
DOE-NETL's Mercury Control Technology R&D Program for Coal-Fired Power Plants

Mercury Emissions from Coal 1st International Experts' Workshop

May 12-13, 2004 Glasgow, Scotland

Thomas J. Feeley, III
thomas.feeley@netl.doe.gov
National Energy Technology Laboratory

Presentation Outline

Who is NETL

- Why mercury control?
- NETL mercury control R&D
- NETL coal utilization by-products R&D

National Energy Technology Laboratory

- One of DOE's 17 national labs
- Government owned / operated
- Sites in:
 - Pennsylvania
 - West Virginia
 - Oklahoma
 - Alaska
- More than 1,100 federal and support contractor employees

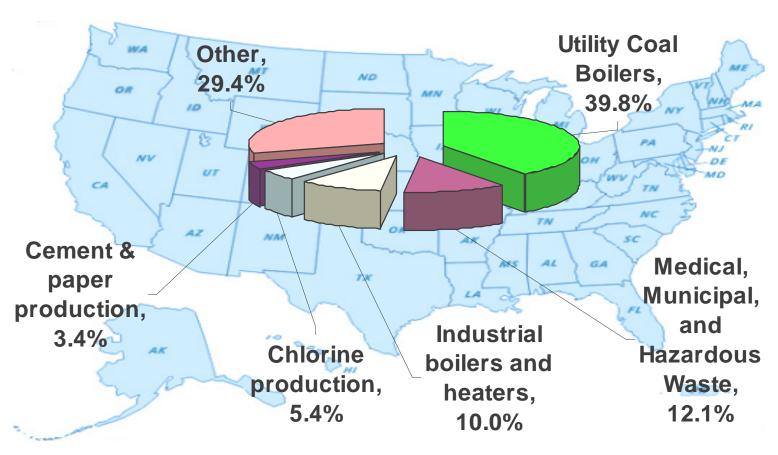
Innovations for Existing Plants Program Components

R&D Activities

- Mercury control
- NO_x control
- Particulate matter control
- Air quality research
- Coal utilization by-products
- Water management

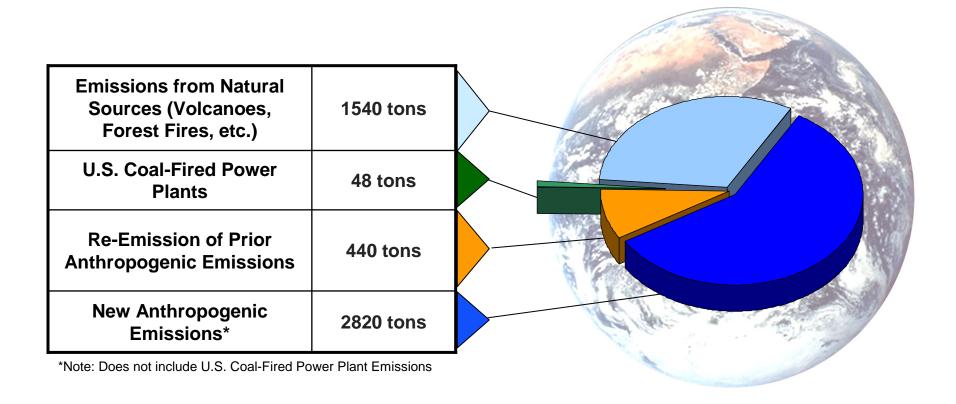
Presentation Outline

Overview of NETL


• Why mercury control?

NETL mercury control R&D

NETL coal utilization by-products R&D


Estimated U.S. Anthropogenic Mercury Emissions in 1999

Source: Personal communication with U.S. EPA 7/16/03 1999 NEI Version 3.0

Global Mercury Emissions

FACT: It is estimated that U.S. coal-fired power plants emit approximately 1% of annual global mercury emissions

