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A Climate-Based Model Predicts the Spatial Distribution of the Lyme Disease
Vector Ixodes scapularis in the United States
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An understanding of the spatial distribution of the black-legged tick, Ixodes scapularis, is a funda-
mental component in assessing human risk for Lyme disease in much of the United States. Although
a county-level vector distribution map exists for the United States, its accuracy is limited by arbitrary
categories of its reported presence. It is unknown whether reported positive areas can support estab-
lished populations and whether negative areas are suitable for established populations. The steadily
increasing range of I. scapularis in the United States suggests that all suitable habitats are not cur-
rently occupied. Therefore, we developed a spatially predictive logistic model for I. scapularis in the
48 conterminous states to improve the previous vector distribution map. We used ground-observed
environmental data to predict the probability of established 1. scapularis populations. The autologis-
tic analysis showed that maximum, minimum, and mean temperatures as well as vapor pressure sig-
nificantly contribute to population maintenance with an accuracy of 95% (p < 0.0001). A cutoff
probability for habitat suitability was assessed by sensitivity analysis and was used to reclassify the
previous distribution map. The spatially modeled relationship between I scapularis presence and
large-scale environmental data provides a robust suitability model that reveals essential environmen-
tal determinants of habitat suitability, predicts emerging areas of Lyme disease risk, and generates
the future pattern of I scapularis across the United States. Key words: autologistic model, climate
matching, GIS, habitat suitability, Ixodes scapularis, landscape epidemiology, Lyme disease, risk
maps, spatial analysis, vector-borne disease. Environ Health Perspect 111:1152-1157 (2003).
doi:10.1289/ehp.6052 available via htzp://dx.doi.org/ [Online 12 February 2003]

Zoonotic infectious diseases are inextricably
linked to their environment. In the case of vec-
tor-borne pathogens, environmental determi-
nants control the distribution and abundance
of vertebrate reservoirs, vectors, and pathogens
(Kitron 1998; Pavlovsky 1966). The dynamics
of their transmission is a function of several abi-
otic and biotic processes that affect the ecosys-
tem as a whole and control the survival of the
arthropod vector (Hay et al. 2000). The emer-
gence of these diseases can be attributed to a
response of an ecosystem to pressure resulting
from environmental change (Reeves et al.
1994; Rogers and Randolph 2000). Thus, the
spread of a number of vector-borne diseases can
be correlated with natural and human-induced
changes on the Earth system. Elucidating the
relationship between environment and vector is
essential for measuring human risk and target-
ing effective surveillance and control measures.
A number of landscape features are closely
associated with zoonotic diseases. In particular,
climate, land cover, and landscape patterns are
important epidemiologic determinants (Frank
et al. 1998; Lindgren et al. 2000; Randolph
1993). The idea of using landscape ecology in
the context of epidemiology was first brought
about by Pavlovsky (1966). He introduced the
concept of natural focality, defined by the idea
that microscale disease foci are determined by
the entire ecosystem (Galuzo 1975). With the
recent availability of new technologies such as
remote sensing and geographic information sys-
tems along with advances in spatial and tempo-
ral statistics, the theories of landscape ecology
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can be used analytically (O’Neill et al. 1999).
Landscape features can be mapped and used as
predictors of the pathogen, vector, and host
reservoir presence and abundance (Daniel and
Kolar 1990; Dister et al. 1997; Kitron and
Kazmierczak 1997). Because an accurate under-
standing of the spatial distribution of both the
pathogen and the vector is integral to disease
prevention strategies, spatially explicit models
founded on basic ecologic principles are invalu-
able tools in epidemiology and public health.
The deer tick, Ixodes scapularis, presents an
ideal example of a disease vector that depends
profoundly on climate and landscape patterns
(Frank et al. 1998; Maupin et al. 1991; Mount
et al. 1997; Ostfeld et al. 1996). L scapularis is
the primary vector of Borrelia burgdorfers, the
agent of Lyme disease, in North America
(Dennis et al. 1998; Keirans et al. 1996). Lyme
disease is currently the most prevalent vector-
borne disease in the United States, with more
than 100,000 cases reported by the U.S.
Centers for Disease Control and Prevention
since its discovery in 1982 (Orloski et al.
2000). In addition, /. scapularis is a known
vector of other tick-borne diseases, including
human babesiosis (Spielman et al. 1985) and
human granulocytic ehrlichiosis (Des Vignes
and Fish 1997; Schwartz et al. 1997). Climatic
variation has an essential function in determin-
ing 1. scapularis population maintenance and
distribution. Abiotic factors, including temper-
ature and humidity, are likely to regulate off-
host tick survival (Bertrand and Wilson 1996;
Needham and Teel 1991). Water stress and

temperature are major causes of mortality in
nonfeeding ticks because the seasonal patterns
of these variables control both developmental
success and rates for all stages (Needham and
Teel 1991). Because 98% of the 1. scapularislife
cycle occurs off of the host, climate should play
a major role in the distribution of tick popu-
lations across the United States (Fish 1993).
However, the complex relationship between
the tick vector and the environment hinders a
detailed understanding of the ecologic con-
straints on the distribution of £ scapularis.

