# Estimating Freshwater Needs for Thermoelectric Power Plants Through 2030



A Water Constrained
Future – How Power
Producers Can Minimize
the Impact in the West

May 1 - 2, 2007 San Diego, CA

Andrea McNemar
National Energy Technology Laboratory





### **Outline**

- Background on issue
- Thermoelectric withdrawal and consumption projections
- NETL's R&D program
- Estimated benefits of R&D
- Summary





### **National Energy Technology Laboratory**

- Only DOE national lab dedicated to fossil energy
  - Fossil fuels provide 85% of U.S. energy supply
- One lab, five locations, one management structure
- 1,200 Federal and support-contractor employees
- Research spans fundamental science to technology demonstrations



Alaska



Oklahoma



Oregon



Pennsylvania



West Virginia



### **NETL Mission**

Implement research, development, and demonstration programs to resolve the environmental, supply, and reliability constraints of producing and using fossil resources









## The Issues: Competing Freshwater Uses

U.S. Freshwater Withdrawal (2000)



- 2000 thermoelectric water requirements:
  - Withdrawal: ~ 136 BGD
  - Consumption: ~ 3 BGD

- Thermoelectric competes with other users, including in-stream use.
- Which is more important: drinking and personal use, growing food, or energy production?

#### U.S. Freshwater Consumption (1995)





Sources: USGS, Estimated Use of Water in the United States in 2000, USGS Circular 1268, March 2004 USGS, Estimated Use of Water in the United States in 1995, USGS Circular 1200, 1998

# Saline Water Use Not Addressed in this NETL Analysis

#### **However:**

- In 2000, thermoelectric plants withdrew 59 BGD of saline water ≈ 30% of total thermo withdraw
- In California, 97% of thermoelectric withdraw was saline
- 316(b) and related regulation impacts likely to decrease saline use





# Recent Articles on Water-Related Impacts on Power Plant Siting and Operation





# Summary of Generation Capacity Impacted by Water-Related Issues

| Plant Generation<br>Type | Generation Affected by Availability Issues (MW) | Generation Affected by Environmental Issues (MW) | Total Affected<br>Generation<br>(MW) |  |
|--------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------|--|
| Pulverized Coal          | 17151                                           | 1200                                             | 18351                                |  |
| Hydro                    | 8040                                            | 0                                                | 8040                                 |  |
| Nuclear                  | 4113                                            | 985                                              | 5098                                 |  |
| Natural Gas/NGCC         | 1225                                            | 2887                                             | 4112                                 |  |
| Total                    | 30529                                           | 5072                                             | 35601                                |  |

- New plants face difficulties in obtaining water withdrawal permits
- Existing plants face reduced generation



# Projected Thermoelectric Capacity & Population Increases from 2005 to 2030





U.S. Census Bureau, Population Division, Interim State Population Projections, 2005. Energy Information Agency, Annual Energy Outlook 2006, Regional Tables, 2007.

## Thermoelectric Power Freshwater Withdrawal and Consumption Projections







### **Data Resources**

| Resource                                                               | Type of Data                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AEO 2006                                                               | <ul> <li>Projections of thermoelectric capacity and generation by NERC region</li> <li>Coal capacity, generation, and capacity factor breakdown by four categories: existing unscrubbed, existing scrubbed, new PC (scrubbed), and IGCC</li> </ul> |
| NETL 2005 Coal Power Plant Database – Including data from 2003 EIA-767 | <ul> <li>Plant generation</li> <li>Average water withdrawal and consumption</li> <li>Cooling water source</li> <li>Type of cooling water system</li> <li>Type of boiler</li> <li>Type of FGD system</li> </ul>                                     |
| EIA-860                                                                | <ul><li>Plant location by NERC region</li><li>Plant summer capacity</li></ul>                                                                                                                                                                      |
| CMU – Integrated Environmental Control Model (IECM)                    | Water use factors for wet FGD and dry FGD                                                                                                                                                                                                          |
| Parsons - Power Plant Water Consumption Study,<br>August 2005          | <ul> <li>Water use factors for boiler make-up</li> <li>Water use factors for IGCC plants</li> </ul>                                                                                                                                                |
| NETL IEP Descriptions for Water-Related Projects                       | Reductions in water withdrawal and consumption factors                                                                                                                                                                                             |



