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There is a growing concern that short-term exposure to combustion-related air pollution is associ-
ated with increased risk of death. This finding is based largely on time-series studies that estimate
associations between daily variations in ambient air pollution concentrations and in the number of
nonaccidental deaths within a community. Because these results are not based on cohort or
dynamic population designs, where individuals are followed in time, it has been suggested that
estimates of effect from these time-series studies cannot be used to determine the amount of life
lost because of short-term exposures. We show that results from time-series studies are equivalent
to estimates obtained from a dynamic population when each individual’s survival experience can
be summarized as the daily number of deaths. This occurs when the following conditions are satis-
fied: @) the environmental covariates vary in time and not between individuals; 4) on any given day,
the probability of death is small; ¢) on any given day and after adjusting for known risk factors for
mortality such age, sex, smoking habits, and environmental exposures, each subject of the at-risk
population has the same probability of death; d) environmental covariates have a common effect
on mortality of all members of at-risk population; and ¢) the averages of individual risk factors,
such as smoking habits, over the at-risk population vary smoothly with time. Under these condi-
tions, the association between temporal variation in the environmental covariates and the survival
experience of members of the dynamic population can be estimated by regressing the daily num-
ber of deaths on the daily value of the environmental covariates, as is done in time-series mortality
studies. Issues in extrapolating risk estimates based on time-series studies in one population to
estimate the amount of life lost in another population are also discussed. Key words: air pollution,
dynamic population design, hazard function, mortality, Poisson regression, survival analysis, time-
series studies. Environ Health Perspect 111:1170-1174 (2003). doi:10.1289/ehp.5883 available
via http://dx.doi.org/ [Online 16 December 2002]

Short-term exposure to ambient concentrations
of combustion-related pollution has become
a public health concern over the last decade
largely because of numerous studies linking
fuctuations in the daily number of deaths with
daily variations in ambient air pollutants, such
as particulate matter and ground-level ozone
(Dominici et al. 2000; Katsouyanni et al. 1997;
Moolgavkar 2002; Schwartz and Lee, 1999;
Stieb et al. 2002). However, there has been
considerable debate in interpreting the results
from these studies in terms of estimating loss of
life expectancy (McMichael et al. 1998). It has
been argued that because no identifiable popu-
lation of subjects was followed over time, the
regression parameters obtained from the time-
series studies could not be applied to popula-
tion life-tables to determine the amount of life
lost because of short-term pollution exposure
(Kunzili et al. 2001; Rabl 2003).

Associations between daily values of pollu-
tion and mortality have been extensively exam-
ined using time-series study designs. Here, the
daily variations in the number of deaths in a
community are related to daily variations of
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ambient air pollution levels using generalized
additive models (Hastie and Tibshirani 1990),
controlling for temporal trends, seasonality,
and weather variables (Kelsall et al. 1999;
Samet et al. 2000; Schwartz 1999). The time
scale of exposure is on the order of a few days
and therefore represents short-term exposure.
Cumulative exposures have also been exam-
ined up to 2 months using distributive lag mo-
dels (Zanobetti et al. 2001), frequency domain
(Kelsall et al. 1999; Zeger et al. 1999), and
time-domain regression techniques (Dominici
et al. 2003). Time-series approaches have limi-
tations in examining the effects of pollution
exposure on mortality at longer time scales
because these longer temporal averages of
daily pollution values tend to be highly cor-
related with the seasonal component of the
mortality time series and weather variables,
making inference highly unstable.

In time-series studies, a common value of
daily exposure is assigned to all subjects residing
in a single community, and variations in expo-
sure between subjects are omitted. Recently,
time-series study design has been extended to

include multiple communities (Dominici et al.
2000; Katsouyanni et al. 1997, 2001), where
community-specific estimates of effect are
obtained from data in each community sepa-
rately and then pooled among communities
using random effects models (Burnett et al.
1995; Dominici et al. 2002; Katsouyanni et al.
1997, 2001).

