
Polybrominated diphenyl ethers (PBDEs) are
used as flame retardant additives in polymers
with a wide variety of applications, for exam-
ple, electronic equipment, construction mate-
rials, and textiles [World Health Organization
(WHO) 1997]. In recent years it has become
evident that certain PBDEs are generally
found in humans, as are other well-known
environmental pollutants such as polychlori-
nated biphenyls (PCBs) (WHO 1992) and
pentachlorophenol (PCP) (WHO 1987).
Although decabromodiphenyl ether is the
dominating commercial PBDE product, the
environmental occurrence is dominated by
lower brominated PBDE congeners, substi-
tuted with fewer than seven bromine atoms
(reviewed by Bergman et al. 2002; Darnerud
et al. 2001; de Boer et al. 2000; de Wit 2002).
Several studies have reported PBDE levels in
human blood (Schröter-Kermani et al. 2000;
Sjödin et al. 1999, 2001; Thomsen et al.
2001), adipose tissue (Haglund et al. 1997;
Hardell et al. 1998; Meironyté Guvenius et al.
2001), liver (Meironyté Guvenius et al. 2001),
and milk (Fürst 2001; Meironyté et al. 1999;
Päpke et al. 2001; Ryan and Patry 2001;
Strandman et al. 2000). Generally, 2,2´,4,4´-
tetrabromodiphenyl ether (BDE-47) is the
predominant congener both in environmental
and human samples, followed by 2,2´,4,4´,5-
pentabromodiphenyl ether (BDE-99) and
2,2´4,4´,5,5´-hexabromodiphenyl ether
(BDE-153). These PBDE congeners are the

major constituents of commercial penta-
brominated diphenyl ethers (Sjödin et al.
1998a).

Toxicologic studies on PBDEs have shown
that certain PBDEs affect the thyroid hormone
system. Exposure to commercial penta- and
octabromodiphenyl ethers decreases thyroxine
(T4) and vitamin A levels and induces micro-
somal enzyme activities in mice and rats
(Fowles et al. 1994; Hallgren et al. 2001; Zhou
et al. 2001, 2002). Furthermore, it has been
shown that exposure of mice to BDE-47 and
BDE-99 during the critical neonatal period
causes neurotoxic effects in adult animals
(Eriksson et al. 2001; Viberg et al. 2002).
Similar effects have previously been reported
for certain coplanar and ortho-substituted
PCBs (Eriksson and Fredriksson 1996a,
1996b, 1998; Eriksson et al. 1991). In addi-
tion, effects of prenatal and postnatal exposure
to PCBs, such as lower gestational age and
birth weight (Fein et al. 1984; Rylander et al.
2000; Taylor et al. 1984), delayed develop-
ment (Guo et al. 1994), and intellectual
impairment (Jacobson and Jacobson 1996),
have been reported in humans.

Because brain development depends on
thyroid hormones, the neurodevelopmental
toxicity of certain organohalogen com-
pounds may be related to altered thyroid
homeostasis. Hydroxylated metabolites of
PBDEs (OH-PBDEs) are able to compete
with T4 for binding with the thyroid hormone

transport protein transthyretin (Meerts et al.
2000). This property has previously been
demonstrated for other hydroxylated
organohalogen compounds, for example, PCP
and hydroxylated metabolites of PCBs (poly-
chlorobiphenylols; OH-PCBs) (Brouwer et al.
1998; Lans et al. 1993; van den Berg 1990).
Several PBDE congeners, OH-PBDEs, and
OH-PCBs have shown estrogenic and antie-
strogenic activities in experimental studies
(Connor et al. 1997; Fielden et al. 1997;
Meerts et al. 2001). So far, only one study has
reported the occurrence of one OH-PBDE
congener (6-OH-BDE47) in human blood
(Hovander et al. 2002), whereas several
OH-PCBs have been identified in blood
plasma (Bergman et al. 1994; Fängström et
al. 2002; Hovander et al. 2002; Sandau et al.
2000; Sjödin et al. 2000), and in liver and
adipose tissue samples (Meironyté Guvenius
et al. 2002).