Source: UNEP Global Mercury Assessment, December 2002

Presentation Outline

- Overview of NETL
- Why mercury control?
- NETL mercury control R&D

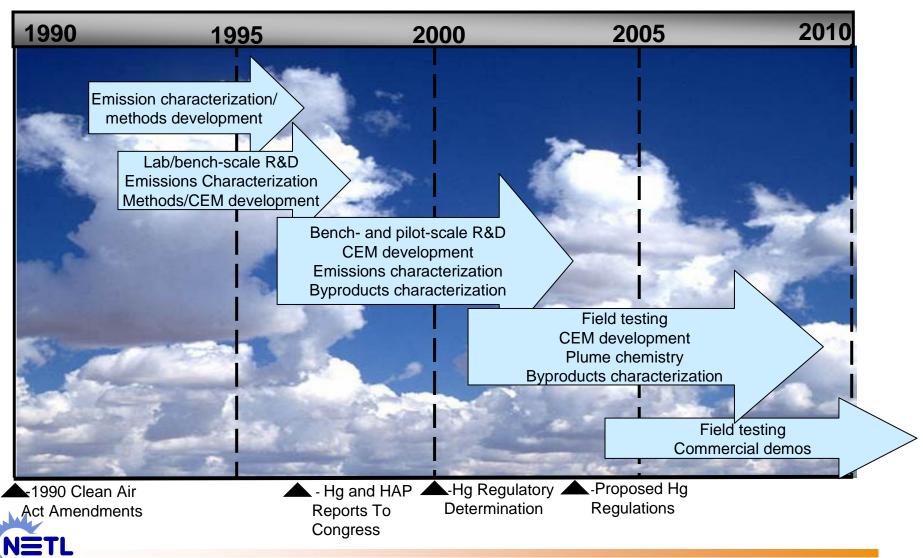
NETL coal utilization by-products R&D

DOE-NETL Mercury Control Program R&D Goals

Cost

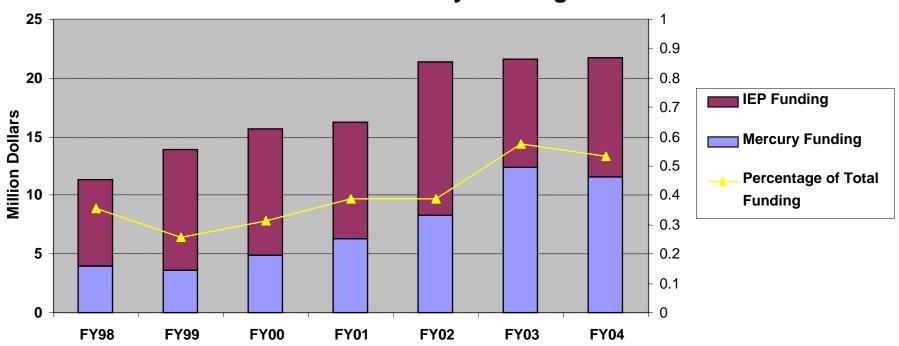
Have control technologies ready for commercial demonstration:

- Near-term, reduce emissions 50-70%
 - By 2005 for bituminous coal
 - By 2007 for low-rank coal
- Long-term, reduce emissions 90% by 2010
- Cost 25-50% less than current estimates