The effects of longer-term exposure scenar-
ios on mortality can be examined by recording
the survival experience of subjects in multiple
communities adjusted for subject-specific risk
factors. This design generates exposure varia-
tion between subjects that live in different com-
munities and has been used in several studies
(Dockery et al. 1993; Pope et al. 1995). Unlike
time-series studies, a time-invariant multiyear
population average exposure is assigned to all
subjects residing in a single community. Thus,
exposure is measured across communities even
though individuals are followed in time.

Estimates of relative risk can be obtained
from multicommunity cohort studies of air
pollution and mortality (Burnett et al. 2001;
Dockery et al. 1993; Krewski et al. 2000; Pope
et al. 1995, 2002), in which spatial variations
in ambient air pollution are related to spatial
variations in survival, after adjusting for covari-
ates obtained at the individual level, such as
smoking habits. Estimates of relative risk from
such studies have been incorporated into pop-
ulation life tables to determine the amount of
life lost because of long-term exposure to
ambient pollution (e.g., Brunekreef 1997). A
common risk of death due to air pollution
exposure and a common probability of death
for those not exposed are implicitly assumed at
any given age in this approach to estimating
loss of life expectancy.
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However, to place the effect of air pollu-
tion episodes in a population health perspec-
tive, it is also of interest to assess the impacts
on longevity from short-term pollution expo-
sures on the order of days to weeks.

In this article, we propose a survival model
that jointly examines the effects of short- and
long-term exposure to environmental risk fac-
tors on mortality. We also identify the condi-
tions under which the effect estimates on
survival associated with short-term exposures
are equivalent to effect estimates from time-
series studies. We identify sampling design
characteristics under which daily time-series
studies can be used to estimate the amount of
life lost because of short-term exposure to
environmental risk factors.

Dynamic Population Studies

Consider a dynamic population design with the
time to response defined as calendar time.
Subjects are followed as long as they reside in
a given community. Subjects can enter the
study population either at birth or by immigra-
tion and leave the study population through
death, emigration, or termination of follow-up.
Further, suppose information is available on
a subject’s age at entry, sex, and race. In ad-
dition, subjects are interviewed periodically
to obtain information on smoking habits,
diet, occupation, education, and any other risk
factors related to mortality. Measurements on
several other environmental risk factors may
also be available, such as ambient air pollution,
aerobiologics, and weather.

The value of the environmental covariates
recorded on day #for 7 days for the 7th indi-
vidual in the sth of § communities, z;(#), can
be decomposed into three factors of the form

2,(£)=[2,(£)~2,(1)]
[z, (6) =2, ()] + ;. (). 1]

Here, z;(#) is the average over the at-risk pop-
ulation in community s, and z;(7) is the aver-
age of z;(#) over a long period of time, such as
years to decades, for the sth community on
day . The first term on the right side of
Equation 1, Pi(#) = 2,(9) — 2;(9), is the differ-
ence between the exposure value for the 7th
individual in the sth community and the aver-
age value on that day for all members of the
community and represents the within-com-
munity variation in personal exposure. The
second term, A(2) = 2;(#) — (%), is the differ-
ence between the community average of per-
sonal exposures on day 7 and the long-term
average for community s. Temporally varying
exposure measures such as A(#) have been
used in time-series studies with the popula-
tion-average personal exposure values replaced
by spatial averages of available fixed-site moni-
toring data. The spatially variable exposure

measures such as z;(#) have been used in
cohort studies of air pollution and mortality.

Further temporal decompositions of expo-
sure can be made; for example, one could
consider variation in daily averages within a
month, monthly averages within a year, yearly
averages within a decade, and so on (Dominici
et al. 2002; Schwartz 1999; Zeger et al. 1999).
For the sake of simplicity of presentation, we
restrict our discussion to a three-factor temporal
decomposition given by Equation 1.

