to amplify Plasmodium falciparum DNA during study in Haiti* 
Primers (5   3 ) Amplicon, bp Tm, °C Reference 
Primers for P. falciparum species-specific SSU rRNA gene 276  (22) 
 Forward: AACAGACGGGTAGTCATGATTGAG  56.5  
 Reverse: GTATCTGATCGTCTTCACTCCC  54.5  
Primers for single-step pfcrt gene PCR 170  (23) 
 Forward: TgTgCTCATgTGTTTAAACTT  50.6  
 Reverse: AATAAAgTTgTgAgTTTCggA  49.8  
Primers for nested (2-step) pfcrt gene 573  (24,25) 
 First round of amplification    
  Forward (CRTP1): CCGTTAATAATAAATACACGCAG  49.9  
  Reverse (CRTP2): CGGATGTTACAAAACTATAGTTACC  51.5  
 Second round of amplification    
  Forward (CRTD1): TGTGCTCATGTGTTTAAACTT  134 50.6  
  Reverse (CRTD2): CAAAACTATAGTTACCAATTTTG  46.1  
*Nucleotides in upper case letters were conserved in 100% of sequences at those positions, and nucleotides in lower case letters were conserved in most 
(e.g., >50%) sequences at those positions. Tm, melting (annealing) temperature; SSU, small subunit; pfcrt, P. falciparum chloroquine resistance 
transporter. 
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Results
We identifi ed 79 P. falciparum infections in 821 per-

sons by using PCR for the P. falciparum SSU rRNA gene 
(Table 2) (23–25). The 51 persons identifi ed by passive 
case detection were thought to have malaria because their 
temperatures were >37.5°C. In contrast, only 9 (39%) of 
23 infected persons identifi ed by active case detection in 
the 2006 household survey had temperatures >37.5°C (11). 
The pfcrt gene was amplifi ed from these 79 samples by us-
ing either single-step (n = 21) or nested PCR (n = 58). Af-
ter digestion by ApoI, 10 samples did not yield the 100-bp 
and 34-bp fragments characteristic of the CQ-susceptible 
pfcrt gene (Figure). PCR-amplifi ed pfcrt DNA from 9 of 
these samples (no DNA was available for the 10th sample) 
was cloned into the TOPO TA vector, transfected into the 
TOP10 strain of E. coli, grown on selective medium, and 
sequenced. Sequences from 5 of 9 samples had pfcrt haplo-
types associated with CQ resistance (5/79 [6%]; 4 CVIET 
and 1 CVMNT); 4 of these 5 samples were mixed infec-
tions that also had CQ-susceptible haplotype sequences 
(CVMNK). The remaining 4 samples had only sequences 
associated with CQ susceptibility (CVMNK) (Table 2). 
Although CQ treatment failures have not been reported in 
Haiti, no follow-up information was available for the 5 per-
sons with CQ-resistant haplotype parasites.

Discussion
For as long as CQ has been available, P. falciparum has 

been endemic to Haiti without evidence of CQ resistance. 
During the past 20 years, several reports have noted the con-
tinued susceptibility of P. falciparum to CQ in Haiti (3,6–9), 
although Haiti had no comprehensive national malaria con-
trol program (10). Our results indicate that CQ-resistant hap-
lotype P. falciparum parasites are now present in Haiti.

Our study has several limitations. First, because data 
on CQ-resistant parasites were not obtained from probabil-
ity-based sampling, we were unable to estimate the poten-
tial effect and distribution of CQ resistance in the general 
population of Haiti. We can only report the presence of 
CQ-resistant haplotype parasite sequences in this area of 
Haiti. Second, we have not performed in vivo studies of 

treatment with CQ in Haiti to confi rm molecular evidence 
for CQ resistance. Lastly, because these studies were based 
on results of fi lter paper blots, we have not yet been able to 
examine live P. falciparum parasites from the study area to 
test the effects of CQ on those parasites in vitro.