Moreover, there is still no consensus on the
precise geographic distribution of Lyme disease
in the United States because of increased hu-
man case surveillance, overdiagnosis, under-
reporting, and human travel. In addition, the
underlying ecologic data supporting vector dis-
tribution are limited and incomplete because
of uneven sampling and a lack of standardized
field techniques (Dennis et al. 1998; Fish and
Howard 1999). Without an accurate depiction
of where Lyme disease exists, and where it is
emerging, the targeting of efficient prevention
and control strategies would be inaccurate.

A more precise understanding of the spatial
distribution of I scapularis would enable the
appropriate targeting of prevention efforts at
populations at risk at the appropriate times of
year. Although a distribution map (Dennis et
al. 1998) exists for the United States, both the
criteria for classification and the category de-
finitions are problematic. The county-resolu-
tion data consist of a compilation of data from
questionnaires, published literature, and the
collection records of the U.S. National Tick
Collection, Institute of Arthropodology and
Parasitology, Georgia Southern University. The
map is arbitrarily classified with the following
categories: established [six or more 1. scapularis
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reported in any stage (considered a critical
mass) or more than one life stage identified
(considered a reproductive population)],
reported (fewer than six /. scapularis identified
and one life stage identified), and absent (no
collections of 1. scapularis). Additionally, it is
not known whether areas of reported occur-
rence could support continuous population
maintenance, or whether absent areas are
unsuitable for establishment or are simply the
result of inadequate sampling. Despite these
limitations, the map provided an essential
source of information that guided the Advisory
Committee on Immunization Practices recom-
mendations for vaccinating the public against
Lyme disease (Fish and Howard 1999).

Because of the important role of an accurate
vector distribution map for Lyme disease pre-
vention, we developed a spatially predictive
logistic model for 7. scapularis in the United
States to improve the current reported vector
distribution map, and highlight areas of poten-
tial emerging disease risk. This model builds
upon other vector distribution studies that have
used environmental data to enhance base sur-
veillance data (Cumming 2000; Estrada-Pena
2002) by accounting for the effects of spatial
autocorrelation through a Bayesian approach
and providing a statistical means for creating an
casily interpretable classified risk map. We used
this spatially explicit habitat suitability model to
dissect the relative importance of seasonal tem-
perature and humidity in determining the bio-
logic constraints of 1. scapularis distribution.
This study is also unique because we validated
the environmental model by strategic field sam-
pling. Our model of the relationship between
tick habitat suitability and large-scale environ-
mental data can be used to predict the current
and future 1. scapularis habitat suitability and to
provide the basis for a detailed ecologic risk
map for Lyme disease as well as other diseases
transmitted by Z. scapularis.

Materials and Methods

We used ground-observed environmental
data to predict the probability of established
I scapularis populations. We obtained the data
from a 0.5° x 0.5° global data set of 30-year
average monthly climatic surfaces, based on
daily measurements for the period of
1961-1990, available through the Climatic
Research Unit at the University of East Anglia
(New et al. 1999). Climate surfaces were derived
from interpolation of station data as a function
of latitude, longitude, and elevation using thin-
plate splines. This data set has been used previ-
ously in the study of tick-borne encephalitis foci
in Europe (Randolph and Rogers 2000).
Variables selected for analysis include mini-
mum, maximum, and mean monthly tempera-
ture and monthly vapor pressure. The climate
data were imported using ERDAS IMAGINE
(ERDAS 2001) and processed using ESRI

ArcGIS (ESRI 2001). Data for each 0.5° pixel
corresponding to the conterminous United
States were summarized by calculating the cell
statistics for each variable, including mean, max-
imum, minimum, and standard deviation (SD).

We selected the U.S. distribution map of
1. scapularis as the dependent variable in the
model (Dennis et al. 1998). This distribution
map was converted into the 0.5° grid, assigning
each cell the category that took up the greatest
amount of area. Only areas classified as absent
and established were considered in the analysis
because the true status of 1. scapularis in the
reported category is unknown.

