Quantcast
Environmental Health Perspectives Free Trail Issue
Author Keyword Title Full
About EHP Publications Past Issues News By Topic Authors Subscribe Press International Inside EHP Email Alerts spacer
Environmental Health Perspectives (EHP) is a monthly journal of peer-reviewed research and news on the impact of the environment on human health. EHP is published by the National Institute of Environmental Health Sciences and its content is free online. Print issues are available by paid subscription.DISCLAIMER
spacer
NIEHS
NIH
DHHS
spacer
Current Issue

EHP Science Education Website




Comparative Toxicogenomics Database (CTD)

spacer
Environmental Health Perspectives Volume 111, Number 9, July 2003 Open Access
spacer
Skin as a Route of Exposure and Sensitization in Chronic Beryllium Disease

Sally S. Tinkle,1 James M. Antonini,2 Brenda A. Rich,1 Jenny R. Roberts,2 Rebecca Salmen,1 Karyn DePree,1 and Eric J. Adkins1

1Toxicology and Molecular Biology Branch, and 2Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA

Abstract

Chronic beryllium disease is an occupational lung disease that begins as a cell-mediated immune response to beryllium. Although respiratory and engineering controls have significantly decreased occupational beryllium exposures over the last decade, the rate of beryllium sensitization has not declined. We hypothesized that skin exposure to beryllium particles would provide an alternative route for sensitization to this metal. We employed optical scanning laser confocal microscopy and size-selected fluorospheres to demonstrate that 0.5- and 1.0-µm particles, in conjunction with motion, as at the wrist, penetrate the stratum corneum of human skin and reach the epidermis and, occasionally, the dermis. The cutaneous immune response to chemical sensitizers is initiated in the skin, matures in the local lymph node (LN) , and releases hapten-specific T cells into the peripheral blood. Topical application of beryllium to C3H mice generated beryllium-specific sensitization that was documented by peripheral blood and LN beryllium lymphocyte proliferation tests (BeLPT) and by changes in LN T-cell activation markers, increased expression of CD44, and decreased CD62L. In a sensitization-challenge treatment paradigm, epicutaneous beryllium increased murine ear thickness following chemical challenge. These data are consistent with development of a hapten-specific, cell-mediated immune response following topical application of beryllium and suggest a mechanistic link between the persistent rate of beryllium worker sensitization and skin exposure to fine and ultrafine beryllium particles. Key words: , , , , . Environ Health Perspect 111:1202-1208 (2003) .


The full version of this article is available for free in HTML or PDF formats.
spacer
 
Open Access Resources | Call for Papers | Career Opportunities | Buy EHP Publications | Advertising Information | Subscribe to the EHP News Feeds News Feeds | Inspector General USA.gov