Price Volatility in Natural Gas Markets

Presented to: Energy Information Administration's 2008 Energy Conference

April 8, 2008

Presented by: Erin Mastrangelo (Former EIA Industry Economist)

ekmastrangelo@gmail.com

Agenda

- Overview of prices and volatility
 - What is volatility?
 - Trends
- Drivers of volatility
- Some empirical results
- Implications and Conclusions

Henry Hub Spot Price: 1994 - 2007

Source: NGI's Daily Gas Price Index, Intelligence Press

What is Price Volatility?

- A measure of the degree of price variation in a market.
- Increasing prices do not necessarily indicate that the market is undergoing a particularly volatile period.
- When prices increase, volatility increases only if accompanied by a disproportionately large increase in the absolute daily price change.

Price Volatility Defined

A common measure of risk or uncertainty in the market is to define price volatility as the standard deviation of daily relative changes in price

$$Volatility_{T} = \sqrt{\frac{\sum_{i=1}^{N} (\Delta p - \Delta \overline{p})^{2}}{N-1}} * \sqrt{N_{T}}$$

 Δ p = the log change in daily spot price, ln(p_t/p_{t-1}) N = number of days within time interval, T

Annual Price Volatility: Henry Hub

Consistently High; No Increasing or Decreasing Trend

Monthly Price Volatility: Henry Hub Strong Seasonal Pattern

Market Factors That Impact Natural Gas Price Volatility

Demand Side:

- Weather (heating and nonheating season)
- Market for Related Fuels
- Additional Natural Gas-Fired Infrastructure
- Economic Activity

Supply Side:

- Variation in Storage
- Production
- Imports
- Delivery Constraints

- Both consumers and producers have limited choices in responding to high prices
- Inelasticity of demand and supply in natural gas markets leads to high levels of volatility, relative to other commodities

Seasonality in Volatility

- Seasonal variation reflects weather related demand.
- Data suggests that storage dynamics may also be affecting volatility levels.

	Coefficient		
Month	Average Monthly Volatility	of Variatio n	
January	25.38%	52.98%	
February*	27.45%	99.06%	
March	16.49%	70.37%	
April	12.63%	42.30%	
May	11.38%	31.47%	
June	12.87%	30.06%	
July	12.67%	30.72%	
August	16.32%	35.42%	
September	17.05%	43.89%	
October	22.79%	43.76%	
November	24.75%	58.43%	
December	26.74%	47.29%	

* The calculated February value excludes the first two weeks of February 1996.

Econometric Results

- Results of a time-series regression analysis of *weekly* volatility show there is seasonality in the markets, but also indicate that storage dynamics have a strong influence on volatility
 - Weekly volatility in March and April, the months surrounding the end of the heating season, is 30 and 34 percent lower than in January.
 - Weekly volatility in October and November, the months surrounding the start of the heating season, is 46 and 47 percent higher than in January.
 - As storage levels move away from the 5-year average (above or below), the weekly volatility increases.

Consequences of High Volatility

- Real-time supply and demand data are unavailable so market participants look to prices as a barometer for current market conditions.
- Individuals and companies may react to sharp price changes by requiring larger expected returns, or delaying or declining investments.
- Overall effect is increased uncertainty and risk, which affects decision making for both suppliers and consumers of natural gas.

Mean Absolute Price Changes

- Even under constant or low volatility levels, price risk may increase as the price of natural gas increases.
- The range of potential costs to buyers and sellers depends on the range of possible price changes, not necessarily on the *percent* change in price. For example:

Scenario	Absolute Price Increase	Percent Increase in Price	Economic Impact
Price increases from \$2.50 to \$3.00	50 cents	20 percent	LOWER
Price increases from \$10 to	\$1.00	10 percent	HIGHER

Henry Hub Monthly Spot Prices: Average, Min and Max, 1994 – 2007

Source: NGI's Daily Gas Price Index, Intelligence Press

Note: Dots represent averages and vertical lines indicate the high and low range

Conclusions

- A high degree of price volatility seems inherent in natural gas markets, but volatility and high prices are different aspects of market pricing
- Volatility exhibits seasonal patterns based on weather and storage dynamics
- Price volatility increases as storage levels move away from the 5-year average storage inventory level
- Financial risk can be large even under relatively low volatility levels, if daily price movements are large

Additional Information...

<u>www.eia.doe.gov</u> : Click on "Natural Gas"

• "*An Analysis of Price Volatility in Natural Gas Markets*", August 2007

• Reports and analyses on natural gas markets and infrastructure.

New York City Transco Zone 6

Significantly higher volatility relative to Henry Hub may reflect population and capacity constraints

Chicago City Gates Volatility Patterns Are Similar to the Henry Hub

