AEP Climate Change Strategy

Mountaineer Plant - New Haven, WV

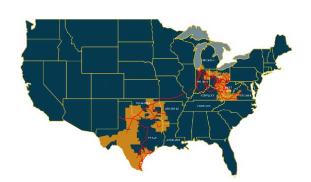
Northeastern Plant - Oologah, OK

Bruce Braine
Vice President - Strategic Policy Analysis
April 7, 2008

Company Overview

Coal/Lignite 67%

Nat. Gas/Oil 24%

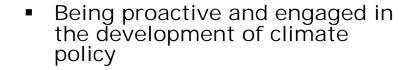

Nuclear 6%

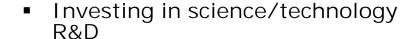
Pumped Storage/ Hydro/Wind 3%

Industry

AEP's Generation Fleet 38,388 MW Capacity

5.1 million customers in 11 states Industry-leading size and scale of assets:

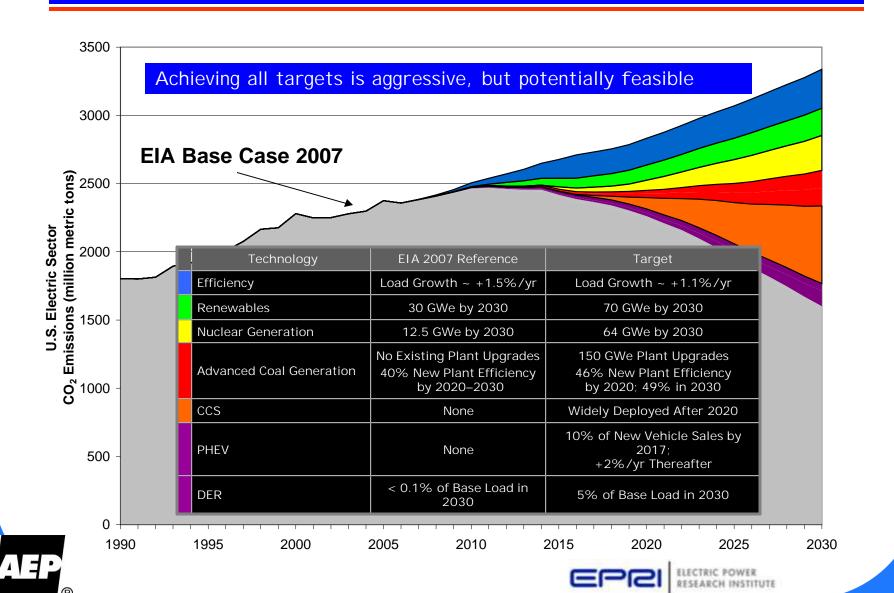

<u>Asset</u>	<u>Size</u>	<u>Rank</u>
Domestic Generation	~38,300 MW	# 2
Transmission	~39,000 miles	# 1
Distribution	~208,000 miles	# 1



AEP's Climate Strategy

 Taking Voluntary action now, making real reductions thru CCX (2003-07: 40 MM Tons reductions); 2011 Voluntary Commitment (additional 5 MM Tons/year reductions).

- ELECTRIC POWER RESEARCH INSTITUTE
- Investing in long term technology (e.g., IGCC, Ultrasupercritical PC and CCS)


AEP's Climate Position

- A certain and consistent national policy for reasonable carbon controls should include the following principles:
 - Comprehensiveness
 - Cost-effectiveness
 - Realistic emission control objectives
 - Monitoring, verification and adjustment mechanisms
 - Technology development & deployment
- Inclusion of adjustment provision if largest emitters in developing world do not take action

AEP Supports Reasonable Legislation on GHG: Bingaman- Specter "Low Carbon Economy Act of 2007"

EPRI CO₂ Reduction "Prism"

5

AEP's Long-Term GHG Reduction Portfolio

Renewables (Biomass Co-firing, Wind)

Supply and Demand Side Efficiency

Off-System Reductions and Market Credits (forestry, methane, etc.) Commercial Solutions of New Generation and Carbon Capture & Storage Technology