Next, we derived a logistic model for the
relationship between environment and known
established 1. scapularis populations. The 16
independent variables, including the mean,
maximum, minimum, and SD of each of the
four monthly environmental factors, were first
individually examined to test the linearity
assumption for a continuous regressor variable.
Log odds ratio plots were created for each vari-
able grouped into deciles to determine if
higher-order polynomial terms or variable
transformations were necessary. The decision
was formally verified by a goodness-of-fit test,
comparing the likelihood ratio of each potental
model for a given factor to that when treating
the variable as a nominal categorical variable
divided into deciles (Holford 2002). The best-
fitting model was selected using a chi-square
goodness-of-fit test (Holford 2002). The log
odds ratio plots also have biologic significance
because they display the relationship between
the environmental variables and established
populations of . scapularis. Variables that
required greater than a fourth-order polynomial
were removed because of uncertain biologic rele-
vance. A binary logistic regression model was fit
with SAS software using the remaining variables
and associated interaction terms (SAS 2001).
The analysis was carried out using a stepwise
selection with P,y = 0.15 and Pepoval = 0.2
(Hosmer and Lemeshow 1989).

Because adjacent areas tend to have similar
environmental conditions and the probability
of occurrence in one location is not indepen-
dent of occurrence in neighboring locations,
the number of degrees of freedom (DF) reduces
and the chance of a type I error increases
(Legendre 1993). By dealing with spatial auto-
correlation, we can show that the L scapularis
range is nonrandom and dependent on climatic
variables (Augustin et al. 1996). This considera-
tion will also give a better indication of the rela-
tive importance of environmental factors
(Augustin et al. 1996). Spatial autocorrelation
in the probability of establishment derived from
the initial regression was assessed, therefore, by
Moran’s / using Crimestat (Levine 2000). We
also evaluated the extent of the correlation by a
semivariogram with a linear-to-sill model using

GS+ (Gamma Design Software 1998).
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We accounted for spatial autocorrelation
by applying an autologistic approach (Augustin
et al. 1996). A moving window was used to
calculate the average probability of occupation
among the set of neighbors defined by the
limit of correlation, weighted by the inverse of
the Euclidean distance. This average probabil-
ity is called the autologistic term and is added
as an additional covariate in the logistic model
(Augustin et al. 1996; Osborne et al. 2001).
The autologistic term acts as a smoothing fil-
ter, removing isolated pixels and consolidating
habitat patches. Because vector population sta-
tus in the reported locations is unknown, we
incorporated a modified Gibbs sampler to esti-
mate the distribution in these unknown areas
(Augustin et al. 1996, 1998). This Monte
Carlo—type method involves iterating the pro-
cedure of fitting the autologistic model, deriv-
ing the probability surface for all locations, and
then recalculating the autologistic term until
stability. We implemented this procedure with
a program written with Microsoft Visual C++.

The receiver operating characteristics
(ROC) plot was used to independently assess
accuracy (Cumming 2000; Osborne et al.
2001). This method graphs sensitivity versus
1-specificity over all possible cutoff prob-
abilities. The area under the curve for ROC
(AUC) is a measure of overall fit, where 0.5
indicates a chance performance (Fielding and
Bell 1997). We generated the plot for the
autologistic model using Simstat (Provalis
Research 2000). A probability cutoff point for
habitat suitability assessed by sensitivity anal-
ysis determined whether a given cell could
support an established vector population.

Strategic field sampling at locations of vary-
ing probability confirmed the validity of the
environmental model for established 7. scapu-
laris populations. Sampling was confined to a
portion of Northeast United States, including
the states of Pennsylvania, Maryland, New
Jersey, and Delaware (Figure 1). This area was
ideal for sampling because the established pop-
ulation probability is highly variable among
cells. Validation did not include areas previ-
ously defined as absent or reported because it is
uncertain whether /. scapularis has expanded
into these areas yet. We determined the pop-
ulation status at each location by measuring
nymphal abundance with field sampling,

To estimate total tick abundance, we de-
signed a multistage sampling scheme. The first
stage involved stratified random sampling,
where 20 cells were selected for sampling with
equal allocation to probability groups divided
by quintiles. The second sampling stage
involved sampling /. scapularis within each cell
selected in the first stage. To standardize the
sampling effort, a state park or state forest was
selected at each sample grid cell. As a result,
similar deciduous forest habitat would be
sampled at each site. We estimated nymphal
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abundance by dragging a 1-m? flannel cloth,
fixed to a wooden handle, through vegetation
(Daniels et al. 2000; Milne 1943). For each
park, we randomly selected 10 transects of
100 m? for dragging, inspecting the cloth at
20 m intervals. We performed sampling daily
between 900 and 1800 hr throughout June
2002, the period of greatest host-seeking activ-
ity (Daniels et al. 2000). A one-tailed Fisher
exact test was used to test for a positive associ-
ation between positive tick collections and
suitable habitat defined by the sensitivity
analysis. Both the validity and the predictive
value of the model were also assessed.