### **National Average W&C Factors for Model Coal Plants**

| Generation<br>Type | Cooling Water System<br>Type | Boiler Type   | Type of FGD | Withdrawal<br>Factor (gal/kWh) | Consumption<br>Factor (gal/kWh) |
|--------------------|------------------------------|---------------|-------------|--------------------------------|---------------------------------|
|                    | Once-Through                 | Subcritical   | Wet         | 27.113                         | 0.138                           |
|                    |                              |               | Dry         | 27.088                         | 0.113                           |
|                    |                              |               | None        | 27.046                         | 0.071                           |
|                    |                              | Supercritical | Wet         | 22.611                         | 0.124                           |
|                    |                              |               | Dry         | 22.590                         | 0.103                           |
|                    |                              |               | None        | 22.551                         | 0.064                           |
|                    | Wet Cooling Tower            | Subcritical   | Wet         | 0.531                          | 0.462                           |
|                    |                              |               | Dry         | 0.506                          | 0.437                           |
| Cool               |                              |               | None        | 0.463                          | 0.394                           |
| Coal               |                              | Supercritical | Wet         | 0.669                          | 0.518                           |
|                    |                              |               | Dry         | 0.648                          | 0.496                           |
|                    |                              |               | None        | 0.609                          | 0.458                           |
|                    | Cooling Pond                 | Subcritical   | Wet         | 17.927                         | 0.804                           |
|                    |                              |               | Dry         | 17.902                         | 0.779                           |
|                    |                              |               | None        | 17.859                         | 0.737                           |
|                    |                              | Supercritical | Wet         | 15.057                         | 0.064                           |
|                    |                              |               | Dry         | 15.035                         | 0.042                           |
|                    |                              |               | None        | 14.996                         | 0.004                           |



### **National Average W&C Factors for Model Non-coal Plants**

| Generation<br>Type | Cooling Water<br>System Type | Boiler Type | Type of FGD | Withdrawal<br>Factor<br>(gal/kWh) | Consumption<br>Factor<br>(gal/kWh) |
|--------------------|------------------------------|-------------|-------------|-----------------------------------|------------------------------------|
| Nuclear            | Once-Through                 | NA          | NA          | 31.497                            | 0.137                              |
| inuclear           | Wet Cooling Tower            | NA          | NA          | 1.101                             | 0.624                              |
| Oil & NG           | Once-Through                 | NA          | NA          | 22.74                             | 0.09                               |
|                    | Wet Cooling Tower            | NA          | NA          | 0.25                              | 0.16                               |
|                    | Cooling Pond                 | NA          | NA          | 7.89                              | 0.11                               |
|                    | Once-Through                 | NA          | NA          | 9.01                              | 0.002                              |
| NOCO               | Wet Cooling Tower            | NA          | NA          | 0.15                              | 0.13                               |
| NGCC               | Cooling Pond                 | NA          | NA          | 5.95                              | 0.24                               |
|                    | Air Cooled                   | NA          | NA          | 0.004                             | 0.004                              |
| IGCC               | Wet Cooling Tower            | NA          | NA          | 0.226                             | 0.173                              |

NG = Natural Gas NGCC = Natural Gas Combined Cycle IGCC = Integrated Gasification Combined Cycle



### **Water Use Projection Cases**

- Case 1 (Status Quo) Additions and retirements are proportional to current water source and type of cooling.
- Case 2 (Regulatory Driven) All additions use freshwater and wet recirculating cooling (WRC), while retirements are proportional to current water source and type of cooling.
- Case 3 (Regulatory Light) 90% of additions use freshwater and WRC, and 10% of additions use saline water and once-through cooling, while retirements are proportional to current water source and type of cooling.
- Case 4 (Dry Cooling) 25% of additions use dry cooling and 75% of additions use freshwater and WRC, while retirements are proportional to current water source and type of cooling.
- Case 5 (Conversion) Additions use freshwater and WRC, while retirements are proportional to current water source and type of cooling. 5% of existing freshwater once-through cooling capacity is retrofitted with WRC every five years starting in 2010.

# Projected Changes in U.S. Thermoelectric Sector Freshwater Withdrawal and Consumption







# Projected Changes in U.S. Thermoelectric Sector Freshwater Withdrawal and Consumption







# Projected Change in U.S. Thermoelectric Sector Freshwater Withdrawal and Consumption (Case 2)



DOE/NETL, "Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements," August, 2006 http://www.netl.doe.gov/technologies/coalpower/ewr/pubs/WaterNeedsAnalysisPhaseI1006.pdf

### Regional Thermoelectric Withdrawal Results (Case 2)



DOE/NETL, "Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements," August, 2006 http://www.netl.doe.gov/technologies/coalpower/ewr/pubs/WaterNeedsAnalysisPhasel1006.pdf

### **Regional Thermoelectric Consumption Results (Case 2)**



DOE/NETL, "Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements," August, 2006 http://www.netl.doe.gov/technologies/coalpower/ewr/pubs/WaterNeedsAnalysisPhasel1006.pdf

# Overview of Regional Results: Case 2 (2005 – 2030) by Western Electricity Coordinating Council (WECC)

#### EIA thermoelectric capacity projections:

- 24% increase in U.S., Total
- 47% increase in California
- 50% increase in Northwest Power Pool
- 48% increase in Rocky Mountains

#### Case 2 withdrawal projections:

- 9% decrease in U.S., Total
- 3% decrease in California
- 32% increase in Northwest Power Pool
- 38% decrease in Rocky Mountains

#### Case 2 consumption projections:

- 32% increase in U.S., Total
- 352% increase in California
- 66% increase in Northwest Power Pool
- 74% increase in Rocky Mountains



**WECC U.S. Regions** 

# DOE/NETL's R&D Program





### **Technical & Cost Goals**

- Short Term Have technologies ready for commercial demonstration by 2015 that, when used alone or in combination, can reduce freshwater withdrawal and consumption by 50% or greater for thermoelectric power plants equipped with wet recirculating cooling technology at levelized cost of less than \$2.40 per 1000 gallons freshwater conserved.
- Long Term Have technologies ready for commercial demonstration by 2020 that when used in combination can reduce freshwater withdrawal and consumption by 70% or greater at levelized cost of less than \$1.60 per 1000 gallons freshwater conserved.