2000

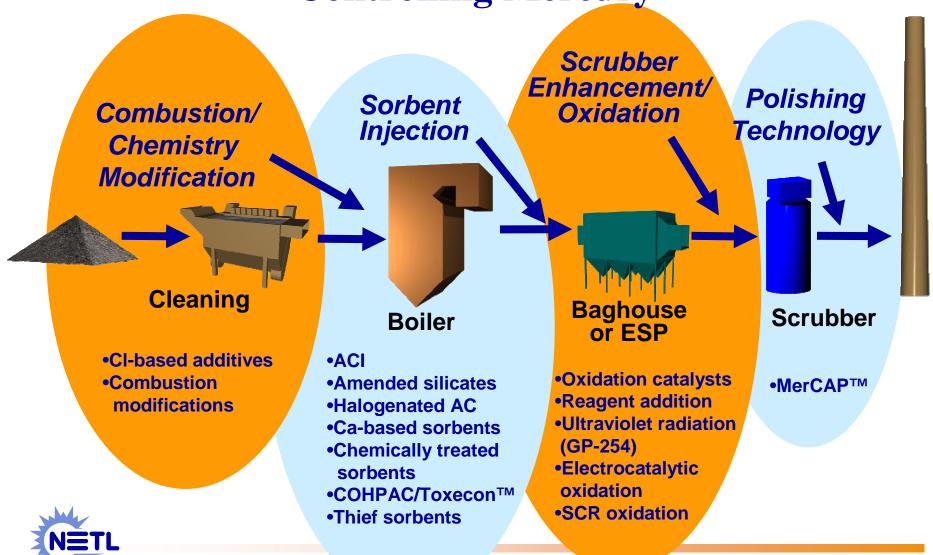
Year ----

Baseline Costs: \$50,000 - \$70,000 / lb Hg Removed



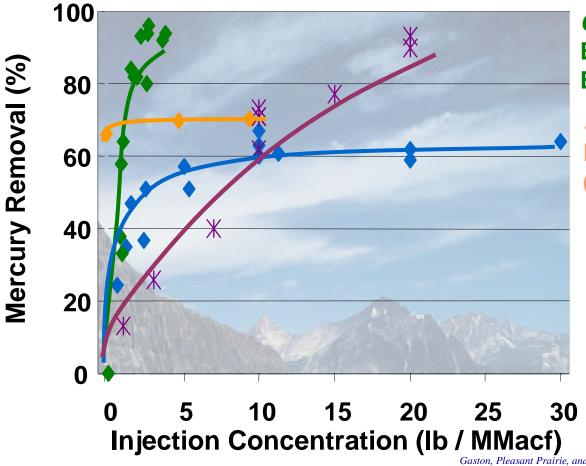
Over a Decade of DOE/NETL Hg R&D

DOE/NETL Funding for Hg R&D


Fiscal Year Mercury Funding

Over \$52.5 million spent on mercury R&D over the past seven years!

DOE/NETL Funded Approaches for Controlling Mercury


Mercury Field Testing 2001-02

Technology / Utility Plant	Test Completion
ADA-ES – Sorbent Injection Alabama Power – Gaston We Energies – Pleasant Prairie PG&E – Brayton Point PG&E – Salem Harbor	April 2001 November 2001 August 2002 November 2002
McDermott-B&W – Enhanced Scrubbing Michigan South Central Power – Endicott Cinergy – Zimmer	October 2001 November 2001

ADA-ES Phase I Field Test Results

Activated Carbon Injection

Gaston:
Bituminous coal,
ESP + fabric filter

Salem Harbor:
Bituminous coal, ESP
(gas temp. at 280-290 °F)

Pleasant Prairie:Subbituminous coal, ESP

Brayton Point:Bituminous coal, ESP

Gaston, Pleasant Prairie, and Brayton Point test data from ADA-ES presentation at August 2002 EPA Utility MACT Working Group meeting.

Salem Harbor test data from ADA-ES technical paper "Results of Activated Carbon Injection Upstream of ESP for Mercury Control" presented at May 2003 Mega Symposium.

McDermott Technology and B&W Enhanced Mercury Control in Wet FGD

Michigan South Central Power's Endicott Plant

- 60 MW
- High-sulfur bituminous coal
- ESP
- Limestone wet FGD

Cinergy's Zimmer Plant

- 1300 MW
- High-sulfur bituminous coal
- ESP
- Magnesium-enhanced wet FGD

McDermott Technology and B&W Phase I Enhanced Mercury Control in Wet FGD

Wet FGD Mercury Removal,%

MSCP's Endicott Plant

Mercury Species	Baseline	Reagent*
Total	~ 60%	76%
Oxidized	~ 90%	93%
Elemental	~ (40%)	20%

Cinergy's Zimmer Plant		
Mercury Species	Baseline	Reagent*
Total	~ 45%	51%
Oxidized	~ 90%	87%
Elemental	~ (20%)	(41%)

^{*}Reagent feed results during two-week verification testing.

Observations From Phase I Field Tests

Hg capture performance

- ACI works, however...
 - Effectiveness of ACI depends on coal type and plant configuration
- Wet scrubber size and chemistry affect re-emission

Uncertainties remain

- Performance over longer periods of operation
- Capture effectiveness with low-rank coals
- Sorbent feed rate and costs
- FGD Hg reduction/re-emission
- By-product use and disposal
- Need for fabric filter for units equipped with ESP
- Balance-of-plant impacts

Mercury Control Using ACI Preliminary Cost Estimate

	Activated Carbon Injection System for 500 MW Bituminous Coal-Fired Plant*			
Mercury Removal,%	50%	70%	90% w/ COHPAC	
Levelized Cost	Without lost ash sales penalty			
Mills/kWh	0.37	1.27	2.15	
\$/lb mercury removed**	32,700	46,100	49,000	
	With lost ash sales penalty***			
Mills/kWh	2.79	3.69	2.15	
\$/lb mercury removed**	245,700	133,800	49,000	

^{*}Plant equipped with cold-side ESP

Note: mills equal to one tenth of a cent.