Experimental studies have shown that
exposure to certain organohalogen pollutants
during the specific period of rapid brain
growth disturbs the brain function of adult
animals. In humans, the rapid brain growth
begins during the third trimester of preg-
nancy and continues throughout the first
2 years of life (Dobbing and Sands 1979).
Exposure to organohalogen compounds dur-
ing this sensitive period constitutes a poten-
tial risk for human health.

In the present study, we investigated expo-
sures to PBDEs, PCBs, OH-PCBs, and PCP
by comparing the levels of these compounds
in human maternal blood plasma, cord blood
plasma, and breast milk. Our overarching aim
was to determine fetal and infant exposures
for these compounds.

Materials and Methods

Samples. Samples of maternal blood plasma,
cord blood plasma, and breast milk were
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nated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), hydroxylated metabolites of
PCBs (polychlorobiphenylols; OH-PCBs), and pentachlorophenol (PCP). The median PBDE
fresh-weight concentrations in maternal and cord blood plasma and in breast milk were 24, 4.3,
and 75 pg/g, respectively. The PCB concentrations were approximately 60 times higher in each
compartment (1,560, 277, and 4,310 pg/g, respectively). Calculated on a lipid weight basis, the
levels were comparable in maternal blood plasma and breast milk. In contrast to PCBs, differences
were found between PBDE congener distribution in maternal and cord blood plasma. The
OH-PCBs constituted up to 26% of the PCB levels in maternal blood plasma and 53% in cord
blood plasma, with levels of 120 and 88 pg/g fresh weight, respectively, and in breast milk  3 pg/g.
The corresponding concentrations for PCP were 2,830, 1,960, and 20 pg/g. The ratios of PCB to
OH-PCB were 13, 3, and 1,400 in maternal, cord plasma, and breast milk, respectively. It is evi-
dent that prenatal exposures occur for all the analytes. Moreover, the exposure continues after birth
via breast milk. However, levels of OH-PCBs and PCP in breast milk are low compared with levels
in blood plasma. Exposures to both PCBs and PBDEs, and in particular to the endocrine-active
halogenated phenolic compounds, are of concern and implicate a potential risk for developmental
disturbances. Key words: breast milk, cord blood, hydroxylated polychlorinated biphenyls, maternal
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prenatal. Environ Health Perspect 111:1235–1241 (2003). doi:10.1289/ehp.5946 available via
http://dx.doi.org/ [Online 21 January 2003]

Environmental Medicine Article



collected during 2000–2001 from 15 mothers
living in Stockholm, 13 of whom were native
Swedish. The study population was randomly
chosen from those who voluntarily agreed to
participate in the investigation. All mothers
delivered by cesarean surgery, according to
their own wish. The mothers were healthy and
delivered healthy babies. The participants were
asked to answer a questionnaire about age,
number of children, earlier place of residence,
fish consumption, and other factors. The aver-
age maternal age was 32 years (range, 28–38);
53% of them gave birth to their first child,
33% their second, and 14% their third. One
mother reported eating eight meals of fatty
fish per month; the others reported zero to
two. Their consumption of fatty fish from the
Baltic was low; one mother reported two
meals per month.

Blood samples were collected at the
Karolinska Hospital into heparinized Venoject
glass tubes (Terumo Europe N.V., Leuven,
Belgium). Blood samples (30 mL) from the
mothers were collected when they arrived at
the hospital for delivery, and cord blood
(15–20 mL) was collected at delivery. The
plasma was separated by centrifugation at 3,500
rpm for 10 min, transferred to glass tubes, and
stored at –20°C. Milk samples were collected
at 2–77 days after delivery of the child.

Chemicals. Organic solvents and adsor-
bents used in the analysis were prepared as
previously described (Meironyté et al. 1999;
Meironyté Guvenius et al. 2002).

PBDE standards BDE-85, BDE-99,
BDE-153, and [13C]-BDE-77 were purchased
from CIL (Andover, MA, USA). BDE-17,
BDE-28, BDE-47, BDE-66, BDE-100, and
BDE-154 were synthesized as described else-
where (Marsh et al. 1999; Örn et al. 1996).
PCB congeners were purchased from
Ehrenstorf (Augsburg, Germany). The PBDE
and PCB congeners are numbered as sug-
gested by Ballschmiter et al. (1992) for single
PCB congeners.