The relationship between the risk factors
and survival is modeled by the hazard function
?»(l?(t) for the 7th subject in the /th stratum in
the sth community:

N(e) =2 () e x)(e) + 0 2Le)
+B'A,(r)+0'z,(7)] 2]

where X(OD(t) is the baseline hazard function,
xg)(t) is a time-dependent vector of individual
risk factors for the 7th subject in the /th stra-
tum in the sth community, and ¢, B, 0 are
vectors of unknown parameters representing
the logarithm of the relative risks associated
with a unit change in the within-community
between-individual variation in personal expo-
sure [P;()], within-community temporal vari-
ation in population average exposure [A(7)],
and variation in the long-term average expo-
sure between communities [z5(7)], respec-
tively. We assume that ¢, B, and 0 are
constant for all strata. The §, values are the
log-relative risk for the individual risk factors
that can vary by stracum.

Strata could be defined by groupings of age
at entry, sex, and race, thereby allowing the
baseline hazard function to depend on these
risk factors. As a result, the effect of these risk
factors on survival cannot be estimated. Note
that we have indexed the personal exposure
values by strata in order to uniquely identify
subjects, PL(Y (#). These values are incorporated
into the hazard function in the same manner as
the other individual-level risk factors, xff(t).

We have assumed that each subject within
a stratum has the same baseline hazard func-
tion, XB (9, and that the association between
exposure and survival is identical for all sub-
jects. We therefore cannot distinguish sub-
jects in terms of their sensitivity to die after
adjusting for the known risk factors and
strata. This model is referred to as a homo-
geneous survival model. We explore impli-
cations of this assumption on the ability to
estimate loss in life expectancy, and some
extensions to a heterogeneous survival model,
in the “Discussion.”

Our parameter of interest is 3, which esti-
mates the effect of temporal variation in ex-
posure within a community, A(#), on survival.
The study design considered here can be
described as following individuals™ survival
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experience over time within each community.
Estimates of effects of the environmental covar-
iates on survival can be made within each com-
munity separately, and a summary estimate
of effect is given by pooling the community-
specific estimates among communities. The
longer-term average exposure values, z;(7), can
then be absorbed into the baseline hazard func-
tion to form a community-specific baseline haz-
ard of the form A() = M (Dexp[0'z(7)]. This
is a reasonable assumption because both )\,(f) (?
and exp[0'z;(7)] are expected to be smooth or
slowly changing functions of time.

We consider estimation of §§ by using in-
formation from a single community, and we
therefore omit the index s, for the sake of sim-
plifying the notation. Of course, data from
across communities can be combined for a
pooled estimate of risk (Burnett et al. 1995;
Dominici et al. 2002; Katsouyanni et al. 1997,
2002). Estimates of the baseline hazard func-
tion and regression parameters may be obtained
by maximum likelihood methods. Under
Equation 2, the log-likelihood function of 3,
[(B), is given by Cox and Oakes (1984)

(s ()
13, e

I oo k(il)(”)d”} 3]
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where 7 is the starting date of the study, 7'is
the end date, tl(()[) is the time the ith subject in
the /th stratum entered the community, and
DU(#) and CY(#) are the sets of individuals
who died or were lost to follow-up on day #in
the /th stratum, respectively. We define the
population at risk by RO = DO U .

Assuming that the covariate values are con-
stant within a day and writing the limits of in-
tegration in Equation 3 as a sum of integrals
between consecutive days, we can rewrite the
log-likelihood (Equation 3) as

- AD()Y(r) £,ﬁ'A(»)} [4]

where /(2 is the number of subjects who died
on day zin the /stratum, A(é) ®=/ 7\((? (w)duis
the cumulative baseline hazard function, and
RUEAORT R0

1

RO () =

iV (¢)

is the effect of individual covariates on survival
averaged over the population at risk. Algebraic
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calculations that lead from Equation 3 to
Equation 4 are detailed in the Appendix. We
are interested primarily in estimating the asso-
ciation between A(#)and survival, 3, while
treating as nuisance parameters the underlying
hazard functions,

{A(g(t), [=1,..., L}; and the effects of the
individual covariates, §;, and personal exposure,
¢, on survival. The maximum likelihood esti-
mate of 3 can be obtained as the solution to the
score function equation

2 s)

P
- S Al]ole) - 0l)e ]
= (5]
where

(1) = 3L AD()RY(r)
and
y(e)=3E ).