^{**}Incremental cost excluding co-benefit ESP mercury capture (36%)

^{***}Penalty includes lost sales revenue (\$18/ton) and ash disposal cost (\$17/ton).

Mercury Pilot-Scale Testing Projects Conducted in 2001-03

Apogee Scientific

 Advanced novel sorbent testing at Midwest Generation's Powerton Plant and We Energies' Valley Plant

CONSOL

 Evaluate effect of lowering flue gas temperature on Hg capture with ESP at Allegheny Energy's Mitchell Power Station

UNDEERC

 Sorbent injection testing with Advanced Hybrid Particulate Collector (AHPC) at Otter Tail Power's Big Stone Plant

Powerspan

 Multi-pollutant control for Hg, SO2, NOx, particulates, and acid gases using electro-catalytic oxidation (ECO) at FirstEnergy's R.E. Burger Plant

Southern Research Institute

 Evaluate calcium-based sorbents, oxidation additives, and coal blending

URS Group

 Evaluate fixed-bed oxidation catalysts at Great River Energy's Coal Creek Station and City Public Service of San Antonio's J.K. Spruce Plant

Designed to Achieve ≥ 90% Hg Removal

Additional Field- and Pilot-Scale Testing

Projects Initiated in 2003

ADA-ES

 Long-term, full-scale sorbent injection test on the COHPAC at Southern's E.C. Gaston Plant

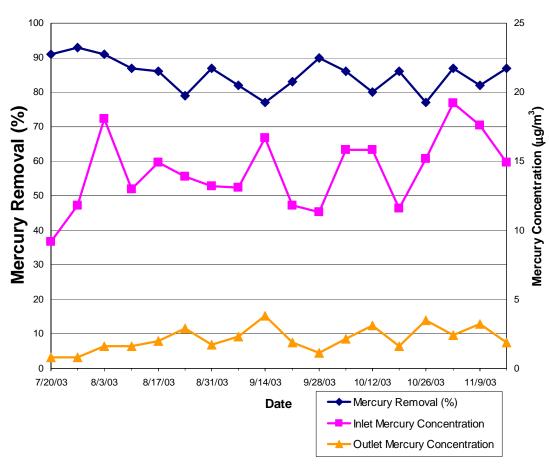
General Electric Energy and Environmental Research Corp

 Evaluate OFA and coal reburn to optimize mercury removal with an ESP at Western Kentucky Energy's Green Power Station

CONSOL

 Mercury speciation field testing at several plants equipped with both SCR and wet FGD

Reaction Engineering


 Pilot-scale mercury oxidation test for several NOx SCR catalysts at AEP's Rockport Power Plant which burns PRB coal

UNDEERC

 Laboratory and field testing of the potential release of mercury and other air toxics from coal utilization by-products

Long-term Testing at Gaston Station

- Average Hg Removal
 - **86 %**
- Average Inlet Concentration
 - $14 \mu g/m^3$
- Average Outlet Concentration
 - $-2 \mu g/m^3$

Average Weekly Data from S-CEM Measurements

DOE/NETL New Phase II, Round 1 Mercury Control Field Test Projects

- Eight new projects selected in September 2003
- Focus on longer-term, large-scale field testing
- Broad range of coal-rank and air pollution control device configurations
- Sorbent injection & mercury oxidation control technologies