The OH-PCB congeners were pur-
chased from Larodan Fine Chemicals AB
(Gothenberg, Sweden) or synthesized as
described elsewhere (Bergman et al. 1995).
OH-PCB congeners in the present work are
numbered according to the recommenda-
tions of Letcher et al. (2000).

Methoxy-PCBs used for identification
and quantification of methylated OH-PCBs
were synthesized (Bergman et al. 1995) or
derivatized from OH-PCBs as described
below. PCP was purchased from Riedel-de
Haën AG (Seelze-Hannover, Germany).

Instruments. We used gas chromatography
(GC) on a Chrompack CP 2009 instrument
(Middelburg, The Netherlands) equipped with
an on-column injector and electron capture
detector to detect and measure PCBs. We used
a mass spectrometer (model VG 70-250; Fisons

Instruments, VG Analytical, Manchester, UK),
equipped with a Hewlett-Packard gas chro-
matograph (model HP 5890A; Geneva,
Switzerland), for determination of PBDEs,
methylated OH-PCBs, and PCP. Further
details are given elsewhere (Meironyté et al.
1999; Meironyté Guvenius et al. 2002).

Analysis of blood plasma. The previously
described method for analysis of organochlo-
rine compounds in blood plasma (Weistrand et
al. 1995) was modified to incorporate determi-
nation of PBDEs, OH-PCBs, and PCP. The
method was also adapted for a smaller sample
volume. Blood plasma (10 mL) was weighed
into a 100-mL flask with polytetrafluoro-
ethylene-lined screw cap. In case of smaller
plasma volumes, water was added to the total
volume of 10 mL. A blank sample (10 mL
water) was run with each set of samples.
Internal standards for each group of analytes
(50 µL of 10 pg [13C]-BDE-77/µL hexane, 50
µL of 10 pg 4-OH-CB162/µL hexane, 100 µL
of 90 pg CB-198/µL hexane) were added to all
samples. After addition of formic acid (10
mL), the samples were left for 15 min. Then,
2-propanol (4 mL), water (4 mL), and Lipidex
5000 (3 g) were added, and the mixture was
shaken in a water bath (35°C) for 3 hr.

After extraction, the mixture was trans-
ferred to a glass column, and the gel was
eluted with solvents of decreasing polarity.
Polar compounds were eluted with 30%
methanol in water (10 mL) and 50%
methanol in water (10 mL). Organohalogen
compounds and some lipids were eluted with
acetonitrile (50 mL), and the rest of the
lipids, with a mixture of methanol/chloro-
form/hexane (1/1/1, vol/vol/vol, 20 mL). The
last two fractions containing organohalogen
compounds and lipids were evaporated to
near dryness and dried in a desiccator to a
constant weight. The sum of the weights of
these two fractions constituted the lipid
amount in the sample.

The residue of the acetonitrile fraction
was further purified on aluminum oxide
(Meironyté Guvenius et al. 2002) and silica

gel columns (Meironyté et al. 1999). Four
fractions were collected from the aluminum
oxide column. PBDEs and PCBs were eluted
in the first fraction with hexane (10 mL). The
following two fractions (hexane, 5 mL, and
dichloromethane/hexane, 10 mL) were not
analyzed in the present study. The phenolic
compounds were eluted in the subsequent
fraction with acidified methanol (1/100
vol/vol sulfuric acid/methanol, 20 mL) and
methanol (10 mL).

The fraction containing PCBs and PBDEs
was concentrated and applied to a silica gel
column (0.6 g). PCBs were eluted in the first
fraction with dry hexane (4 mL); PBDEs
were eluted in the second fraction with 25%
dichloromethane in hexane (5 mL). The
fraction containing PBDEs was dropped onto
a Pasteur pipette column packed with silica gel
(0.1 g) and sulfuric acid–prepared silica gel
(0.3 g, 2:1 silica gel:90% sulfuric acid). The
second column was eluted with an additional
25% dichloromethane in hexane (1.5 mL).
The volume of the fraction was reduced by
evaporation with a gentle stream of nitrogen
to approximately 50 µL; injection standard
(100 µL of 1.1 pg CB-209/µL hexane) was
then added, and the sample was analyzed by
high-resolution GC/mass spectrometry
(GC/MS), using selected ion monitoring
(Meironyté et al. 1999).

