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Three Frontiers in Energy Modeling

I. Developing Baselines

II. Representing Technology 

III. Incorporating Uncertainty 



I. Developing Baselines:
Alternative Global Carbon Emission Projections
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Projected Probabilistic Range
of  Global Carbon Emissions
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II. Representing Technological Change
Limitations and Possible Extensions to 

Current Methods for Modeling TC
Current approaches omit important dynamics of technological
change.  A broader framework for analyzing TC is needed.
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The VALUE OF DEVELOPING
NEW ENERGY TECHNOLOGY

(Present Discounted Costs to Stabilize the Atmosphere)
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Table 1:  Technology Assumptions 
   Year 2100 

Technology units 
1990 
Base 

Mini-
CAM B2 

Mini-
CAM B2 

AT 

US Automobiles mpg 18 60 100 

Land-based Solar Electricity 1990 c/kWh 61 5.0 5.0 

Nuclear Power 1990 c/kWh 5.8 5.7 5.7 

Biomass Energy 1990$/gj $7.70 $6.30 $4.00 

Hydrogen Production (CH4 feedstock) 1990$/gj $6.00 $6.00 $4.00 

Fuel Cell mpg (equiv) 43 60 98 

Fossil Fuel Power Plant Efficiency (Coal/Gas) % 33 42/52 60/70 

Capture Efficiency % 90 90 90 

Carbon Capture Power Penalty (Coal) % 25 15 5 

Carbon Capture Power Penalty (Gas) % 13 10 3 

Carbon Capture Capital Cost (Coal) % 88 63 5 

Carbon Capture Capital Cost (Gas) % 89 72 3 

Geologic Disposal (CO2) $/tC 37.0 37.0 23.0 



Reducing Cost and Increasing Efficiency
of Photovoltaic Systems

(M. Green, UNSW)

Cost ¯
• Cheaper Active Materials

(abundant inorganic or organic)
• Lower Fabrication Costs

(low-cost deposition / growth)
• Cheaper BOS Components

(substrates, encapsulation, …)

Efficiency 
Reduce the Thermodynamic Losses at Each Step
of the Photon-to-Electron Conversion Process
• Light Absorption
• Carrier Generation
• Carrier Transfer and Separation
• Carrier Transport

Cost ¯
• Cheaper Active Materials

(abundant inorganic or organic)
• Lower Fabrication Costs

(low-cost deposition / growth)
• Cheaper BOS Components

(substrates, encapsulation, …)

Efficiency 
Reduce the Thermodynamic Losses at Each Step
of the Photon-to-Electron Conversion Process
• Light Absorption
• Carrier Generation
• Carrier Transfer and Separation
• Carrier Transport

Wafer-based (c-Si)Wafer-based (c-Si)

Thin-films (CIGS, CdTe, a-Si, …)Thin-films (CIGS, CdTe, a-Si, …)

“III Generation”
concepts

“III Generation”
concepts



Inorganic Thin-Film Photovoltaics

High efficiency Materials

Performance enhancement through
• optimized geometry
• quantum effects

• (Novel) low-cost, abundant, non-toxic,
and stable semiconductor materials

• Thin films: low volumes and lower
requirements for charge transport

• Low-cost deposition processes

Nanoscale morphology

III generation concepts with efficiency limits
beyond the single junction limit of 31%

intermediate band, up-converters, tandem (n=3)intermediate band, up-converters, tandem (n=3)

hot carrierhot carrier

TPVs, thermionicsTPVs, thermionics

tandem (n=2)tandem (n=2)

multiple exciton generationmultiple exciton generation

31%31%
down-convertersdown-converters

68%



III. Incorporating Uncertainty
Information, Foresight & Uncertainty:
Three Alternative Sets of Assumptions

Invest Start
Operation

Stop
Operation

State of Energy System

Time

Plan & Build Operate

t1 t2t0

(1) Static, Myopic, or Recursive Dynamic
(2) Perfect Foresight (Rationale Expectations)
(3) Decision Making Under Uncertainty



Levelized Cost Comparison for Electric Power Generation
With $200 per Ton Tax on Carbon (2002 Fuel Prices)
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Levelized Cost Comparison for Electric Power Generation
With $200 per Ton Tax on Carbon ( 2005 Fuel Prices)
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Interplay Between
R&D and Investment Decisions

R&D
Decision
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Investment
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Assessments of R&D Projects
(Erin Baker, et al.)

