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Time Domain Astronomy

Astronomy is an observational, not 
experimental science

Mostly done by characterizing the 
electromagnetic field impinging on Earth with 
a few exceptions (cosmic rays, neutrinos, 
gravitational waves)

 The EM field can be characterized by 
intensity a function of: angle, energy (i.e. 
frequency), polarization, and time.

Here, we will focus on the time domain, in other words, 
source variability.



X-ray Timing
In the X-ray band, detectors are sensitive to individual 
photons, which each carry significant energy (E = hν)

1 keV = 1.6x10-9 erg = 2.24x1017 Hz = 1.24x10-7 cm

Detectors can record the arrival time, energy, and 
direction of each photon (and perhaps polarization in the 
future)

2 seconds of raw data 
from GRS1915+105



Aside on Photon Statistics
Warning: Because we are counting 
individual photons, the relevant statistics 
are Poisson, not Gaussian.



What Can We Learn From Timing?

Source variability probes geometry of the 
emitting region in a way spectra cannot

Fastest time scales probe the smallest time 
size scales

Accretion dynamics near event horizon of BH or 
surface of NS, burning fronts propagating around NS, 
magnetic reconnection bursts on a magnetar

Coherent pulsations allow extremely precise 
measurements

Orbital period and evolution, accretion torques, 
rotational glitches



Rotational Periods:

Accretion Time Scales:
Dynamical, Thermal, & Viscous Time Scales
 (e.g. QPOs, outburst timescales)
ms – days  for NS/BHC
minutes – years for AGN

ms - s  for NS/WD

hr - days for Stars

Orbital Time Scales:

minutes to days for NS/BHC
Suber-orbital periods: 
 weeks – months

X-ray Bursts & Superbursts



Characteristic Time Scales

 AGN (108 M⨀) ⇒ τ > 1000 s

 Black Hole (10 M⨀) ⇒ τ > 100 µs

 Neutron Star (1.4 M⨀) ⇒ τ > 15 µs

τ ≥ R/v,  v ≤ c,  R ≥ 2GM/c2

These are the fastest achievable time scales.  In 
reality, there is variability on a range of time scales.



Software Tools
HEASoft (FTOOLS)

Distributed by NASA’s HEASARC
http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/

Supports many mission formats (RXTE, Swift, etc...) and generic 
FITS files

SITAR <http://space.mit.edu/CXC/analysis/SITAR>

Being developed by Mike Nowak

Or, “roll your own” as many people do

Custom C or FORTRAN code

IDL or MATLAB

Python + SciPy&Matplotlib



Simplest Tool: A Lightcurve
Select photons from an energy range of 
interest and “bin” them into evenly 
spaced time bins with Ni counts/bin

Tip: Always choose integer multiple of 
“natural” time unit for binning

Don’t bin more than you have to – save it 
for subsequent analysis

Be careful to normalize by exposure time

Once you convert from counts/bin to 
rates or subtract any background or DC 
component, error is no longer sqrt(Ni)



Length & Binning Determine Limits

Lowest Frequency:  flong = 1/T

Highest Frequency: Nyquist 
Frequency, fNyq = 1/(2Δt)

Basic Question, is the 
variance: σ2 = <x2> - <x>2 
greater than expected from 
Poisson noise?

σ = Root Mean Square 
Variability

T,  N=T/Δt

Δt



Fourier Transform Methods

The workhorse of the timing world

Describes how variability power is distributed 
as a function of frequency

{



Fourier Transform Definition

A Fourier Transform decomposes a time series into 
“sine waves” of different frequencies

Power Density Spectrum (PDS) is the squared Fourier 
amplitude, properly normalized

Lightcurve with N bins, comprised of counts, xi, becomes power 
spectrum, with N/2+1 independent amplitudes 

Discarding phases throws out information ⇒ power spectra are not unique!

Know Your Normalization!!! Various FFT Routines Have Different Ones! 
(FTOOLS routine powspec gives you a choice)

“One-sided” Leahy (mean power = 2):

“One-sided” (RMS/mean)2/Hz:

Xj ≡

N−1∑

k=0

xk exp(2πijk/N) , j = [−N/2, . . . , 0, . . . , N/2]

Pj = 2|Xj|2/Nph

Pj = 2|Xj|2/(Nph×< Rate >)



Useful Theorems

Fourier Transform is a linear transform 

Real-valued data:
 

Parseval’s Theorem

Shift

N−1

∑
k=0

|xk|2 =
1
N

N−1

∑
j=0

|Xj|2

xk ∈ℜ⇒ XN− j = X∗j where j ∈ [1,N/2−1]

x(t− t0)⇔ X( f )e2πi f t0

ax(t) ⇔ aX(f)



FAST Fourier Transforms
FFT algorithm (Cooley & Tukey 1965) transformed 
problem from O[N2] to O[N log2(N)] which greatly 
increased the usefulness of Fourier techniques

Current state-of-the art is the FFTW (“Fastest 
Fourier Transform in the West”) library by Frigo & 
Johnson (MIT)

Many FFTs require or strongly prefer N=2n, but FFTW works 
well with any small prime factors and still works even with 
N=prime.