The fraction containing OH-PCBs was
concentrated under reduced pressure to 2 mL
and transferred to a glass tube. The flask was
rinsed with methanol (2 × 0.5 mL), followed
by hexane (3 × 1 mL). The mixture was
shaken cautiously with water (3 mL) and cen-
trifuged. The hexane phase was transferred to
another tube, and the aqueous phase was
shaken twice more with hexane (3 and 2 mL).
The combined hexane phases were concen-
trated with a gentle stream of nitrogen to
approximately 100 µL. Five drops of methanol
were added, and the phenolic compounds
were derivatized with diazomethane in diethyl
ether (0.5 mL). The mixture was left to react
overnight. The solvent was evaporated with
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Table 1. PBDE concentrations (median and range, ng/g lipids) in maternal blood plasma, cord blood
plasma, and breast milk from 15 individuals.

PBDE Maternal blood plasma Cord blood plasma Breast milk
congeners Median Range Median Range Median Range

BDE-17 < 0.01 < 0.01–0.03 < 0.01 < 0.01–0.1 < 0.01 < 0.01
BDE-28 0.07 < 0.01–0.2 0.07 < 0.01–0.31 0.06 0.02–0.18
BDE-47 0.83 0.3–5.1 0.98 0.33–3.28 1.15 0.26–4.01
BDE-66 0.02 < 0.01–0.14 0.01 < 0.01–0.11 0.02 < 0.01–0.07
BDE-100 0.17 < 0.01–0.52 0.07 < 0.01–0.27 0.14 < 0.01–0.69
BDE-99 0.19 < 0.01–1.43 0.07 < 0.01–0.85 0.21 0.07–2.20
BDE-85 < 0.01 < 0.01–0.07 < 0.01 < 0.01–0.09 0.04 < 0.01–0.17
BDE-154 0.04 < 0.01–0.16 < 0.01 < 0.01–0.17 0.02 < 0.01–0.14
BDE-153 0.56 0.27–1.03 0.17 < 0.01–0.32 0.32 0.03–1.16
BDE-183 0.06 0.01–0.44 0.01 < 0.01–0.1 0.01 < 0.01–0.14
Sum 2.07 0.71–8.39 1.69 0.46–4.28 2.14 0.56–7.72

(23.6) (6.53–57.9) (4.29) (1.12–9.42) (75.1) (18.3–347)

Values in parentheses are on fresh-weight basis (pg/g fresh weight).



nitrogen gas, and the residue was dissolved in
hexane. The methylated phenolic compounds
were purified on a Pasteur pipette column
packed with silica gel (0.1 g) and sulfuric
acid–prepared silica gel (0.5 g, 2:1 silica
gel:90% sulfuric acid). The analytes were
eluted with 70% dichloromethane in hexane
(6 mL). The fraction was concentrated with
nitrogen to approximately 50 µL; then, injec-
tion standard (100 µL of 1.1 pg CB-209/µL
hexane) was added before analysis by high-
resolution GC/MS (Meironyté Guvenius et
al. 2002).

Analysis of human milk. Breast milk was
analyzed as described elsewhere (Meironyté et
al. 1999; Norén and Sjövall 1987), with minor
modifications. PBDEs were separated from
PCBs using silica gel and purified on a sulfuric
acid–prepared silica gel column as described
above. Some changes were introduced in order
to include analysis of phenolic compounds.
OH-PCBs and PCP were eluted from the alu-
minum oxide column with acidified methanol

(1/100 vol/vol sulfuric acid/methanol, 30 mL)
and methanol (10 mL) and derivatized as
described for the blood plasma samples. The
residue obtained after derivatization was dis-
solved in hexane (2 mL) and shaken with sul-
furic acid (90%, 1 mL), and the phases were
separated by centrifugation. The sulfuric acid
fraction was shaken with hexane (1 mL). The
combined hexane phases were concentrated
and purified on silica gel and sulfuric acid–
prepared silica gel as described above.