Purely Organic Solar Cells

.1.3.90Low cost substrate (total < $50/m2)P4

.34

.90

.50

.85

ex1

.04

.5

.3

.9

ex2

.01Total

.25Low cost deposition (total < $50/m2)P3

.5Stability 30 yearsP2

.8Efficiency 15%P1

ex3Funding Trajectory $15M/yr 10 yrsNeed 
Estimate
s for

We can reconcile divergent expert judgments through peer review; or run 
separate scenarios and see how overall policy changes under different 
expert judgments.
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Projected Probabilistic Range
of  Global Carbon Emissions
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Approaches to Modeling
Under Uncertainty

• Stochastic Dynamic Programming

• Stochastic Linear/Non-Linear Programming

• Stochastic Control 

• Stochastic Simulation

• Intelligent Stochastic Simulation

• Bounding

• Sensitivity Analysis

• Multi-Dimensional Sensitivity Analysis

• Strategic Scenarios



MARKAL
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Recommendations for Energy Modelers

• Work Harder on Baselines

• Don’t Ignore Technological Change

• Don’t Ignore Uncertainty

• Don’t Let the Perfect Be the Enemy of the Good 
and Useful

– i.e., Simple things are a lot better that no things.



Thank You!



Potential Areas of Model Refinement (I)

1. Technology/Technology Change
– Invention

– Innovation

– Diffusion

2. Spatial/Temporal Disaggregation

3. Uncertainty
– In the World, aka Scenario Uncertainty

– How it Impacts Behavior of Modeled Agents

– Related to Degree of Foresight Assumed

4. Data
– Technology, Energy End Uses, Resources

– Institutions

– Economic Output, I/O, Fuel Markets, Trade



Potential Areas of Model Refinement (II)

5. Representation of Market Imperfections

6. Representation of “Non-Rational” Behavior

7. Ability to Analyze “Plausible” Policies

• Standards

• Sectoral Caps

• Remedies for Market Imperfections

8. Macro/Microeconomic Integration

9. Public Finance/Financial Market Integration

10. Marrying Conceptual Structures With Data



Basic Strategies for Developing Models

• Identify All Potential Questions First, Then Design 
the Model to Help Address Them

• Develop a Flexible Modeling Architecture That Can 
Be Easily Adapted to New Problems

• Do Both! 



Model Development/Assessment Issues:
Common Pitfalls in Policy Modeling

• Lack of Focus

– Pick a basic model structure without a set of applications 
firmly in mind

– Not modifying model in response to new problems

• Mistaking the Model for Reality

– If its not in the model it probably doesn’t exist

– Test alternative assumptions only against the model

– Methodological limitations imply real world restrictions

• Poor Communication of Results

– Overstating strength of results

– Omitting key relevant assumptions/qualifications



Assessments of R&D Projects (Baker, Cont.)
Define Investment Level and Technical success

• Example: Advanced Solar; purely organic solar cells
• Investment: $15 Million per year, for 10 years.
• Technical Success: 

– Cost of $50/m2; 
– efficiency of 15%; 
– 30 year life time (defined as working at least 75% of 

original efficiency after 30 years)
• We will define intermediate hurdles:

– Identifying molecules that can achieve efficiency.
– Identifying molecules among that group that can 

achieve stability.
– Hurdles related to the cost of depositing the material 

and identifying a low cost substrate.
• Then, assess probability of success.
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Observations Regarding 
Current Approaches to Modeling Tech. Change

• Current approaches to TC provide a good foundation:
– spillovers

– innovation incentives and knowledge capital

– heterogeneous firms and technologies 

• Current approaches suggest weak or ambiguous effect of ITC, but
underestimate importance:

– Focus only on R&D-based technological change

» learning-by-doing

» diffusion or imitation by existing technology

– Assume continuous, known returns to R&D function (no surprises or discontinuities)

» No provision for major innovations

» Model only one dimension of technological change (cost)

– Neglect path-dependence and inertia in changing technology dynamics

• Modeling challenge will be to incorporate enough complexity to
realistically capture technology dynamics in a meaningful way.

• Policy challenge will be to use insights from models, but qualify findings
with a more complete understanding of technological evolution.
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