The function O(#) represents the daily
baseline hazard function multiplied by the
effects of time-varying individual covariates
averaged over the at-risk population. First, it
is reasonable to model R (9 as a smooth
function in time because it is a summation of
the individual covariate effects over the at-risk
population in the /th strata. For example, the
effect of the number of smoked cigarettes on
survival may vary markedly from day to day
for any single individual, but the average
effect of smoking on survival in the popula-
tion at risk should vary relatively smoothly
over time. Second, we would also expect to
model the cumulative baseline hazard func-
tion, Agb(t), as a smooth function of time.
Therefore, it is reasonable to assume that ©(%)
is a smooth function of time.

Finally, ®(9exp[p'A(9] can be interpreted
as the expected number of deaths on day # To
show this, we note that the conditional proba-
bility of dying on day # for the 7th subject in
the /th stratum is given by

1- exp(—jf_lk(l./)(u)du) =, k(l.l)(u) du (6]

(Cox and Oakes 1984), with the approxima-
tion being reasonable because of the small daily
death rate in North American and European
cities (=107). The expected number of deaths
on day ris given by the probability of death
summed over all individuals at risk in the
community on day 5 or

5 5 p ol 1)
D)

/=1 iR
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Time-Series Model

Several investigators have estimated associa-
tions between daily variations in population
average exposure such as ambient air pollution
and mortality using a time-series approach
(Katsouyanni et al. 1997; Samet et al. 2000).
This approach assumes that the number of
daily deaths in the /th stratum, y(b (1), follows a
Poisson distribution with the expected number
of deaths on day #given by

E{y(/)(t)} _ (I)(l)(t)eY’A(t), (8]

where ®Y(9 is the daily baseline number of
deaths for the nonexposed population in stra-
tum / and y is the relative rate of daily mortal-
ity for a unit change in A(#), assumed identical
for all strata. Assuming that the counts are in-
dependent among strata, the log-likelihood
function of y is proportional to

The score function for y, Sy), is given by

S(r)= 3 AWy ()-@()e V], 110

=10

where ®(z) = Zled)([)(t) is the daily baseline
mortality averaged across strata.

Comparison of the Two Models

Score Equations 5 and 10 suggest that if the
population-average baseline hazard function
times the average effect of individual-level co-
variates on survival for the population at risk,
©(2), and the population average baseline
mortality, ®(#), are both modeled using the
same unknown function of time, then our
modeling approaches to the dynamic cohort
and time-series designs provide identical esti-
mates of the effects of environmental covari-
ates. This analytical approach is reasonable
because both quantities represent the expected
number of deaths on day # when A(?) = 0 in
their respective designs.

Commonly, in the analysis of time series,
A(?) is estimated by the daily average of the
concentrations observed at fixed-site ambient
monitoring stations. For some air pollutants
such as fine particulate matter, aggregated mea-
sures provide reasonable estimates of the popu-
lation average of personal exposure values
(Zeger et al. 2000). Biased estimates of the
effects of the environmental exposures will
occur because of measurement error if these
aggregate measures provide poor estimates of
the average of the personal exposures of the at-
risk group with the amount of bias dependent
on the amount of error in measuring exposure

(Zidek et al. 1996).

Discussion

We have demonstrated that dynamic popula-
tion study and time-series designs provide the
same relative rate estimates of mortality asso-
ciated with exposure to air pollution under
the following conditions: ) the environmen-
tal covariates vary in time and not between
individuals; ) on any given day, the probabil-
ity of death is small; ¢) each subject of the at-
risk population has the same probability of
death after adjusting for known risk factors;
d) all members of at-risk population share a
common effect of environmental covariates
on mortality; and ¢) the population-average
baseline hazard function and association
between risk factors and death can be approx-
imated adequately by smooth functions of
time. In other words, if conditions a—e hold,
then each individual’s survival experience can
be summarized as the daily number of deaths.