Results

The modified analytical methods were evalu-
ated by recovery studies. Samples were fortified
with the PBDE congeners listed in Table 1
(50 pg/g plasma), with PCP (400 pg/g plasma
and milk), and with the OH-PCB congeners
4-OH-CB107, 4´-OH-CB121, 4´-OH-
CB130, 4-OH-CB146, 4-OH-CB162,
4´-OH-CB172, 4-OH-CB187, and 4-OH-
CB193 (50 pg/g plasma and milk) before
extraction. The mean recoveries of PBDEs and

phenolic compounds were 67–88% (SD,
4–11; n = 4) and 69–97% (SD, 6–24; n = 5),
respectively. The average recoveries of the
internal standards added before extraction to
all samples of maternal blood plasma, cord
blood plasma, and breast milk were, respec-
tively, 75, 77, and 84% of [13C]-BDE-77; 77,
80, and 87% of 4-OH-CB162; and 70, 75,
and 76% of CB-198. 

Samples of maternal blood plasma, cord
blood plasma, and breast milk from 15 mothers
were analyzed for PBDEs, PCBs, OH-PCBs,
and PCP. The median concentrations and
ranges of 10 PBDE congeners are given in
Table 1, and those of 15 PCB congeners are
shown in Table 2. The PCB congeners
CB-123 and CB-189 were not detected in any
of the samples (detection limit, 0.5 ng/g
lipids). The median sums of PBDEs were 2.07,
1.69, and 2.14 ng/g lipids in maternal blood
plasma, cord blood plasma, and breast milk,
respectively. The PCB levels were two orders of
magnitude higher than those of PBDEs, with
median values of 176, 104, and 190 ng/g lipids
in maternal blood plasma, cord blood plasma,
and breast milk, respectively. The median lipid
content was 0.7% (range, 0.5–1.4%) in mater-
nal blood plasma, 0.2% (0.2–0.3%) in cord
blood plasma, and 1.9% (0.8–4.9%) in breast
milk. Because phenolic compounds are
retained in blood mainly due to their affinity
to plasma proteins and not due to their
lipophilic properties (Letcher et al. 2000), the
concentrations of OH-PCBs and PCP are
given on a fresh-weight basis (Table 3). The
median sums of 12 OH-PCB congeners in
maternal and cord blood plasma were 124 and
88 pg/g plasma, respectively. 4´-OH-CB121
and 3´-OH-CB188 were not found in the
samples (detection limit, 0.1 pg/g sample). The
OH-PCB levels in breast milk were very low;
the median sum was 3 pg/g milk. Calculated
on a fresh-weight basis, the ratios of PCBs to
OH-PCBs were 13, 3, and 1,400 in maternal
blood plasma, cord blood plasma, and breast
milk, respectively. PCP was the predominant
phenolic compound in all sample matrices
(Table 3). The median levels in maternal blood
plasma, cord blood plasma, and breast milk
were 2.83, 1.96, and 0.02 ng/g fresh weight,
respectively. Figure 1 shows the 10th through
90th percentiles of PBDEs, PCBs, OH-PCBs,
and PCP in the blood and breast milk samples.
The individual concentrations are shown in
Figures 2 and 3. No influence of maternal age,
number of nursed children, or time of milk
collection was ascertained.

Discussion

PBDEs and PCBs. Although there were large
differences in the concentrations of PBDEs
and PCBs, the distribution of these classes of
compounds was similar between the sample
matrices. The levels (nanograms per gram
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Table 2. PCB concentrations (median and range, ng/g lipids) in maternal blood plasma, cord blood plasma,
and breast milk from 15 individuals.

PCB Maternal blood plasma Cord blood plasma Breast milk
congeners Median Range Median Range Median Range

CB-28 2 < 0.5–8 1 < 0.5–8 2 < 0.5–6
CB-47 < 0.5 < 0.5–7 < 0.5 < 0.5–8 1 < 0.5–8
CB-52 < 0.5 < 0.5–11 < 0.5 < 0.5–7 < 0.5 < 0.5–7
CB-101 4 1–20 < 0.5 < 0.5–4 2 < 0.5–9
CB-105 2 < 0.5–9 < 0.5 < 0.5–6 2 < 0.5–10
CB-114 4 2–13 1 < 0.5–8 4 1–16
CB-118 8 3–25 4 < 0.5–17 7 2–27
CB-122 1 < 0.5–5 < 0.5 < 0.5–3 2 < 0.5–4
CB-138 39 22–149 34 18–92 39 18–150
CB-153 56 27–203 44 20–107 61 24–193
CB-156 5 < 0.5–18 1 < 0.5–12 3 < 0.5–25
CB-157 1 < 0.5–10 < 0.5 < 0.5–4 2 < 0.5–5
CB-167 < 0.5 < 0.5–8 < 0.5 < 0.5–4 2 < 0.5–8
CB-170a 15 6–50 12 2–23 14 4–28
CB-180 29 12–94 17 5–51 27 9–66
Sum 176 104–598 104 67–330 190 77–547

