#### RIPARIAN PROPER FUNCTIONING CONDITION A Tool for Integrating the Fundamental Sciences into Collaborative Decision-Making





#### Dixie Creek NV 1989

#### Dixie Creek NV 1995





#### Burro Creek AZ 1981

#### Burro Creek AZ 2000



## Address Barriers



#### "Information does not resolve social conflicts, people do." (Duane 1997)

## Creeks & Communities

- Work with people on their land and issues
- Requires network of individuals
  - $\sqrt{\text{Diverse backgrounds}}$
  - $\sqrt{\mbox{Can}}$  read the land and communicate it effectively
  - $\sqrt{\text{Know}}$  how to work with people and manage conflict





#### Bring diverse groups of people together

Focus initially on the physical function

# Build understanding of the attributes & processes that help produce desired benefits and values

Create respectful learning environments



# Science, Technical, Social

- PFC is qualitative based on science
- It is applied by people with strong technical skills and experience
- It allows all members of the community to understand and participate



# **Proper Functioning Condition**

On-the-ground condition

Assessment method

# **PFC On-The-Ground Condition**

#### Adequate vegetation, land form or large woody material to:

- Dissipate stream energy
- Reduce erosion
- Filter sediment
- Capture bedload
- Aid floodplain development
- Improve floodwater retention and groundwater recharge
- Develop root masses that stabilize stream banks



- Increased water quality and quantity
- Diverse ponding and channel characteristics
- Habitat for fish and wildlife
- Greater biodiversity

Values



Adequate vegetation, landform or large woody material present



# **Functional - At Risk**

**Riparian-Wetland Areas in Functional Condition (partially)** 

However an existing attribute

- Soil
- Water
- Vegetation

Makes them susceptible to degradation during high-flow events like the 5-, 10and 20- year events



An existing attribute makes them susceptible to degradation during high-flow events like the 5-, 10-and 20- year events = F-A-R

# Nonfunctioning

## Areas that are *clearly* not providing adequate vegetation, landform, or large woody debris

To:

- Dissipate stream energy
- Improve floodwater retention & groundwater recharge
- Stabilize streambanks
- And other characteristics common to PFC



# *Clearly* not providing adequate vegetation, landform, or large woody debris

= Non-Functional

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

# Potential

The highest ecological status a riparian-wetland area can attain given no political, social, or economic constraints.

- Potential natural community.
- Dimension, pattern,& profile

![](_page_15_Picture_4.jpeg)

Being all it possibly can be.

# Capability

**Highest ecological** status an area can attain given political, social, or economic constraints, which are often referred to as limiting factors.

![](_page_16_Picture_2.jpeg)

The highest ecological status it can attain given major influences by humans.

# **PFC Hydrology Items**

- Floodplain
- Beaver Dams
- Channel Characteristics
- Riparian Area Widening
- Watershed Influence

![](_page_17_Picture_6.jpeg)

# **PFC Vegetation Items**

- Diverse Age-Class
- Diverse
  Composition
- Soil Moisture Characteristics
- Root masses
- Vigor
- Adequate
  Vegetative Cover
- Source of Large Woody Material

![](_page_18_Picture_8.jpeg)

# **PFC Erosion/Deposition Items**

- Floodplain and Channel Characteristics
- Point Bars Revegetating
- Lateral Stability
- Vertical Stability
- Water & Sediment
  Balance

![](_page_19_Picture_6.jpeg)

![](_page_20_Picture_0.jpeg)

Functioning Condition Some riparian-wetland areas can function properly before they achieve their potential.

![](_page_20_Picture_2.jpeg)

![](_page_21_Picture_0.jpeg)

## Functioning Condition

Others may require the potential vegetation to

function.

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

![](_page_22_Picture_0.jpeg)

When PFC has been achieved, physical processes are in a working order, and conditions can progress towards desired conditions

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_23_Figure_0.jpeg)

\*Proper Functioning Condition = Resilient during 5-, 10, and 20- year events

# An Assessment Method

- Completed by experienced IDT, but encourages participation of local people
- First step, not last step
- Helps prioritize efforts at different scales (stream, watershed, basin)

![](_page_24_Picture_4.jpeg)

## PFC Assessment Method

![](_page_25_Figure_1.jpeg)

Soil, Landscape

Vegetation

![](_page_26_Picture_0.jpeg)

# **Priority for Restoration**

- Function at Risk nonapparent or downward trend
- Maintain and protect proper functioning streams
- Non-functioning streams
- There may be reasons to use different priorities

![](_page_27_Figure_5.jpeg)

## **Development & Implementation**

• Multi-agency team of top scientists from Hydrology, Soils, Vegetation, Biology.

• Four year study period in the 12 Western States (1988-92).

• Collected soil, hydrology, and vegetation information at field sites.

## Subjective?

![](_page_29_Picture_1.jpeg)

# Learning Together

PFC workshops bring local people, government workers, scientists, farmers, ranchers and many others together

![](_page_30_Picture_2.jpeg)

- Understanding of Processes
- Common Vocabulary
- A Common Vision

# What do you see?

![](_page_31_Picture_1.jpeg)

Pearl Creek NV 1982

#### Pearl Creek NV 1983

## Finding a Common Interest Without Forcing Common Values

![](_page_32_Picture_1.jpeg)

Muddy Creek WY 1986 Muddy Creek WY 1996

## **Riparian Function**

![](_page_33_Figure_1.jpeg)

## Testimonial

• Sustainable Northwest...one of our partners in the Klamath Basin