It is highly portable (Linux/Mac/Windows/...) and is close to 
the fastest possible FFT on every platform with no special 
effort.

Get it! <http://www.fftw.org>



Coherent Signals

Much analysis involves “coherent” signals, 
i.e. periodic signals whose phase is constant 
over the relevant duration

Or, equivalently, where a time transformation 
(sometimes called a “timing model”) can be determined 
that makes the signal coherent

Examples:

Pulses from rotating pulsars

Orbital modulation or eclipses

Precession periods



Epoch Folding
Bin photons according to phase with respect 
to a known period P (or a more complicated 
timing model)

Significance of variability at that period can 
be assessed by doing a χ2 test against a null 
hypothesis of constant rate.



Epoch Folding Searches

Perform epoch folding at a large number of trial periods, 
and look for trials with large χ2

Good for non-sinusoidal variations, and when there are data 
gaps or complicated window functions

Can be slow to explore a large range of periods

Requires Nph*Nper operations: fmod(t_ph,P)



FFT Searches

Pros

MUCH faster than epoch folding searches in many cases

Searches all possible frequencies simultaneously

Cons

Potentially large memory requirements

Requires harmonic summing for non-sinusoidal signals



Statistics of Power Spectra
How do  you determine the significance of peaks 
found in power spectra?

Distribution of Pk is χ2/MW with 2MW D.O.F., where 
MW is the number of power spectra summed

So, just compute the probability of a false 
occurrence: Pr(Pk > thresh)

Number of trials is critical!

Distribution has a LONG tail!

PDF[χ2
r(x)] =

2−r/2e−x/2x
r
2−1

Γ
(r

2

)



Decoherence

FFT and simple epoch-folding searches 
require the single be coherent throughout the 
interval being considered

But, this might not be the case because of:

Orbital Doppler shifts from a binary system

Intrinsic period derivative of the source

Satellite or Earth motion that isn’t fully compensated 
for

Searching still possible with several 
techniques



Acceleration Searches
Attempt to transform the time series into a 
frame where the signal is coherent

Stretch the time series according to a set of 
trial accelerations, or matched filter in the 
Fourier domain

Assumes constant acceleration during observation

Only works when higher order terms can be 
ignored (e.g. when Tobs < Porb/10)

Wood et al. (1991, ApJ, 379, 295); Vaughan et al. (1994, 
ApJ, 435, 362)

Ransom, Eikenberry, & Middleditch (2002, AJ, 124, 1788)



Sideband (Phase-Modulation) Search

When Tobs > Porb, the response to the FFT of a sinusoidal 
signal is analytically calculable as a Bessel function

Ransom et al. 2003 ApJ, 589, 911

Perform matched filter in the Fourier domain

Recovers substantial fraction of fully coherent search 
sensitivity at a tiny fraction of the computational cost!

Observation Duration (h)

Coherent
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Pulsar Timing

Coherent timing over long time baselines is 
very powerful and precise since every cycle 
is accounted for

Goal: To determine a timing model that 
accounts for all of the observed pulse arrival 
times (TOAs)

Parameters that can be determined:

Spin (ν, ν´, ... ⇒ torques, magnetic fields, ages)

Orbital (Porb, T0, e, ω, ax sin i, GR terms)

Positional (α, δ, π, proper motion)



Measuring a TOA

Measure phase shift 
between measured TOA 
and a template profile

Application of the FFT shift 
theorem (and linearity)

TOA = Tobs + Δt

Δtx(t− t0)⇔ X( f )e2πi f t0



Barycentering TOAs

Arrival times at Earth or spacecraft must be 
converted to a nearly inertial frame before 
attempting to fit a simple timing model

Remove effects of observer velocity and relativistic 
clock effects

Convenient frame is the Solar System Barycenter



Fitting TOAs to a Timing Model

Goal: Find parameter values that minimize 
the residuals between the data and the model

6

Figure 1. Simulating pulsar timing residuals for a pulsar with a proper motion in right ascension of 200 mas/yr using the fake plugin.

whether this parameter should be held constant (0 = default = hold constant; 1 = fit). These labels are described in Table 4.

Examples include:
The pulsar has a spin period of P0 = 1.23456 s, with no fitting required:

P0 1.23456

To fit to this parameter, use

P0 1.23456 1

or with an uncertainty (which is ignored by tempo2)

P0 1.23456 1 0.00003

Other commands may be given in parameter files that control the algorithms used by Tempo2. Tempo2 only requires the
following parameters: PSRJ, DM, F0, PEPOCH, RAJ and DECJ. If no period epoch is provided then the position epoch is

assumed to be the same as the period epoch.