(1,560) (602–3,128) (277) (102–641) 4,310 (1,081–9,653)

Values in parentheses are on fresh-weight basis (pg/g fresh weight). 
aIncludes both CB-170 and CB-190. 

Table 3. OH-PCB and PCP concentrations (median and range, pg/g fresh weight) in maternal blood plasma,
cord blood plasma, and breast milk from 15 individuals.

OH-PCB Maternal blood plasma Cord blood plasma Breast milk
congeners Median Range Median Range Median Range

4-OH-CB107a 10 4–29 5 < 0.1–11 1 < 0.1–4
4´-OH-CB120 2 < 0.1–47 2 < 0.1–12 < 0.1 < 0.1
4´-OH-CB130 4 0.3–21 3 0.2–48 < 0.1 < 0.1–1
3´-OH-CB138 9 2–54 9 2–56 < 0.1 < 0.1–1
4-OH-CB146 29 12–121 21 8–53 0.2 < 0.1–1
3-OH-CB153 7 1–36 5 1–32 < 0.1 < 0.1–1
4´-OH-CB172 5 2–12 4 2–11 < 0.1 < 0.1
4´-OH-CB178 1 1–6 1 0.5–8 < 0.1 < 0.1
3´-OH-CB180 2 0.5–11 1 0.3–6 < 0.1 < 0.1
3´-OH-CB187 3 1–9 2 1–8 < 0.1 < 0.1
4-OH-CB187 49 24–97 24 13–43 0.4 < 0.1–1
4-OH-CB193 2 < 0.1–29 2 < 0.1–5 < 0.1 < 0.1–2
Sum 124 82–328 88 35–271 3 < 0.1–5
PCP 2,830 1,360–13,200 1,960 820–7,580 20 10–570
aIncludes both 4-OH-CB107 and 4´-OH-CB108.



lipids) were comparable in maternal blood and
breast milk, whereas the levels in the cord
blood were generally lower (Figure 1). The
sums of PBDEs and PCBs in cord blood
plasma constituted, on average, 72 and 70% of
the sums in maternal blood plasma, respec-
tively, calculated on lipid weight. The differ-
ences were more obvious (21 and 19%) when
the comparison was made on a fresh-weight
basis. Consequently, the lower lipid content of
the fetal blood “protects” the fetus, at least to
some extent, from these contaminants from
the mother. Further, we found no correlation
between PBDE and PCB levels. The highest
PCB levels were found in the samples from the
mother who consumed fatty fish most fre-
quently (eight meals per month). This is in
accordance with previously reported findings
that fish is an important source of human
exposure (Asplund et al. 1994; WHO 1992).
The lowest PCB levels were in samples from
two immigrant mothers (Figure 2). No such
relations were found for PBDEs. We assume
that exposures to PCBs and PBDEs differ,
even though the major proportion of PBDEs
may also be ingested via the diet, as are PCBs.
Further, PCBs have been regulated and not
produced for decades, whereas PBDEs are still
produced and are present in many goods
around us. It therefore cannot be ruled out
that inhalation may play a more important role
for PBDEs than for PCBs. The individuals
participating in the present study were from
the general population with no known specific
exposure to PBDEs. Therefore, the concentra-
tions in breast milk and blood plasma may be
considered as background levels and are in the
range of recently reported levels in human milk
from Sweden (Meironyté et al. 1999), Finland
(Strandman et al. 2000), and Germany (Fürst
2001) and blood from Sweden (Sjödin et al.
1999), Norway (Thomsen et al. 2001), and
Germany (Schröter-Kermani et al. 2000).