Results

The converted 1. scapularis distribution 0.5°
grid map gave a total of 3,628 cells, with 11%
established area (7 = 416), 77% absent area
(n=2,785), and 12% remaining reported
(n = 427), analogous to the distribution of the
classified county data. Univariate analysis of the
16 dependent environmental variables showed
distinct quantitative relationships with the
probability of established 1. scapularis popula-
tion. Log odds ratio plots revealed polynomial
relationships for all variables. Minimum tem-
perature showed a strong positive association
with tick presence with a fourth-order poly-
nomial regression (R?=0.97; Figure 2),

whereas the other variables were shown to have
more complex relationships. Goodness-of-fit
testing removed seven of the 16 environmental
descriptors.

The initial logistic model using only estab-
lished and absent locations uncovered a signif-
icant relationship between tick presence and
the nine remaining variables and associated
interaction terms (? = 314; DF = §; p<
0.0001). The stepwise analysis left eight signif-
icant variables in the model, representing the
four environmental correlates used (Table 1).
Maximum monthly temperature and SD of
vapor pressure had the greatest influence on
population maintenance (Table 1). The model
also predicted the suitability status of the addi-
tional reported locations.

The probability of established tick popula-
tions derived from the initial regression exhib-
ited significant spatial autocorrelation by
Moran’s / (p < 0.00001) The limit of the auto-
correlation, assessed by a semivariogram with a
linear-to-sill model, was 2,297 km. The autolo-
gistic model was then applied with a moving
window radius of this limit. The regression coef-
ficients converged after five iterations to produce
the final probability surface (Figure 3). The final
logistic model was significant (p < 0.0001) with
all eight variables remaining in the model (Table
1). The inclusion of spatial autocorrelation in
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Figure 1. State parks and forests in four U.S. states selected for sampling by a stratified sampling design.
Nymphal abundance was estimated by 1,000-m drag-sampling transects at 20 sites. 1, Presque lle State
Park; 2, Maurice K. Goddard State Park; 3, Moraine State Park; 4, Crooked Creek Park; 5, Cook Forest; 6,
Parker Dam State Park; 7, Sinnemahoning State Park; 8, Bald Eagle State Park; 9, Nolde Forest; 10,
Nockamixon State Park; 11, Promised Land State Park; 12, Spruce Run State Park; 13, Wharton State
Forest; 14, Allaire State Park; 15, Trap Pond State Park; 16, Gunpowder Falls State Park; 17, Patapsco
Valley State Park; 18, Cedarville State Forest; 19, Seneca Creek State Park; 20, Gathland State Park.
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the model reveals minimum monthly tempera-
ture to play a more significant role in sustaining
tick populations than was described by the non-
spatial model.

The ROC plot for the autologistic model
significantly outperformed the chance model
with an accuracy of 0.9508 (p < 0.00005;
Figure 4). Sensitivity analysis produced a proba-
bility threshold of 21%, because it gave a maxi-
mum sensitivity of 88% and a specificity of
89%. This cutoff was used to reclassify the
existing distribution map. Of the reported loca-
tions (7 = 427), 66% were defined as estab-
lished, and 11% of the absent areas (7 = 2,327)
were defined as suitable. All other reported and
absent areas were considered unsuitable. Areas
previously defined as established maintained the
same classification. We therefore propose a new
distribution map for 7 scapularis in the United
States (Figure 5) with the categories established,
suitable for colonization but not yet introduced,
and unsuitable for colonization.

For the model verification, 20 parks were
sampled for nymphal abundance across four
states (Figure 6): 5 parks were sampled in
Maryland, 11 in Pennsylvania, 3 in New Jersey,
and 1 in Delaware. A total of 413 I scapularis
nymphs were collected at all the study sites,
with an average abundance of 0.018 nymphal
ticks/m? (SD = 0.020). The sampling sites
were then grouped according to the probabil-
ity threshold. The sites above the threshold
(n = 16) had an average tick abundance of
0.026 (SD = 0.019), with only one site with
no collections (Figure 6). There were no ticks
found in sites below the threshold (7 = 4). The
one-tailed Fisher exact test revealed a signifi-
cant association between the presence of
nymphs and suitable habitat (p < 0.01). The
model produced a sensitivity of 100% (15 of
15), a specificity of 80% (4 of 5), and overall
accuracy of 95% (19 of 20). The false positive
and false negative rates were 6.25% (1 of 16)
and 0% (0 of 4), respectively.