In addition, the equivalency of the esti-
mates of 3 and y, obtained from S(8) and S(y),
respectively, depend on whether ©(#) and ()
are modeled as the same nonstochastic func-
tion, possibly involving some unknown para-
meters. A challenge of time-series studies is the
lack of a clear-cut method to choose the
smooth time function to eliminate long-term
and seasonal trends in the data, and different
estimation methods can lead to different results.
For example, we have suggested previously
(Goldberg et al. 2000) that the smooth func-
tion be selected so that the residual time series is
consistent with a white noise process. It seems
clear now that estimates of the air pollution
effect are sensitive to the method of modeling
time and weather, although this sensitivity can
vary by location and season depending on how
these variables are correlated.

Although we have estimates of the effects
of long-term exposure to ambient air pollution
on survival (Dockery et al. 1993; Pope et al.
1995) based on variations in exposure between
communities and estimates of shorter-term
exposure on mortality (Samet et al. 2000)
based on daily variations in exposure within a
community, we as yet have no direct estimates
of the total effect of exposure to ambient air
pollution from all time scales based on the
same study. The sum of these effects gives
estimates for two of the three components
described in Equation 1. A few studies have
attempted to estimate the effects of personal
exposure to air pollution on mortality.
Variations in personal exposure estimates are
generated as a function of a subject’s residence
within a community or geographic region
(Abbey et al. 1999). One could sum the esti-
mates of effect from these time-series mortality
and cohort studies to obtain a total estimate of
effect. However, they are based on different
populations and exposure data. The time-
series studies use mortality data covering the
entire population, whereas the cohort studies
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are not necessarily representative of the target
population. It is desirable to obtain joint esti-
mates of risk based on personal variation of
exposure within a community, temporal varia-
tion within a community, and spatial variation
between communities obtained from a multi-
community dynamic population study using a
unified survival model. Model formulations
for a joint analysis of time-series and cohort
studies have been recently discussed (Zeger et
al. In press).

We have considered values only of the envi-
ronmental covariates defined on a single day.
However, the estimates of effect between the
two epidemiologic designs are equivalent if val-
ues of environmental covariates are defined as
several-day averages or distributed lag models
(Zanobetti et al. 2001). This model formulation
is also resistant to mortality displacement by
a few days or weeks (Zeger et al. 1999), a phe-
nomenon in which air pollution plays a role in
advancing the time of death by a relatively short
period. However, the day-to-day variation in the
temporal summary estimate of exposure will
decrease as the number of days included in its
calculation increases, thus decreasing the ability
to detect effects on mortality. Furthermore, this
summary measure of exposure could become
confounded in time with the baseline hazard
function if a large number of time lags are
used, resulting in unstable parameter estimates
(Dominici et al. 2003; Zeger et al. In press).
Consequently, time-series studies have limita-
tions in investigating the association between
long-term exposure to environmental covariates,
such as air pollution, and mortality. Studies in
which individual exposures vary, either within a
community or between communities, are
required to estimate the effects of longer-term
exposure on mortality.

In the absence of any other information in
addition to the daily count data, the baseline
hazard functions, }\,E)l)(t), and the regression
parameters for the individual covariates,
cannot be estimated. Estimation of the 9, val-
ues requires information on the individual
covariates, xgb(t), which in turn is required to
estimate 7\%) (#). Estimates of all these quantities
are needed to estimate the amount of life lost
because of exposure to the environmental
covariates in this study population. The expo-
sure effect estimate from a time-series study
is therefore not sufficient to determine the
amount of life lost.