BDE-47 was the predominant PBDE
congener in all sample matrices, followed by
BDE-153, BDE-99, and BDE-100 (Table 1).
BDE-47 constituted 46–70% of the PBDEs
determined in breast milk, 31–61% in blood
plasma, and 45–94% in cord blood plasma.
The levels of BDE-47 were equal in maternal
blood plasma and cord blood plasma (r =
0.94, p < 0.01), whereas the levels of the
higher brominated congeners, BDE-99,
BDE-100, and BDE-153, did not correlate.
In cord blood plasma, BDE-153 constituted,
on average, 27% of the levels in maternal
blood plasma. The higher levels of these con-
geners in maternal blood than in cord blood
(Table 1) indicate that the higher brominated
PBDEs do not pass through the placenta to
the same extent as do the lower brominated
congeners. This may, at least in part, be
explained by the high mass of hexa-
brominated diphenyl ether, BDE-153.

In contrast to PBDEs, no difference in
congener distribution between maternal and
cord blood plasma was found for PCBs.
CB-153, CB-138, and CB-180 were the pre-
dominant PCB congeners and constituted
together, on average, 72–79% of the total sum
of PCBs in all samples. The individual levels of
these PCB congeners correlated well in mater-
nal and cord blood plasma (r = 0.73, 0.81, and
0.78, p < 0.01). Several studies have shown the
occurrence of PCBs in the cord blood, suggest-
ing that PCBs pass the placental barrier (e.g.,
Bjerregaard and Hansen 2000; Korrick et al.
2000; Sala et al. 2001). The present study con-
firms the transfer of PCBs to the fetus.

Hydroxylated PCB metabolites and PCP.
The distribution of OH-PCBs and PCP in the
samples differed from those of PBDEs and
PCBs. The highest levels of phenolic com-
pounds were found in maternal blood plasma,
and the lowest in breast milk (Figure 1). This
is not surprising because the distribution in
the blood is entirely different, the former
being bound to proteins and the latter local-
ized to the blood lipids.

PCP was the dominating phenolic com-
pound in all samples, with notably high con-
centrations in the blood plasma samples
(Table 3). The levels of PCP in cord blood
plasma correlated well with those in maternal

blood plasma (r = 0.73, p < 0.01) and consti-
tuted 67% of the levels in maternal blood
plasma. The PCP levels in maternal and cord
blood plasma were, on average, 30 and 36
times higher than the sum of OH-PCBs. The
OH-PCB levels in cord blood plasma corre-
lated well to those in maternal blood plasma
(r = 0.60, p < 0.05) and constituted 62% of
the levels in maternal blood plasma. The 
concentrations of OH-PCB congeners in cord
blood plasma were lower than the previously
reported levels in cord blood plasma from
coastal populations in Quebec, whereas the
PCP levels were similar (Sandau et al. 2002).
It is evident from the present study that expo-
sure to PCP and OH-PCBs is only slightly
higher in the mother than in the fetus. This
behavior of OH-PCBs stands in contrast to
that of parent PCBs. The results imply that
the potential health impact of halogenated
phenolic compounds may have hitherto been
underestimated compared with the impact of
neutral persistent chemicals.

The predominant OH-PCB congeners in
blood samples were 4-OH-CB187 and 4-OH-
CB146, followed by 4-OH-CB107 and
3´-OH-CB138 (Table 3). The similar con-
gener pattern was previously reported in other
studies from Sweden (Bergman et al. 1994;
Sjödin et al. 2000), Faroe Islands (Fängström
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Figure 1. The 10th–90th percentiles (boxes), median (solid line), and range (whiskers) of the sums of
(A) PBDEs, (B) PCBs, (C) OH-PCBs, and (D) PCP in maternal blood plasma, cord blood plasma, and breast
milk. OH-PCB and PCP levels in breast milk have been multiplied by 10 and 100, respectively. In (D), the cut
whisker shows the highest level of PCP (0.57 ng/g milk). 
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et al. 2002), and Canada (Sandau et al. 2000,
2002). A somewhat different pattern of
OH-PCB congeners was reported in blood
from Latvian men (Sjödin et al. 2000), where
4-OH-CB107 occurred at the highest levels.

