Southern Research Station Headquarters - Asheville, NC
Main Logo of Southern Research Station, Stating: Southern Research Station - Asheville, NC, with a saying of 'Science you can use!'
[Images] Five photos of different landscape

Publication Information

Mail this page   Give us your feedback on this publication

Title: Flooding and arsenic contamination: Influences on ecosystem structure and function in an Appalachian headwater stream
Author(s): Lottig, Noah R.; Valett, H. Maurice; Schreiber, Madeline E.; Webster, Jackson R.
Date: 2007
Source: Limnology and Oceanograph, 52(5), 2007, 1991–2001
Description: We investigated the influence of flooding and chronic arsenic contamination on ecosystem structure and function in a headwater stream adjacent to an abandoned arsenic (As) mine using an upstream (reference) and downstream (mine-influenced) comparative reach approach. In this study, floods were addressed as a pulse disturbance, and the abandoned As mine was characterized as a press disturbance. We further addressed chronically elevated As concentrations as a ramp disturbance, in which disturbance intensity was ramped by increasing proximity to the As source. Stream ecosystem structure and biogeochemical functioning were characterized monthly over a period ranging from July to December 2004. Influence of the press disturbance was evident in the mine-influenced reach, where As concentrations (254 6 39 µg L21) were more than 30 times higher than in the reference reach (8 6 1 µg L21). However, in almost all cases the presence of the abandoned As mine appeared to exert little influence on reach-scale measures of ecosystem structure and function (e.g., organic matter [OM] standing crops, phosphorus [P] uptake). Conversely, floods significantly influenced OM standing stock in both study reaches. Interactions between press and pulse disturbances influenced P uptake in the mine-influenced reach. Within the mine-influenced reach, P uptake across a gradient of As concentrations correlated with Michaelis–Menton models of enzyme kinetics in the presence of a competitive inhibitor. These results indicate that As competitively inhibits P uptake by microbial assemblages.
View and Print this Publication (706 KB)
Publication Notes:
  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS Webmaster, srswebmaster@fs.fed.us if you notice any errors which make this publication unuseable.
 [ Get Acrobat ] Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility




Publication Links:

FIA Resource Bulletins

Publications Search


Search for on-line publications
containing the following:

 


(Uncheck this box to search all R&D Publications.)

Small logo of the USDASmall logo of the Forest Service