A Portfolio Approach: AEP's Long-Term CO₂ Reduction Commitment

Existing Programs

- Existing plant efficiency improvements
- Renewable Energy
 - 800 MWs of Wind
 - 300 MWs of Hydro
- Domestic Offsets
 - Forestry 0.35MM tons/yr
 - Over 63MM trees planted through 2006
 - 1.2MM tons of carbon sequestered
- International Offsets
 - Forestry projects have resulted in 1MM tons of carbon sequestered through 2006
- Chicago Climate Exchange

AEP's reductions/offsets of CO₂:

- 2003-2005: 31 MMT
- 2006-2010 (proj.): Additional 15 MMT

New Program Additions (by 2011)

- 1000 MWs of Wind PPAs: 2MM tons/yr
- Domestic Offsets (methane): 2MM tons/yr
- Forestry: Tripling annual investment to increase to 0.5MM tons/yr by 2015
- Fleet Vehicle/Aviation Offsets: 0.2MM tons/yr
- Additional actions--end use and supply efficiency and biomass: 0.3MM tons/yr

New Technology Additions

- New Generation IGCC and USC
- Commercial solutions for existing fleet
 - Chilled Ammonia
 - Oxy-Coal

AEP's reductions/offsets of CO₂:

2011+: 5 MMT/YEAR

Longer Term—New Technology

AEP Wind Operations/Purchases

Trent Mesa (2001)

- 150 MW (100 1.5 MW turbines)
- Abilene/Sweetwater, TX

Summary

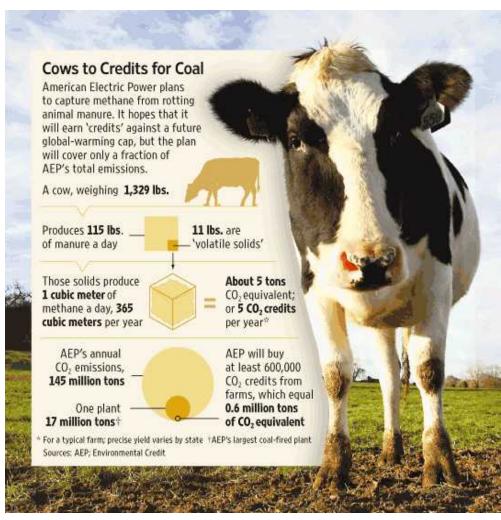
- Owned/Operated 385 MW
- •Wind Purchases 392 MW
- •Total Existing Wind at end of 2006: 777 MW
- •New Wind Purchases in 2007: 275 MW

- 75 MW (107 700kW turbines)
- McCarney, TX
- Power Purchaser

Desert Sky (2002)

- 160 MW (107 1.5 MW turbines)
- Bakersfield, TX

Will acquire an additional 725 MW of new wind to attain goal of 1,000 MW by 2011


Off-System Reductions

New AEP Offset Commitment by 2011:

2 MM tons/year additional CO₂ offsets

Latest Announcement:

- Methane Capture Deal with Environmental Credit Corp.
 - 0.6 MM Tons CO2e per year
 - 2010 through 2017
 - 51% of credits sourced from "AEP States"

Source: Wall Street Journal June 14, 2007

AEP Leadership in New Technology: IGCC and USC

NEW ADVANCED GENERATION

• **IGCC** -- AEP first to announce plans to build two 600+ MW IGCC commercial size facilities in US (OH and WV) by mid next decade

• **USC** -- AEP will be first to employ new generation ultra-supercritical (steam temperatures >1100°F) coal plant in U.S (AR)