-0.4

Log odds

-1.2

-15 -5 5 15 2%
Minimum temperature (°C)

Figure 2. Log odds plot for relationship between
I. scapularis population maintenance and minimum
temperature (7). Minimum temperature showed a
strong positive association with odds of an estab-
lished /. scapularis population. According to good-
ness-of-fit testing, the relationship was fit best by a
fourth-order polynomial regression (A% = 0.97). Log
odds = 0.000006 7* + 0.00027° - 0.00277 2 + 0.0002T —
0.8412.
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Discussion

The spatially modeled relationship between
1. scapularis presence and large-scale environ-
mental data served both to reveal the essential
environmental determinants of 1. scapularis
population establishment and to generate the
spatial pattern of habitat suitability across the
United States. We used the seasonality of tem-
perature and humidity to explore the role of
climate upon 1 scapularis distribution because
of their relationship with host-secking behav-
ior and off-host mortality. The accuracy of the
model (AUC = 95%) indicates that variations
in these climatic conditions play a major role
in determining the range of L scapularis.

Both univariate and multivariate analyses
quantified the relationship between previously
proposed environmental constraints and estab-
lished 7. scapularis populations. The univariate
analyses computed the relationship between
single variables and established populations.
Minimum temperature was the only variable
to have a noncomplex positive relationship
(Figure 2). The importance of minimum tem-
perature is reflected in the idea that it repre-
sents the environmental conditions at the
lower limit of tick survival. The log odds plot
revealed the possibility of a threshold winter
condition, below which development is unsuc-
cessful. An average monthly minimum temper-
ature below —7°C in the winter is predicted to
prevent an area from maintaining established
populations.

The multivariate logistic model revealed the
relative contribution of environmental variables
in explaining suitability for . scapularis estab-
lished populations. Our analysis suggests the
importance of climatic extremes and variation
in vapor pressure as major indicators of habitat
suitability. However, we cannot be certain that
other variables that were excluded by the vari-
able selection algorithm do not also play a role
because of the collinearity of these climatic fac-
tors. The primary use of this model is predic-
tion, which is affected very little by collinearity
(Neter et al. 1996). Removing the effect of spa-
tial autocorrelation gives a better reflection of
the relative importance of each factor. When
accounting for space, minimum temperature
was the only variable to increase in importance,
once again indicating a significant biologic role.
Maximum temperature and vapor pressure also
played a significant role in determining the
range of [ scapularis despite the complex rela-
tionships displayed by the univariate analyses.
Maximum temperature was the most influen-
tial variable in the model, indicating an impor-
tant role in sustaining tick populations. Higher
temperatures augment both the developmental
and hatching rates while hindering overall
survival and oviposition success (Needham and
Teel 1991).

Because of this defined relationship between
environment and tick population maintenance,

climate change may be involved in controlling
the future distribution of the Lyme disease vec-
tor (Estrada-Pefia 2002; Shope 1991). Variation
in climatic conditions may affect the range of 7.
scapularis by altering host-seeking activity and
vector population density. This model could
therefore forecast the future distribution of this
vector by analyzing the trends in both natural
and anthropogenic environmental changes.

The derived relationship also assessed envi-
ronmental suitability for L scapularis popula-
tions for all locations across the conterminous
United States. This suitability map builds upon
data from the previously published vector distri-
bution map (Dennis et al. 1998). Although
their map comprehensively covers all counties of
the United States, there are clear disadvantages.
First, the categories used to define established
populations are determined according to an
arbitrary threshold number of collected ticks.
There is no biologic significance attributable to

the presence or absence of six collected ticks.
Second, the suitability of areas for established
populations cannot be determined from the
map. A subset of the absent areas may still repre-
sent colonizable areas, and reported locations
may represent either adventitious specimens in
unsuitable areas or the initiation of a reproduc-
ing population. Third, the reported map high-
lights the problem of the nonreportability of
negative data, preventing a distinction between
absent areas and unsampled areas. Using cli-
matic variables that create the appropriate con-
ditions for I scapularis population maintenance
can therefore provide more accurate predictions
of the current and potential future distribution
of I scapularis.

Our improved vector distribution map
evaluates whether a particular location can
support a continuous population of . scapu-
laris. Therefore, unsuitable areas may have
introductions but not allow for completion of

Table 1. Summary results of the autologistic regression analysis of the relationship between the selected
climatic variables and established populations of /. scapularis.

Environmental factor (variable) Order Estimate SE p-Value > Wald x?
Maximum temperature (minimum) 1 1.25(1.98) 0.37(0.32) 0.0007 (< 0.0001)
Maximum temperature (mean) 1 13.50 (13.46) 2.60(2.22) <0.0001 (< 0.0001)
Maximum temperature (mean) 2 -1.29(-1.36) 0.22(0.19) <0.0001 (< 0.0001)
Maximum temperature (mean) 3 0.047 (0.048) 0.0083 (0.0072) <0.0001 (< 0.0001)
Maximum temperature (mean) 4 —0.0006 (~0.0006) 0.0001 (0.0001) <0.0001 (< 0.0001)
Mean temperature (minimum) 1 -1.29 (-1.06) 0.35(0.31) 0.0002 (0.0007)
Minimum temperature (mean) 1 1.06 (0.79) 0.22(0.19) <0.0001 (< 0.0001)
Vapor pressure (SD) 1 1.45(3.22) 0.33(0.25) <0.0001 (< 0.0001)
Autologistic term 1 11.37 1.26 <0.0001

Results of the primary nonspatial logistic regression are displayed in parentheses.

