

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable seathermal seathermal fuel cell BroedomCAL adjusting apply searces

Building Technologies Program

Application of Building Energy Consumption Data in Low-Energy Building Research

Drury B. Crawley U. S. Department of Energy

Key Areas of Interest

- Energy Use Intensity
 - What is energy use per floor area?
- Floor-area weighting
 - What is average square foot vs. average building?
- End use
 - What equipment is using the energy?
- Climate zone distributions
 - How are buildings distributed in climate zones per ASHRAE Standard 169-2006?

- Mechanical equipment detail
 - What systems and component types are being used?
- Schedules
 - How does occupancy and operation vary over time?
- Utility pricing structures
 - What are demand, energy, and service charges really like?

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

ASHRAE Standard 169 Climate Zones

March 24, 2003

April 2008

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Using EIA's CBECS Data

- Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector http://www.nrel.gov/docs/fy08osti/41957.pdf
- Methodology for Analyzing the Technical Potential for Energy Performance Across the Commercial Sector http://www.nrel.gov/docs/fy08osti/41956.pdf
- Scenario Analysis Using EnergyPlus Models for 4,820 Samples
 - Forward modeling allows modeling "what if" scenarios
 - Annual, 15-minute modeling with historical weather files for 2003
 - Detail developed from probability, literature, engineering design, codes, and standards.

C NREL National Renewable Energy Laboratory

Methodology for Modeling Building Energy Performance across the Commercial Sector

B. Griffith, N. Long, P. Torcellini, and R. Judkoff National Renewable Energy Laboratory

D. Crawley and J. Ryan U.S. Department of Energy Technical Report NREL/TP-550-41956 March 2008

laboratory of the U.S. Department of Energy e of Energy Efficiency & Renewable Energy

1 national laboratory of the U.S. Department of En-Office of Energy Efficiency & Renewable En

Technical Report

NREL/TP-550-41957

December 2007

Innovation for Our Energy Future

Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector

B. Griffith, N. Long, P. Torcellini, and R. Judkoff National Renewable Energy Laboratory

D. Crawley and J. Ryan U.S. Department of Energy

April 2008

U.S. Department of Energy Energy Efficiency and Renewable Energy

Assessment Overview

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Percent of Commercial Sector That Can Reach ZEB

Net-EUI Distributions from ZEB Assessment

Net-EUI Distributions for ASHRAE Standards

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Target EUIs for 30% Savings

•Developed targets by climate zone and principal building activity

•Cited in DOE order 430.2B (Feb. 27, 2008) for federal buildings

	Climate Zones															
Subsectors	All	1A	2A	2B	3A	3B	3C	4A	4B	4C	5A	5B	6A	6B	7	8
All	49	58	47	51	54	40	44	49	39	39	52	45	53	51	52	52
Office/professional	40	39	42	45	37	32	31	42	41	37	42	33	43	43	47	47
Nonrefrigerated warehouse	29	19	21	21	26	21	21	29	35	21	33	35	35	33	32	32
Education	36	36	34	40	29	29	38	42	24	30	37	31	42	45	45	45
Retail (except malls)	47	47	46	46	44	38	38	48	40	40	51	50	53	64	70	70
Public assembly	43	46	46	46	50	37	37	38	33	54	48	35	46	36	49	49
Service	58	58	55	55	42	44	44	55	36	36	64	53	72	60	76	76
Religious worship	31	28	28	28	20	21	21	31	41	41	36	24	40	27	31	31
Lodging	38	45	36	36	37	28	28	40	43	43	39	36	42	45	44	44
Food services	248	248	248	248	266	262	262	257	257	257	235	198	239	239	248	248
Inpatient health care	77	75	75	75	83	69	68	74	74	74	81	74	79	81	81	81
Public order and safety	47	38	38	38	47	47	47	42	42	42	55	54	51	61	61	61
Food sales	127	140	140	140	133	105	105	132	132	132	121	127	146	146	127	127
Outpatient health care	53	53	56	56	45	55	55	46	46	46	63	53	57	55	75	75
Vacant	21	21	16	16	21	14	14	29	29	29	15	15	28	28	28	28
Other	40	51	51	51	40	40	40	40	40	40	43	43	44	44	44	44
Skilled nursing	92	92	92	92	79	72	72	102	102	102	99	74	93	93	93	93
Laboratory	226	226	226	226	226	258	258	191	191	191	219	219	226	226	226	226
Refrigerated warehouse	60	60	60	60	60	60	60	62	60	60	60	60	60	60	60	60

Table 1. Target Energy Use Intensities¹ for 30% savings relative to ANSI/ASHRAE/IESNA Standard 90.1-2004² by Subsector and Climate Zone³: IP Units kBtu/ft².yr

¹EUIs are site (delivered) energy use for the whole building.

² 30% Targets were developed from modeling results for Standard 90.1-2004 multiplied by 0.7 (listed in Table 2).

³ Climate zones are defined in ANSI/ASHRAE Standard 169-2006.

http://buildings.energy.gov/highperformance/pdfs/energy_use_intensity_targets.pdf

April 2008

Suggested improvements:

- Detailed modeling as part of methodology
- Applying ASHRAE Standard 169-2006 climate zones
- Taking into account:
 - Mechanical ventilation systems and operation
 - Monthly demand and energy use
 - Building shape and orientation
 - Utility tariffs
 - Sub-metering of end uses

Conclusions

- Sector data such as CBECS are critical to BTP's planning, analysis, and research
- Working with EIA to expand data to support analysis with more variables