Hydroxylated metabolites of PCBs are
formed from PCBs by cytochrome P450–
mediated direct hydroxylation or via forma-
tion of an arene oxide (reviewed by Letcher et
al. 2000). Several OH-PCBs may be formed
from certain PCB congeners; for example,
4-OH-CB146 can be formed from CB-138
and CB-153, 4-OH-CB107 from CB-118
and CB-105, and 4-OH-CB187 from
CB-187 (Sjödin et al. 1998b). Possibly,
4-OH-CB187 may also be formed from
CB-183. However, it is not yet possible to
predict the relative contribution of different
PCB congeners to each one of the specific
OH-PCB metabolites. All the identified
OH-PCB congeners have an OH group in
para- or meta-position, with two chlorine
atoms on the neighboring carbon atoms.
These OH-PCBs have structural similarities to
T4 and have high competitive binding

potency to transthyretin (Lans et al. 1993).
Even though thyroid-binding globulin is the
major T4 transporting protein in humans,
transthyretin also plays a role, particularly dur-
ing fetal development (Brouwer et al. 1998).
The interaction between transthyretin and
OH-PCBs and other halogenated phenolic
compounds suggests a plausible mode of
endocrine-mediated actions of these com-
pounds that could make them important for
in-depth studies.

The levels of OH-PCBs and PCBs corre-
lated well in cord blood plasma samples (r =
0.78, p < 0.01). OH-PCBs constituted 5–26%
and 14–53% of the sum of PCBs in maternal
and cord blood plasma samples, respectively,
calculated on a fresh-weight basis. The high
percentage of OH-PCBs in cord blood sug-
gests that OH-PCBs may pass the placenta to a
higher extent than do PCBs or possibly that
they may be formed to some extent on the fetal
side. An efficient transfer of the halogenated
phenolic compounds is supported by the simi-
lar high concentrations of PCP in the maternal
and cord blood plasma. In this case, the major

contribution is from PCP, even though a slight
contribution of PCP may originate from
metabolized hexachlorobenzene (Renner
1988).

The levels of OH-PCBs and PCP in
breast milk were approximately 35 and 100
times lower than in maternal and cord blood
plasma (Figure 1), confirming poor transfer of
halogenated phenolics via lipids. The domi-
nating OH-PCB congeners were 4-OH-
CB107 and 4-OH-CB193 (Table 3). The
congener 4-OH-CB187 has been previously
reported in Canadian breast milk samples
(Newsome and Davies 1996).

The PCP levels in breast milk were an
order of magnitude lower than previously
reported in Swedish breast milk collected in
1980 (Norén 1988). The levels of PCP in
blood plasma reported in this study were sim-
ilarly lower than PCP concentrations deter-
mined in blood from Stockholm women
sampled around 1980 (Jensen S. Personal
communication). However, one individual
diverged by having a PCP concentration in
breast milk almost 30 times higher (0.57 ng/g
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Figure 2. Sums of 10 PBDE congeners (A) and 15 PCB congeners (B) (ng/g lipids) in maternal blood plasma, cord blood plasma, and breast milk. Numbers above
the bars indicate the number of days postpartum that milk was collected.
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Figure 3. Concentrations (ng/g plasma) of OH-PCBs (sum of 12 congeners) (A) and PCP (B) in maternal and cord blood plasma.
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fresh weight) than any of the other subjects
(Figure 3).

The low levels of halogenated phenolic
compounds in breast milk compared with
their levels in blood are most likely explained
by their low accumulation in lipids [e.g., in
human adipose tissue, OH-PCBs constituted
only 0.03–0.4% of the PCB levels (Meironyté
Guvenius et al. 2002)] and their specific
binding properties to transthyretin (Lans et al.
1993).

Even though fetal exposures of PBDEs,
PCBs, OH-PCBs, and PCP may be predicted
from their levels in maternal blood, there are
differences in congener distribution of, for
example, PBDEs and OH-PCBs that must be
considered. This has yet to be done through
congener-specific analysis. Our results show
that the fetus is probably continuously
exposed to PBDEs, PCBs, OH-PCBs, and
PCP during development. However, more
work needs to be done to describe the expo-
sure situation for the fetus during the entire
developmental period. Exposure to PBDEs
and PCBs as well as to other persistent
organohalogen pollutants continues by breast-
feeding and possibly at a higher level than dur-
ing fetal development, whereas the exposure to
halogenated phenols is strongly reduced via
this route.
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