DOE/NETL New Phase II, Round 1 Mercury Control Field Test Projects

Project Title	Lead Company	Preliminary Test Schedule*	Host Utility	Test Location	Coal Rank	PM	FGD
	ADA-ES	3/04 - 6/04	Sunflower Electric	Holcomb	PRB/Bit. Blend	FF	SDA
Evaluation of Sorbent Injection for		8/05 - 11/05	Ontario Power	Nanticoke	PRB/Bit. Blend	ESP	
Mercury Control		8/04 - 11/04	AmerenUE	Meramec	PRB	ESP	
		3/05 - 6/05	AEP	Conesville	Bit.	ESP	Wet FGD
Amended Silicates for Mercury Control	Amended Silicates	9/04 - 10/04	Cinergy	Miami Fort 6	Bit.	ESP	
Sorbent Injection for Small ESP		3/04 & 9/04 -	Southern	Yates 1	Bit.	ESP	Wet FGD
Mercury Control	URS Group	10/04	Southern	Yates 2	Bit.	ESP w/ NH ₃ /SO ₃	
Pilot Testing of Mercury Oxidation	IIDG C	6/04 - 7/05	TXU	Monticello 3	TX Lignite	ESP	Wet FGD
Catalysts for Upstream of Wet FGD Systems	URS Group	2/05 - 3/06	Duke	Marshall	Bit.	ESP	
Evaluation of MerCAP for Power	URS Group	2/04 - 8/04	Great River Energy	Stanton 10	ND Lignite	FF	SDA
Plant Mercury Control	OKS Group	1/05 - 6/05	Southern	Yates 1	Bit.	ESP	Wet FGD
		4/04 - 6/04	Basin Electric	Leland Olds 1	ND Lignite	ESP	
Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired	UNDEERC	9/04 - 10/04	Great River Energy	Stanton 10	ND Lignite	FF	SDA
Systems	UNDEERC	4/05 - 6/05 Basin Electric Antelope Valley 1	ND Lignite	FF	SDA		
Bysteins		4/04 - 5/04	Great River Energy	Stanton 1	ND Lignite	ESP	
Mercury Oxidation Upstream of an	UNDEERC	6/05 - 8/05	Minnkota Power	Milton R. Young 2	ND Lignite	ESP Wet FGD ESP Wet FGD	Wet FGD
ESP and Wet FGD	UNDEERC	8/05 - 9/05	TXU	Monticello 3	TX Lignite		Wet FGD
Advanced Utility Mercury-Sorbent	Sorbent	1/05 - 4/05	Duke	Buck	Bit.	Hot ESP	
Field-Testing Program	Technolgies	6/04 - 9/04	Detroit Edison	St. Clair	Bit./PRB blend	ESP	

^{*} These are preliminary test schedules subject to change based on plant availability.

Phase II Hg Field Testing Program

Hg Control Approach	Host Sites	Coal Types	Downstream Control Equipment
Activated carbon injection (ACI)	5	PRB, Bit., PRB/Bit. blend	FF, ESP, ESP w/ NH ₃ /SO ₃ inj.
Amended silicates	1	Bituminous	ESP
Oxidation catalyst	2	TX lignite, bituminous	ESP, ESP/wet FGD
Chemical inject. w/ ACI, chem. mod. ACI	4	ND lignite	ESP, FF/SDA
Chlorine injection	2	ND lignite, TX lignite	ESP/wet FGD
Fixed structure gold sorbent	2	ND lignite, bituminous	FF/SDA, ESP/wet FGD
Halogenated ACI	2	Bit., bit/PRB blend	HSESP, ESP

Evaluation of Sorbent Injection for Mercury Control - *ADA-ES*


- Evaluate full scale sorbent injection with existing pollutioncontrol equipment at four plants
 - Sunflower Electric's Holcomb Station PRB/Bit coal blend and equipped with SDA/FF
 - Ontario Power's Nanticoke Station PRB/Bit coal blend and equipped with ESP
 - AmerenUE's Meramec Station
 PRB and equipped with ESP
 - AEP's Conesville Station
 Bituminous coal and equipped with ESP and wet FGD

Amended Silicates for Mercury Control - Amended Silicates, LLC

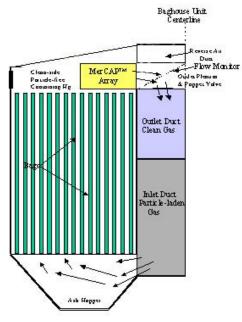
- Joint venture of ADA Technologies and CH2M Hill
- Evaluate a new non-carbon sorbent - Amended Silicates™
- Avoid impact on fly ash sales
- Full-scale testing at Cinergy's Miami Fort Unit 6
 - Burns bituminous coal and equipped with ESP