0-0.2 E 5
0.21-04
0.41-06
061-08
0.81-1

Figure 3. Probability surface for /. scapularis population maintenance derived from the autologistic model.
The model converged after five iterations and significantly predicts established populations (p < 0.0001).
The model was extrapolated to predict the status of reported locations (n = 427). All four environmental
variables were used in the model: minimum, mean, and maximum temperature and vapor pressure.
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the tick’s life cycle (Lindsay et al. 1998). Areas
that are suitable but not currently sustained
are those that will experience the greatest
increase in 1. scapularis population density,
because introductions should result in repro-
ducing populations. The presence of these
areas validates the idea that 7 scapularis con-
tinues to expand its range (Dennis et al. 1998;
Keirans et al. 1996). According to the model,
notable increases in vector distribution are
expected in Virginia, North Carolina,
Georgia, Minnesota, lowa, and Michigan.
Interestingly, the probability surface displays
low suitability on the West Coast, where
Ixodes pacificus, the vector of Lyme disease in
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Figure 4. ROC plot describing the accuracy of the
autologistic model. This method graphs sensitivity
versus 1-specificity over all possible cutoff proba-
bilities. The AUC is a measure of overall fit, where
0.5 (a 1:1 line) indicates a chance performance
(dashed line). The plot for the autologistic model
significantly outperformed the chance model with
an accuracy of 0.95 (p < 0.00005).

- Unsuitable
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the western United States, is situated. Thus,
the model provides evidence that the environ-
mental constraints on the ranges of the closely
related species are distinctly different.

Because locations that were originally
designated as established were maintained in
the new map, certain areas with low habitat
suitability were still designated as established
areas. For instance, in Missouri, isolated pixels
are classified as established even though the
entire state is predicted to have an extremely
low probability of established /. scapularis pop-
ulations. It cannot be determined whether
samples in these areas most likely represent
samples of temporarily introduced ticks or

0.10
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Habitat suitability

Figure 6. Results of field sampling for model valida-
tion. Sampled nymphal abundance is plotted
against the predicted probability of /. scapularis
populations. The dashed line represents the
threshold probability of 21% assessed by sensitivity
analysis and used to measure the association
between tick presence and suitable habitat.

Figure 5. New distribution map for /. scapularis in the United States. To determine whether a given cell can
support /. scapularis populations, a probability cutoff point for habitat suitability from the autologistic model
was assessed by sensitivity analysis. A threshold of 21% probability of establishment was selected, giving a
sensitivity of 97% and a specificity of 86%. This cutoff was used to reclassify the reported distribution map
(Dennis et al. 1998). The autologistic model defined 81% of the reported locations (n = 427) as established
and 14% of the absent areas (n = 2,327) as suitable. All other reported and absent areas were considered
unsuitable. All areas previously defined as established maintained the same classification.
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founding populations, revealing the problems
with original classification criteria. However,
this information is still retained in the new
classification map, which makes this model a
conservative revision.

The field sampling design validated the
environmental /. scapularis model with empiri-
cal data. The ability of the model to predict
habitat suitability was reflected in the signifi-
cant positive association between nymphal pres-
ence and above-threshold suitability (p < 0.01).
Interestingly, the model predicted all sites
where ticks had been collected as having suit-
ability above threshold, yielding a sensitivity of
100%. This result highlights the idea that
climate determines the appropriate conditions
for the presence of reproducing populations.
However, other factors, such as host density
and species composition, may be more impor-
tant factors controlling the tick population size
than is climate.

Our goal in this work was to identify the
environmental determinants regulating . scapu-
laris populations in space, which in turn dictates
Lyme disease risk. However, this model should
not be considered the only layer necessary to
identify areas of risk. Not all areas that can sup-
port populations of /. scapularis can also main-
tain an enzootic cycle of Borrelia burgdorferi.
Therefore, a second layer that illustrates infec-
tion prevalence in the ticks would be an essen-
tial component of a complete Lyme disease risk
map. Because of the inaccuracies in human
case report data, estimates of tick infection
prevalence might also be predicted through the
use of environmental data. In addition, other
information, such as canine seroprevalence for
B. burgdorferi and host species composition
data, could be used to construct an infection
prevalence layer (Daniels et al. 1993; Fish and
Howard 1999).