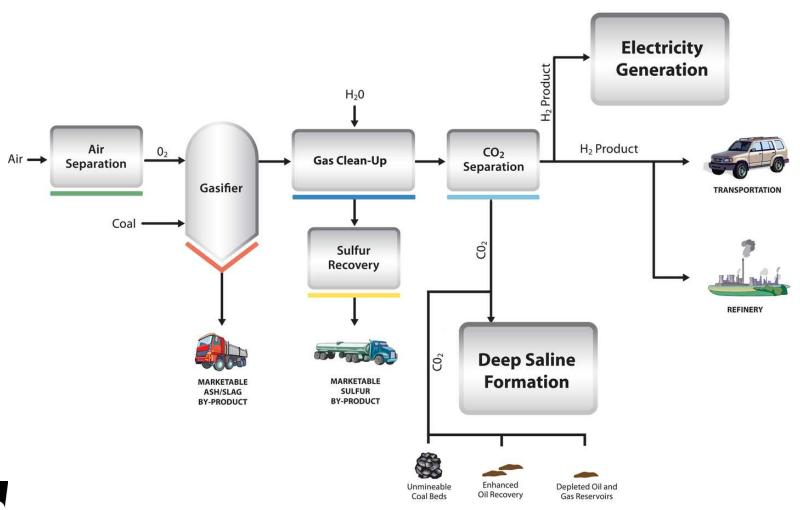
CO₂ Capture Techniques

Pre-Combustion Capture - IGCC with Water-Gas Shift

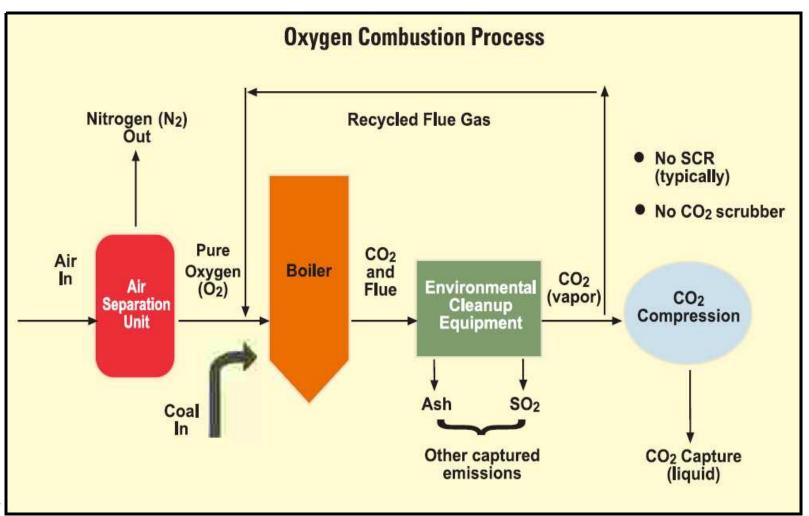
- Most of the processes commercially available in other industrial applications
 - Have never been integrated together
- Turbine modified for H₂-based fuel, which has not yet been proven at commercial scale
- Creates stream of very high CO₂ concentration
- Parasitic demand (~15-20%) for CO₂ capture lower than amine or oxy-coal

Modified-Combustion Capture - Oxy-Coal

- Technology not yet proven at commercial scale
- Creates stream of very high CO₂ concentration
- High parasitic demand, >25%