However, our results show that relative risks
due to exposure to the environmental covariates
estimated from studies employing either a
dynamic population or time-series design can
then be applied to the hazard function to deter-
mine the amount of life lost under specific expo-
sure scenarios assuming a homogeneous survival
model. Age- and sex-dependent number of
deaths and number of persons surviving specific
ages are required to construct population-based

life tables. These quantities are used to deter-
mine the baseline hazard function for specific
populations (normally for entire countries).
Here, age is the time variable for the hazard
function. Survival probabilities also vary with
age, sex, and race, and therefore separate esti-
mates of the effects of environmental covariates
on survival should be made by these categories.
A fundamental assumption in these calcu-
lations is that the relative risks estimated in the
study population can be applied uniformly to
all members of the population used in deriving
the life tables (viz., there is no effect modifica-
tion between individual characteristics and
ambient air pollution). This assumption may
not be valid, as evidenced, for example, from
the findings of a reanalysis of the Harvard Six
Cities and the American Cancer Society studies
(Krewski et al. 2000), in which an interaction
was found between attained education (a meas-
ure of socioeconomic status) and level of air
pollution. In addition, the effects of short-term
exposure to several environmental covariates
such as ambient air pollution, weather, and aer-
obiologics on survival may be modified by host
conditions. For example, Goldberg et al. (2000,
2001) have shown that persons with certain
medical conditions, such as congestive heart
failure, are more susceptible to air-pollution—
related death than is the general population.
Their survival experience may also be different
from that of the average person in that their
disease condition reduces their life expectancy.
Information on disease status can be incorpo-
rated into the survival model by defining an

Appendix

individual-level covariate as an indicator func-
tion of the presence/absence of a disease, which
would vary with time. The interaction between
the disease state indicator and air pollution
would provide a means of assessing the effect
modification of host conditions on air-pollu-
tion—related deaths.

Incorporating the influence of disease con-
dition on the relative risks of environmental
covariates into estimates of the amount of life
lost would require disease-specific life tables.
Such life tables could be determined from
national longitudinal population health surveys
linked to mortality (Tambay and Catlin 1995).
These life tables provide estimates of the
expected life span of an individual with a dis-
ease condition by age. Incorporation of indi-
vidual covariates (which is not possible in
time-series study designs) is therefore impor-
tant to capture this difference in susceptibility.

The use of time-series mortality studies
to estimate the amount of life lost because of
short-term ambient air pollution exposures has
been criticized (Kunzili et al. 2001; McMichael
et al. 1998; Rabl 2003). However, those au-
thors suggest that it is appropriate to estimate
from cohort studies the amount of life lost.
We have shown that under certain conditions
time-series studies can be viewed as dynamic
population studies and that estimates of life
lost can be obtained from time-series studies
in a manner similar to that used in cohort
studies. However, we did have to assume a
homogeneous survival model. It is likely that
people dying from short-term exposures to

Here we give detailed calculations that lead to the log-likelihood (Equation 4) from the initial
definition (Equation 3). Writing the limits of integration in Equation 3 as a sum of integrals

between consecutive days, we have

T

> 2

=0 iecD()upl) sy 0o

TLAOE B IR O
= er\(r)

[A1]

t=0

with RA() representing the set of individuals in stratum /at risk in the community on day #

Further note that

) 12 (¢)
@)

=)0+ 4G+

M [}\,(é)(t)eﬁ'/‘(f) o) +¢’P,-“>(r>]
,-eog)(t)

o x(e) + o P()]

i&D\")(z)

(A2]

where )M(t) is the number of subjects who died on day 7in the /th stratum. Assuming that
the covariate values are constant within a day, we have

5 o o(l)
e = £ 9 ) P A er e,

=[5 e x LCETE AR ZA0)

(A3]

Equation 4 follows directly by substituting Equation A2 and Equation A3 in Equation 3.
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environmental covariates such as ambient air
pollution are more vulnerable to dying and
therefore do not have the same expected resid-
ual lifetime as an average person their age.
Similar concerns arise with the cohort studies
in that long-term exposure to air pollution
could be affecting only those persons with pre-
existing diseases or some other vulnerabilities
(e.g., low education). It is therefore important
to develop heterogeneous survival models for
both short- and long-term exposure and to
conduct epidemiologic studies to both identify
vulnerable populations and subgroups sensi-
tive to environmental exposures. Estimates of
the heterogeneity of survival and effect of
environmental exposures on mortality coupled
with disease-specific life tables will enable use
to determine reasonable estimates of the
amount of life lost because of environmental
exposures.
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