### FE/NETL IEP Water Technology Categories



# IEP Energy-Water Technology Categories & Current Projects

#### **Description**

#### Category A - Provide Alternate Source of Cooling Water Make-up

- Use of Produced Water in Recirculated Cooling Systems at Power Generation Facilities & Development of an Impaired Water Cooling System - EPRI
- Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation – West Virginia University
- Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants – *University of Pittsburgh*

## <u>Category B - Increase Cycles of Concentration for Wet Recirculating Systems, thereby</u> <u>Decreasing Wet Cooling Tower Blowdown Requirements</u>

- A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient
  Use of Impaired Water as Cooling Water in Coal-Based Power Plants Nalco Company
- Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants *Drexel University*

#### Category C - Advanced Cooling Technology

 Use of Air2Air<sup>™</sup> Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants – SPX Cooling Systems

#### Category D - Reclaim Water from Combustion Flue Gas for Use as Cooling Water Make-up

- Water Extraction from Coal-Fired Power Plant Flue Gas University of North Dakota, UNDEERC
- Recovery of Water from Boiler Flue Gas Lehigh University
- Reduction of Water Use in Wet FGD System URS Group, Inc.

#### Category E - Reduce Cooling Tower Evaporative Losses via Coal Drying

Use of Coal Drying to Reduce Water Consumed in Pulverized Coal Power Plants – Lehigh University









# U.S. Total Water Withdrawal with IEP Program Technologies



### WECC Region (U.S.) Water Withdrawal with IEP Program Technologies













### WECC/<u>California</u> Water Withdrawal with IEP Program Technologies













# WECC/Northwest Power Pool Water Withdrawal with IEP Program Technologies













# WECC/<u>Rocky Mountain</u> Water Withdrawal with IEP Program Technologies













# U.S. Total Water Consumption with IEP Program Technologies













### WECC Region (U.S.) Water Consumption with IEP Program Technologies













### WECC/<u>California</u> Water Consumption with IEP Program Technologies













# WECC/Northwest Power Pool Water Consumption with IEP Program Technologies













# WECC/<u>Rocky Mountain</u> Water Consumption with IEP Program Technologies













# **Summary of Potential IEP Energy-Water Technology Benefits to WECC Region**

| • | U.S. Total                    |                |                       |  |  |  |
|---|-------------------------------|----------------|-----------------------|--|--|--|
|   | <ul><li>Withdrawal:</li></ul> | 1.9% decrease  | (2.91 million a-f/yr) |  |  |  |
|   |                               | 27.2% decrease | ` ,                   |  |  |  |
|   | – Consumption:                | 21.2% decrease | (2.50 million a-f/yr) |  |  |  |
| • | WECC Region                   |                |                       |  |  |  |
|   | <ul><li>Withdrawal:</li></ul> | 15.7% decrease | (0.42 million a-f/yr) |  |  |  |
|   | – Consumption:                | 28.5% decrease | (0.37 million a-f/yr) |  |  |  |
| • | WECC/California               |                |                       |  |  |  |
|   | – Withdrawal:                 | 9.4% decrease  | (0.13 million a-f/yr) |  |  |  |
|   | – Consumption:                | 32.1% decrease | (0.11 million a-f/yr) |  |  |  |
| • | WECC/Northwest Power Pool     |                |                       |  |  |  |
|   | – Withdrawal:                 | 18.8% decrease | (0.11 million a-f/yr) |  |  |  |
|   | – Consumption:                | 28.3% decrease | (0.10 million a-f/yr) |  |  |  |
| • | WECC/Rocky Mountain           |                |                       |  |  |  |
|   | – Withdrawal:                 | 26.6% decrease | (0.17 million a-f/yr) |  |  |  |
|   | – Consumption:                | 26.7% decrease | (0.16 million a-f/yr) |  |  |  |
|   |                               |                |                       |  |  |  |

Projected benefits for Case 2, Year 2030, with a 50% Market Penetration. Values represent the maximum potential from the array of technology scenarios.

[a-f/yr = acre-feet per year]

### **Summary**

- Water-related issues will continue to challenge siting of new and/or operation of existing thermoelectric power plants
- These issues <u>may</u> become more critical in future due to competing demands, population growth, and increased energy demands
- In response, NETL will:
  - Update our analyses of water needs related to thermoelectric generation and coal, oil and natural gas production
  - Continue research and development of advanced water management technologies and concepts
  - Continue to work with/support Energy-Water Nexus team



FE/NETL Energy-Water
Program Plan

### To Find Out More About NETL's Energy-Water R&D





http://www.netl.doe.gov/technologies/coalpower/ewr/water/index.html



## **Questions?**

2