This habitat suitability model for 7. scapu-
laris provides an essential first step toward a
more precise geographic distribution of Lyme
disease and a stronger evidence base for de-
termining human risk in specific endemic
regions. Our methods can also provide a tem-
plate for mapping other vector-borne zoonotic
diseases. Given the limitations of a human re-
porting system, a more complete assessment of
risk can be provided by developing a spatial
model of environmental suitability. The out-
put of such a model can enable improved pre-
dictions of emerging risk, as well as aid in
implementation of efficient control strategies
and target disease prevention efforts toward
high-risk populations.

REFERENCES

Augustin NH, Mugglestone MA, Buckland ST. 1996. An autolo-
gistic model for the spatial distribution of wildlife. J Appl
Ecol 33:339-347.

. 1998. The role of simulation in modelling spatially cor-

related data. Environmetrics 9:175-196.

voLume 111 I numser 9 1 July 2003 < Environmental Health Perspectives



Article | Spatial distribution of /. scapularis

Bertrand MR, Wilson ML. 1996. Microclimate-dependent survival
of unfed adult Ixodes scapularis (Acari: Ixodidae) in nature:
life cycle and study design implications. J Med Entomol
33:619-627.

Cumming GS. 2000. Using habitat models to map diversity:
pan-African species richness of ticks (Acari: Ixodida).
J Biogeogr 27:425-440.

Daniel M, Kolar J. 1990. Using satellite data to forecast the
occurrence of the common tick /xodes ricinus (L.). J Hyg
Epidemiol Microbiol Immunol 34:243-252.

Daniels TJ, Falco RC, Fish D. 2000. Estimating population size and
drag efficiency for the blacklegged tick (Acari: Ixodidae).
J Med Entomol 37:357-363.

Daniels TJ, Fish D, Levine JF, Greco MA, Eaton AT, Padgett PJ,
et al. 1993. Canine exposure to Borrelia burgdorferi and
prevalence of Ixodes dammini (Acari: Ixodidae) on deer as
a measure of Lyme disease risk in the northeastern United
States. J Med Entomol 30:171-178.

Dennis DT, Nekomoto TS, Victor JC, Paul WS, Piesman J. 1998.
Reported distribution of Ixodes scapularis and Ixodes paci-
ficus (Acari: Ixodidae) in the United States. J Med Entomol
35:629-638.

Des Vignes F, Fish D. 1997. Transmission of the agent of human
granulocytic ehrlichiosis by host-seeking /xodes scapu-
laris (Acari: Ixodidae) in southern New York state. J Med
Entomol 34:379-382.

Dister SW, Fish D, Bros SM, Frank DH, Wood BL. 1997.
Landscape characterization of peridomestic risk for Lyme
disease using satellite imagery. Am J Trop Med Hyg
57:687-692.

ERDAS. 2001. IMAGINE, Version 8.5. Atlanta, GA:Leica
Geosystems, LLC.

ESRI. 2001. ArcGIS, Version 8.1. Redlands, CA:Research
Institute Inc.

Estrada-Pefia A. 2002. Increasing habitat suitability in the United
States for the tick that transmits Lyme disease: a remote
sensing approach. Environ Health Perspect 110:635-640.

Fielding AH, Bell JF. 1997. A review of methods for the as-
sessment of prediction errors in conservation presence/
absence models. Environ Conserv 24:38-49.

Fish D. 1993. Population ecology of Ixodes damini. In: Ecology and
Environmental Management of Lyme Disease (Ginsberg H,
ed). New Brunswick, NJ:Rutgers University Press, 25-42.

Fish D, Howard C. 1999. Methods used for creating a national
Lyme disease risk map. Mor Mortal Wkly Rep CDC Surveill
Summ 48:21-24.

Frank DH, Fish D, Moy FH. 1998. Landscape features associated
with Lyme disease risk in a suburban residential environ-
ment. Landsc Ecol 13:27-36.

Galuzo IG. 1975. Landscape epidemiology (epizootiology). Adv
Vet Sci Comp Med 19:73-96.

Gamma Design Software. 1998. GS+ Geostatistics for the
Environmental Sciences, Version 3.1.7. Plainwell, Ml:Gamma
Design Software.

Hay SI, Randolph SE, Rogers DJ. 2000. Remote Sensing and
Geographical Information Systems in Epidemiology. New
York:Academic Press.

Holford TR. 2002. Multivariate Methods in Epidemiology. New
York:Oxford University Press.

Hosmer DW, Lemeshow S. 1989. Applied Logistic Regression.
New York:John Wiley & Sons, Inc.

Keirans JE, Hutcheson HJ, Durden LA, Klompen JS. 1996. Ixodes
scapularis (Acari:Ixodidae): redescription of all active
stages, distribution, hosts, geographical variation, and med-
ical and veterinary importance. J Med Entomol 33:297-318.