Beginning with studies of Djimde et al. (24) and Fi-
dock et al (34), several studies have established a cause-
and-effect relationship between the K76T point mutation 
(lysine → threonine at position 76 of pfcrt) and CQ resis-
tance (23,25,35). In addition, studies in Southeast Asia, 
South America, and Africa have shown that persons who 
do not clear P. falciparum parasitemias after treatment with 
CQ have parasites that contain the K76T point mutation 
(36–39). Thus, P. falciparum parasites with CQ-resistant 
haplotypes that we identifi ed in Haiti are likely to reduce 
the effi cacy of CQ in Haiti as they have in sub-Saharan 
Africa, South America, and Southeast Asia (36–39).

Because the frequency of CQ-resistant P. falciparum 
in Haiti may be low, we suggest continuing CQ chemopro-
phylaxis for travelers to Haiti as currently recommended 
(14,40). We also suggest continuing to treat patients with 
uncomplicated P. falciparum infections acquired in Haiti 
with CQ in the absence of CQ chemoprophylaxis. How-
ever, if the presence of CQ-resistant P. falciparum in Haiti 
is confi rmed by in vivo studies of resistance in humans or 
in vitro studies of parasite resistance to CQ, tourists and 
other nonimmune persons who acquire P. falciparum in-
fections in Haiti or after travel to Haiti despite CQ chemo-
prophylaxis should be treated with alternative antimalarial 
drugs (mefl oquine, atovaquone plus proguanil [Malarone], 
or sulfadoxine-pyrimethamine [Fansidar]), as they would 
be treated in other regions of the world where CQ resis-
tance is present.

There are at least 2 potential explanations for CQ-
resistant haplotype parasites in Haiti. First, CQ-resistant 
parasites may have been imported into Haiti by persons 
who acquired CQ-resistant P. falciparum in areas with es-
tablished resistance, such as South America, sub-Saharan 
Africa, or Southeast Asia, where CVMNT and CVIET 
haplotypes circulate on a regular basis. Although this hy-
pothesis could explain the presence of CVIET haplotype 
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Table 2. Samples from household surveys (active case detection) and hospital outpatients (passive case detection) tested by small
subunit PCR for Plasmodium falciparum, by year of collection, Haiti 
Characteristic 2006 2007 Total
Samples from household surveys, no. positive/no. tested (%) 23/714 (3.2) 5/5 (100) 28/719 (4) 
Samples from hospital outpatients, no. positive/no. tested (%) 9/55 (16) 42/47 (89) 51/102 (50) 
Total, no. positive/no. tested (%) 32/769 (4.2) 47/52 (90.4) 79/821 (9.6) 
Molecular studies 
 Resistance to ApoI digestion, no. positive/no. tested (%) 6/32 (19) 4/47 (9) 10/79 (13) 
 Haplotype, no. samples 
  CVIET 4 0 4
  CVMNT 0 1 1
  CVMNK 2 3 5
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parasites in Haiti, it would require an initial importation by 
persons with greater fi nancial resources than the residents 
of the Artibonite Valley. Second, CQ-resistant CVMNT 
haplotype parasites may have arisen by a single point mu-
tation at position 76 in the pfcrt gene among naturally in-
fected persons in Haiti, a mutation that could convert the 
predominant CQ-susceptible CVMNK haplotype to a CQ-
resistant CVMNT haplotype. Defi ning the origin of these 
haplotypes will require additional sequencing within the 
pfcrt gene (beyond the 134-bp amplicon we studied) and 
at other loci.

At the Hôpital Albert Schweitzer and across Haiti, 
no clinical failures with CQ have been reported, and fatal 
cases of malaria are extremely rare. However, because CQ 
remains the fi rst-line antimalarial drug in Haiti, selection 
for CQ-resistant parasites will continue and is likely to de-
crease the effi cacy of CQ. Therefore, we suggest that now 
would be an opportune time to eliminate malaria from the 
island of Hispaniola before CQ resistance becomes broadly 
established, renders CQ ineffective, and makes elimination 
more much diffi cult. A commitment to eliminate malaria 
on Hispaniola would also provide an opportunity to test 
strategies being considered for malaria elimination on an 
island close to the US mainland and its resources, and in an 
area with a relatively low level of malaria transmission.
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