It is also possible to provide the pulsar parameters in the old-style tempo format where the arrival times and the
parameters are given in the same file. In this mode tempo2 is called only using one file, e.g.

tempo2 -gr plk myfile.tempo

where the first line in the file contains flags with ’1’ to indicate that the parameter should be fit and ’0’ for not fitting:

Column Parameter

1 Phase

2 P0

3 P1

4 P2

5 RAJ

6 DECJ

7 PMRA

8 PMDEC

9 A1

10 ECC

11 T0

12 PB

13 OM

φ(t) = φ(0) + νt +
1

2
ν̇t2 +

1

6
ν̈t3 + ...

Fitting Engine

Measured 

TOAs

Solar System 

Ephemeris

Clock 

Corrections

Initial Model 

Parameters

Best Fit Parameters + 

Error Estimates

Residuals to Best Fit

Full model can include spin, astrometric, binary, and other parameters.



Tools for Fitting Timing Models

Tempo < http://pulsar.princeton.edu/tempo/>

Developed by Princeton and ATNF over 30+ years

Well tested and heavily used

Based on TDB time system

But, nearly undocumented, archaic FORTRAN code

Tempo2 < http://www.atnf.csiro.au/research/pulsar/tempo2/>

Developed at ATNF recently (still in beta test)

Based on TCB time system (coordinate time based on SI second)

Well documented, modern C code, uses long double (128 bit) throughout

Easy plug-in architecture to extend capabilities

But, not well tested, still in development

Time Systems

TAI  = Atomic time based on the SI second

UT1 = Time based on rotation of the Earth

UTC = TAI + "leap seconds" to stay close to UT1 

TT = TAI + 32.184 s

TDB =  TT + periodic terms to be uniform at SSB

TCB = Coordinate time at SSB, based on SI second



Aperiodic Variability

The broadband power 
spectrum can characterize:

Total (excess) variability

Power spectral slopes and breaks 
(special time scales)

Quasiperiodic oscillations (QPOs)

Random walks in phase or 
frequency

Finite lifetime of processes

Amplitude modulation

“Quality factor” Q = f0/Δf



Rebinning and Averaging

Single FFT bin is a terrible 
estimator of the PSD, because 
of the huge variance

Making FFT longer doesn’t 
help; just samples frequencies 
more finely

Solutions:

Average adjacent frequency bins (often 
done logarithmically)

Average PSDs of multiple data 
segments

“Twin” kHz QPOs

“Band-Limited Noise”



PSD Model Fitting

After subtracting Poisson 
level, you can fit models

Popular choice currently is 
a sum of Lorentzians

See Belloni, Psaltis, & van der 
Klis (2002, ApJ, 572, 392)

P ′

j = (Pj − Pnoise) ± Pj/
√

Navg

L(x) =
Γ

2π
(

(x − x0)2 + Γ2

4

)



Dead Time Effects
Detector “Deadtime” is when the detector can’t 
detect events, either:

For a period of time after an event

Paralyzable (event during deadtime extends deadtime)

Non-paralyzable (events during deadtime have no effect)

Or, for a detector reason, such as readout intervals

Deadtime modifies the power spectrum of 
Poisson noise from the expected PLeahy = 2 
(usually to something < 2)

See: Zhang et al. (1995, ApJ, 449, 930); Morgan 
et al. (1997, ApJ, 482, 993), Nowak et al.(1999, 
ApJ, 510, 874)



Advanced Topic: 
Unevenly Sampled Data

Lomb Periodigram

Bayesian Methods

Wavelets



Review/Tips
Coherent pulsation (e.g. pulsar) best done with 
no rebinning

Pulsar timing is a powerful and precise tool

QPO searches need to be done with multiple 
rebinning scales

Beware of spurious signals introduced by:

Instrument (read times, clock periods, ...)

Dead time

Spacecraft orbit (background rate variations)

Diurnal/Annual effects



Proposal Estimates

Detecting broad band noise (or QPO) at the 
nσ confidence level

For broad band timing, you win more with rate than 
time

Detecting coherent pulsations

f limit
p

= 4nσ/(Rate × Time)

RMS
2

limit ≈ 2nσ

√

∆f/
√

Rate
2
× Ttotal



References for Further Reading
van der Klis, M. 1989, “Fourier Techinques in X-ray Timing”, in Timing 
Neutron Stars, NATO ASI 282, eds. Ögelman & van den Heuvel, Kluwer

Superb overview of spectral techniques!

Press et al., “Numerical Recipes”
Clear, brief discussions of many numerical topics

Leahy et al. 1983, ApJ, 266, p. 160
FFT & PSD Statistics

Leahy et al. 1983, ApJ, 272, p. 256
Epoch Folding

Davies 1990, MNRAS, 244, p. 93
Epoch Folding Statistics

Vaughan et al. 1994, ApJ, 435, p. 362
Noise Statistics

Nowak et al. 1999, ApJ, 510, 874
Timing tutorial + coherence techniques



Data Exercises

Get a computer with HEASoft installed

Linux/Mac/Sun/OSF etc... (Windows only under Cygwin)

Measure the pulsations from Sco X-1

Find the 0.1 Hz QPO in XTE J1118+480


