DOE/NETL's Coal Utilization Byproduct R&D Program

ACAA – TCAUG Annual Meeting

Dallas, TX January 26-28, 2004

Thomas J. Feeley III
National Energy Technology Laboratory

Presentation Outline

- Who we are
- Background & program drivers
 - -Future coal use
 - Air regulations
 - -Greenhouse gases
- DOE/NETL CUB research program
- Summary/conclusions

Coal Combustion Products Partnership (C²P²)

- EPA Deputy Administrator announced C²P² on October 10, 2002
- Approximately 110 charter members
- Collaborative effort of EPA, ACAA, DOE/NETL, USWAG, and DOT

National Energy Technology Laboratory

- One of DOE's 17 national labs
- Government owned / operated
- Sites in:
 - -Pennsylvania
 - -West Virginia
 - -Oklahoma
 - Alaska
- More than 1,100 federal and support contractor employees

Current CUB Production and Utilization

Source: ACAA 2003 CUB Survey

What are CUBs?

 DOE/NETL defines CUBs as the solid byproducts from the <u>utilization</u> of coal including:

- -Combustion
- -Gasification
- Hybrid systems

Growth of U.S. Electricity Market

Sources: EIA Annual Energy Review 2001 and 2003 Annual Energy Outlook

Fuel Mix for Electricity Growth

Source: Annual Energy Outlook 2003

Implications of 300 BkWh/Year Growth

• Using Coal-fired Heat Rate of 10,000 Btu/kWh Yearly New Coal Demand of 300 BkWh:

= 3,000 TBtu

- = 150 Million Tons (@ 10,000 Btu/lb Average)
- Or... Assuming Same Existing Plants Operate 15% More Hours, Yearly New Production (based on 1 Billion Tons/Year Current Use):
 - = 150 Million Tons Coal
 - = 15 Million Tons By-products
- New Capacity Equivalent:
 - **~ 45,000 MW New Capacity (15% of 300GW)**
 - If Average Capacity Factor Remained @ 71%

Mercury and SO₂ Regulations

Regulation:

- EPA proposal issued 12/15/03
- Several alternatives for control offered for comment
- Maximum Achievable Control Technology (MACT)
 - Plant-by-plant no trading
 - Approx. 29% reduction by 2007/08
- Cap & Trade
 - FGD/SCR co-benefit (29% reduction) by 2010
 - 15 ton cap (69% reduction)by 2018

Legislation:

- Clear Skies Act of 2003
 - Cap & trade program
 - Phased in reductions in Hg,
 SO₂, and NOx

President Bush Announcing Clear Skies Initiative February 14, 2002

Implications of Future Emission Regulations

Source: USGS, Historical Statistics for Mineral Commodities in the United States, May 2002

Potential To Reduce Greenhouse Gases

Utilization rate of fly ash produced in 2002

¹1^ton of Hy ash used in cement manufacturing provides for approximately ⁰8. ⁸tons of avoided CO emissions

Innovations for Existing Plants Program Goals and Objectives

 Enhance environmental performance of existing fleet of coal power plants and advanced power systems

Objectives

- Develop low-cost, integrated technology to control emissions/releases (air, water, and solids) to the environment
- Provide high-quality scientific and technical information on environmental issues for use in regulatory and policy decision making

Directly supports President's Clear Skies Initiative and other environmental regulations

IEP Program Components

- Mercury control
- NOx control
- Particulate-matter control
- Air-quality research
- Coal byproducts
- Water management

DOE/NETL CUB Research Funding

- Over \$22 million in DOE/NETL funded CUB in-house and extramural research from FY98 – FY05
- An additional \$22
 million for coal
 byproducts under
 DOE's clean coal
 demonstration
 program

Hg Control and Coal Byproducts

- Control technologies remove Hg (and other trace metals) from power plant flue gas
- Hg concentration in byproducts increased
- Research must focus on ultimate fate of Hg in coal byproducts, e.g., fly ash, FGD solids

Hg Regulations and Coal Byproducts So What?

- Impact future solidwaste regulations?
 - -Limit use applications?
 - –Regulate coal utilization by-products as hazardous?
- Increased negative public perception

FGD Solids

Environmental Characterization of CUBs Research Projects

- Fate of Hg from control technology field demonstrations
 - ADA-ES and Reaction Engineering, B&W and McDermott Technology
 - CONSOL, Apogee, EERC, Powerspan and SRI
- Trace element leaching from CUB disposal and utilization applications
 - CONSOL Energy
 - University of North Dakota Energy & Environmental Research Center (UNDEERC)
 - Electric Power Research Institute (EPRI)
- NETL's in-house evaluation of fate of Hg in coal combustion and gasification byproducts
- Fate of Hg in synthetic gypsum used for wallboard production
 - US Gypsum

Control Technology Field Testing Preliminary Results

- Activated carbon injection tested at four power plants
- ADA –ES and Reaction Engineering analysis of ash byproducts
- Mercury in leachate below 0.01 µg/L measurement detection limit in most samples

- Wet FGD reagent field tests at two plants
- B&W and McDermott Technology analysis of FGD by-products
- No significant mercury in FGD liquids
- Minimal mercury volatilization from heated FGD solids

Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

- U.S. Gypsum (prime), URS, EPRI (cofunding), and Shaw Environmental
- Assess fate of mercury in synthetic gypsum produced by coal-fired boiler FGD systems:
 - Aliquippa, PA
 - Bridgeport, AL
 - Galena Park, TX
- Measure mercury concentrations in solid, liquid, and gaseous streams

USG Plant, Bridgeport, AL

USG Plant, Aliquippa, PA

Characterization of Hg in Coal Byproducts Targeted Solicitation

- Determine fate of Hg in coal byproducts from DOE/NETL Hg technology field testing
- Use uniform testing procedures and interlaboratory comparison
- Examine leaching, volatilization, and microbial mobilization
- Issue solicitation in 3Q/FY04

Summary

- Future electricity demands in parallel with calls for tighter controls on emissions of Hg and SO₂ from coal-fired power plants will increase CUB production
- Pressures to further regulate/restrict the use and disposal of CUBs will likely continue
- DOE/NETL will need to continue to aggressively support CUB research

Partnership Key to Success

Working Together We Can Reach Our Goals!

Innovations for Existing Plants Program (Environmental and Water Resources)

To find out more about DOE/NETL's CUB research program, visit us at:

www.netl.doe.gov/coalpower/environment