Sorbent Injection for Small ESP Mercury Control - *URS Group*

- Evaluate sorbents injected upstream of ESP with small specific collection area (SCA)
- Full-scale testing at Southern Company Services' Plant Yates Unit 1 & 2
 - Burns bituminous coal
 - Unit 1 equipped with ESP and wet FGD
 - Unit 2 equipped with ESP and NH₃/SO₃ conditioning

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems - *URS Group*

- Evaluate honeycomb catalyst system for oxidizing elemental mercury to enhance Hg removal in downstream wet lime or limestone FGD systems
- Testing at two plants equipped with ESP and wet FGD
- TXU Monticello Unit 3
 - Burns Texas lignite
- Duke Energy's Marshall Station
 - Burns low-sulfur bituminous coal



Evaluation of MerCAP for Power Plant Mercury Control - URS Group

- Evaluate EPRI's Mercury Control via Adsorption Process (MerCAPTM) technology
- Regenerable, gold-coated fixed-structure sorbent
- Great River Energy's Stanton Unit 10
 - Burns ND lignite coal and equipped with SDA/FF (Full-scale at 6 MW equivalent)
- Southern's Plant Yates Unit 1
 - Burns bituminous coal and equipped with ESP and wet FGD (Pilot-scale at 1 MW)

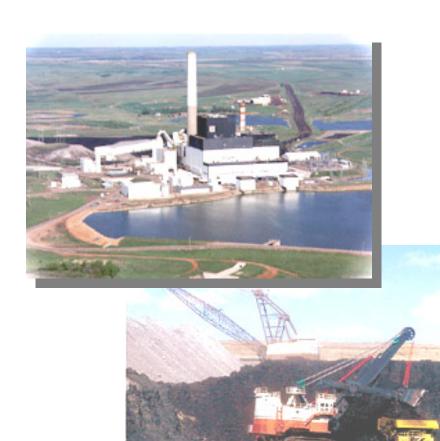
Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems - *UNDEERC*

- Enhance effectiveness of activated carbon injection at four plants burning low-rank North Dakota lignite
 - Use of chlorine-based additive to coal and activated carbon sorbent
 - Use of chemically treated sorbents
- Basin Electric's Leland Olds Station Unit 1
 - Equipped with ESP
- Basin Electric's Antelope Valley Station Unit 1
 - Equipped with SDA/FF
- Great River Energy's Stanton Station Unit 1
 - Equipped with ESP
- Great River Energy's Stanton Station Unit 10
 - Equipped with SDA/FF

Mercury Oxidation Upstream of an ESP and Wet FGD - UNDEERC

- Evaluate chloride-based additive to increase mercury oxidation upstream of ESP and wet scrubber
- Full-scale testing at two plants burning lignite coal and equipped with both ESP and wet FGD
- Minnkota Power Cooperative's Milton R. Young Unit 2
 - Burns ND lignite
- TXU Monticello Unit 3
 - Burns TX lignite

Advanced Utility Mercury Sorbent Field-Testing - Sorbent Technologies


- Evaluate new halogenated activated carbon sorbent in fullscale testing at two plants
- Duke Energy's Buck or Allen Station
 - Burn bituminous coal
 - Hot-side ESP at Buck
 - Cold-side ESP at Allen

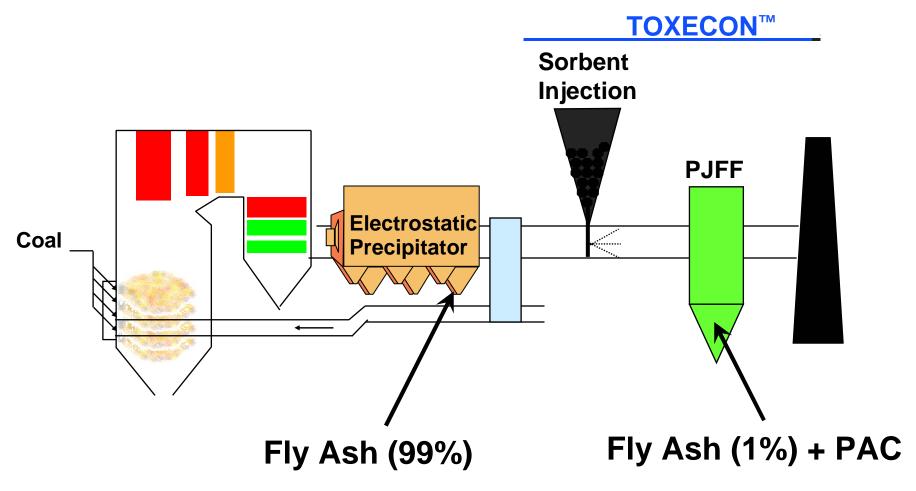
- Detroit Edison's St. Clair Station
 - Burns mixture of bituminous and subbituminous coal and equipped with cold-side ESP