Kitron U. 1998. Landscape ecology and epidemiology of vector-
borne diseases: tools for spatial analysis. J Med Entomol
35:435-445.

Kitron U, Kazmierczak JJ. 1997. Spatial analysis of the distribution
of Lyme disease in Wisconsin. Am J Epidemiol 145:558-566.

Legendre P. 1993. Spatial autocorrelation: trouble or new para-
digm? Ecology 74:1659-1673.

Levine N. 2000. CrimeStat, Version 1.1. Annandale, VA:Ned
Levine and Associates.

Lindgren E, Talleklint L, Polfeldt T. 2000. Impact of climatic
change on the northern latitude limit and population density
of the disease-transmitting European tick /xodes ricinus.
Environ Health Perspect 108:119-123.

Lindsay R, Artsob H, Barker I. 1998. Distribution of Ixodes paci-
ficus and Ixodes scapularis re concurrent babesiosis and
Lyme disease. Can Commun Dis Rep 24:121-122.

Maupin GO, Fish D, Zultowsky J, Campos EG, Piesman J. 1991.
Landscape ecology of Lyme disease in a residential area
of Westchester County, New York. Am J Epidemiol
133:1105-1113.

Milne A. 1943. The comparison of sheep-tick populations (/xodes
ricinus L.). Ann Appl Biol 30:240-250.

Mount GA, Haile DG, Daniels E. 1997. Simulation of blacklegged
tick (Acari:Ixodidae) population dynamics and transmission
of Borrelia burgdorferi. J Med Entomol 34:461-484.

Needham GR, Teel PD. 1991. Off-host physiological ecology of
ixodid ticks. Annu Rev Entomol 36:659-681.

Neter J, Kuter MH, Nachtsheim CJ, Wassernab W. 1996. Applied
Linear Statistical Models. 4th ed. Boston:WCB/McGraw-Hill.

New M, Hulme M, Jones P. 1999. Representing twentieth-
century space-time climate variability. Part |: Development
of a 1961-1990 mean monthly terrestrial climatology. J
Climate 12:829-856.

0'Neill RV, Riitters KH, Wickham JD, Jones KB. 1999. Landscape
pattern metrics and regional assessment. Ecosys Health
5:225-233.

Orloski KA, Hayes EB, Campbell GL, Dennis DT. 2000. Surveillance
for Lyme disease—United States, 1992-1998. Mor Mortal
Wkly Rep CDC Surveill Summ 49:1-11.

Osborne PE, Alonso JC, Bryant RG. 2001. Modelling landscape-
scale habitat use using GIS and remote sensing: a case
study with great bustards. J App Ecol 38:458-471.

Ostfeld RS, Hazler KR, Cepeda OM. 1996. Temporal and spatial
dynamics of Ixodes scapularis (Acari: Ixodidae) in a rural
landscape. J Med Entomol 33:90-95.

Pavlovsky EN. 1966. Natural Nidality of Transmissable Diseases,
with Special Reference to the Landscape Epidemiology of
Zooanthroponse. Urbana, IL:University of lllinois Press.

Provalis Research. 2000. SIMSTAT for Windows, Version 2.0.
Montreal, Quebec, Canada:Provalis Research.

Randolph SE. 1993. Climate, satellite imagery and the seasonal
abundance of the tick Rhipicephalus appendiculatus in
southern Africa: a new perspective. Med Vet Entomol
7:243-258.

Randolph SE, Rogers DJ. 2000. Fragile transmission cycles of
tick-borne encephalitis virus may be disrupted by predicted
climate change. Proc R Soc Lond B Biol Sci 267:1741-1744.

Reeves WC, Hardy JL, Reisen WK, Milby MM. 1994. Potential
effect of global warming on mosquito-borne arboviruses. J
Med Entomol 31:323-332.

Rogers DJ, Randolph SE. 2000. The global spread of malaria in a
future, warmer world. Science 289:1763-1766.

SAS. 2001. The SAS System for Windows, Version 8.02. Cary,
NC:SAS Institute, Inc.

Schwartz I, Fish D, Daniels TJ. 1997. Prevalence of the rick-
ettsial agent of human granulocytic ehrlichiosis in ticks
from a hyperendemic focus of Lyme disease. N Engl J Med
337:49-50.

Shope R. 1991. Global climate change and infectious diseases.
Environ Health Perspect 96:171-174.

Spielman A, Wilson ML, Levine JF, Piesman J. 1985. Ecology of
Ixodes dammini-borne human babesiosis and Lyme dis-
ease. Annu Rev Entomol 30:439-460.

Environmental Health Perspectives « vorume 111 | numser 9 | July 2003

1157