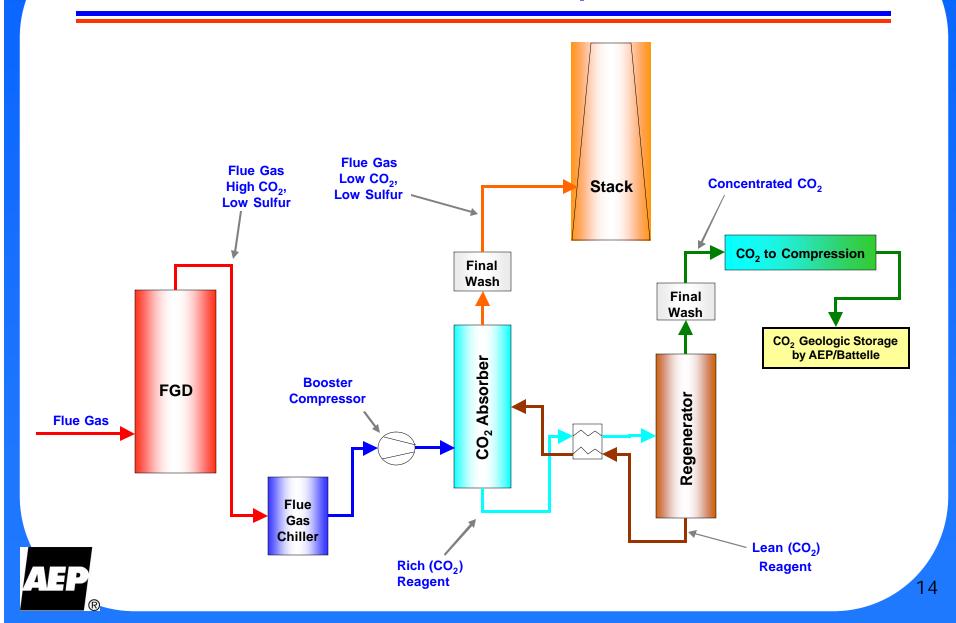

Post-Combustion Capture-Conv. or Advanced Amines, Chilled Ammonia

- Amine technologies commercially available in other industrial applications
- Relatively low CO₂ concentration in flue gas Thus difficult to capture
- High parasitic demand
 - Conventional Amine ~30%, Chilled Ammonia target ~10-15%
- Amines require <u>very</u> clean flue gas

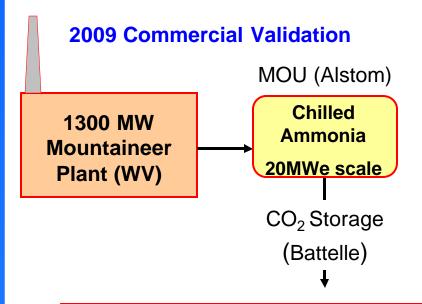

IGCC Water-Gas Shift Process

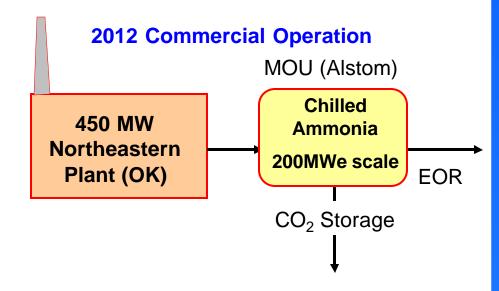
Pre-Combustion Capture

Babcock & Wilcox Oxy-Coal Process


Modified Combustion Capture

Alstom's Chilled Ammonia Process


Post-Combustion Capture


AEP Leadership in New Technology: Chilled Ammonia CCS

Phase 1

Phase 2

Captures and sequesters 100,000 metric tons of CO₂ /yr.

Captures and sequesters 1.5 Million metric tons of CO₂/yr.

The Challenge: CCS is Expensive

\$/ton CO₂e

- Carbon Capture w/ Geologic Sequestration
- Other renewable, advanced geothermal and/or solar
- Carbon Capture for Enhanced Oil Recovery
- New Biomass Generation
- Dispatch of additional gas vs. inefficient coal
- Biomass Co-firing
- Biological Sequestration (e.g. Forestry)
- New Wind
- Energy Efficiency
- Methane Offsets

Nuclear?

CCS: The Business Case

- CO2 Legislation Requiring Very Substantial Long Term Reductions is Likely
- A Portfolio of Reduction Options Will Be Needed
- Future Electricity Demand Requires New "Baseload" Power Options (Predominantly Coal and Nuclear)
- Half of Existing Demand is Met By Coal and Early Retirement of Coal is Expensive. Thus, Retrofit CCS becomes essential.

Key Issues for CCS Development

- Overcoming the "Economic" Hurdle—Bonus Allowances and Other Financial Support
- High Up-Front Capital Investment Getting Adequate Financing and Recovery in Rates
- Commercial Demonstrations of CCS at Large Coal-Fired Power Plants
- National Standards for Permitting of Storage Reservoirs
- Potential Institutional, Legal and Regulatory
 Barriers to Carbon Storage