DOE/NETL New Phase II, Round 2 Mercury Control Field Test Projects

- Proposals due by end of April 2004
- Focus on technologies for plants that burn lowrank coal
 - Powder River Basin
 - Texas Lignite
 - Coal blends

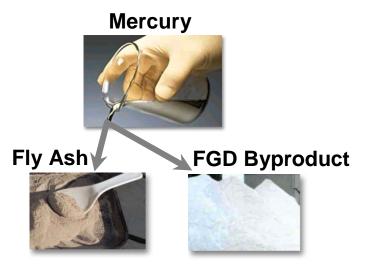
ToxeconTM Retrofit for Mercury and Multi-Pollutant Control – CCPI Demonstration Project

Demonstrate:


- –Multi-pollutant control with PRB coal
 - 90% Hg reduction
 - 70% SO₂ reduction
 - 30% NOx reduction
- -Hg recovery from sorbent
- -Hg CEM performance

We Energies Presque Isle
Power Plant

TOXECONTM Configuration


Presentation Outline

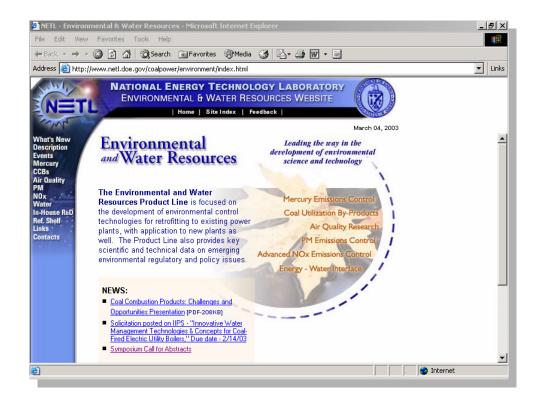
- Overview of NETL
- Why mercury control?
- NETL mercury control R&D
- NETL coal utilization by-products R&D

Challenges to Increased CUB Utilization

- Future air pollution regulations,
 e.g., Clear Skies, Mercury MACT
 - Increase volume of coal utilization by-products
 - Change characteristics (i.e., quality) of by-products

- Future solid waste regulations under RCRA?
 - Limit use applications
 - Regulate coal utilization byproducts as hazardous
- Public perception

Hazardous Waste Designation of All By-products
Could Cost \$11 Billion / Year


NETL External Projects Addressing the Environmental Characterization of CUBs

- Fate of mercury from control technology field demonstrations
 - ADA-ES and Reaction Engineering
 - B&W and McDermott Technology
- Trace element leaching from CUB disposal and utilization applications
 - CONSOL Energy
 - University of North Dakota Energy & Environmental Research Center (UNDEERC)
 - Electric Power Research Institute (EPRI)
- Fate of mercury in synthetic gypsum used for wallboard production
 - US Gypsum

DOE/NETL Hg Control Technology R&D Future Plans – 5-Year Horizon

Fiscal	Major Activities
Year	
2005	•Continue Phase II field testing of 50%-70% Hg control technologies
	Continue byproduct characterization
	 Complete pilot-scale testing of +90% control options
	•Initiate evaluation of pre-combustion Hg control
2006	Continue Phase II field testing
	Continue byproducts characterization
	•Initiate Phase III field testing of +90% control technologies
2007	Complete Phase II field testing
	Continue byproducts characterization
	Continue Phase III field testing
2008	Continue byproducts characterization
	Continue Phase III field testing
2009	Continue byproducts characterization
	Continue Phase III field testing

DOE/NETL Environmental and Water Resources (Innovations for Existing Plants Program)

To find out more about DOE-NETL's Hg R&D activities visit us at:

www.netl.doe.gov/coalpower/environment

