An Update of DOE's Phase II Mercury Control Technology Field Testing Program

American Coal Council's 2005 Mercury & Multi-Emissions Conference

March 22-24, 2005 St. Louis, MO

Thomas J. Feeley, III thomas.feeley@netl.doe.gov National Energy Technology Laboratory

DOE Mercury Control RD&D Portfolio

Boiler

- Combustion modification
- Chemistry modification

FGD Enhancements

- Oxidation catalysts
- Reagent addition
- Ultraviolet radiation
- Electro catalytic oxidation
- SCR oxidation

Coal Combustion
Byproduct
Characterization

Polishing Technology

MerCAPTM

Plume Chemistry

Transport/ speciation

Sorbent Injection

- Activated carbon
- Amended silicates
- Halogenated AC
- Ca-based sorbents
- Chemically treated sorbents
- COHPAC/Toxecon™
- Thief sorbents

Mercury Field Testing Program Phase II Objectives

Cost

- Have technologies ready for commercial demonstration
 - by 2007 for all coals
- Reduce emissions 50-70%
- Reduce cost by 25-50% compared to baseline cost estimates

2000

Year ----

Baseline Costs: \$50,000 - \$70,000 / lb Hg Removed

Phase I Field Testing 2001-2003 Summary

Activated carbon injection (ADA-ES)

- -4 power plant sites
 - 2 particulate collection systems --ESPs (3) and COHPAC (1)
 - 2 coal types PRB (1) and bituminous (3)

Scrubber enhancement (McDermott/B&W)

- -2 power plant sites
 - Both burned high-S bituminous coal
 - 1 limestone wet FGD, 1 magnesium-enhanced wet FGD

Phase II Mercury Control Field Test Projects

- Fourteen new projects selected
- Longer-term (1-6 months @ optimum conditions), large-scale field testing
- Broad range of coal-rank and air pollution control device configurations; focus on lowrank coals
- Sorbent injection & mercury oxidation control technologies

DOE/NETL Phase II Mercury Control Field Testing Technology Matrix

Coal Rank	Cold-side ESP (low SCA)	Cold-side ESP (medium or high SCA)	Hot-side ESP	TOXECON	ESP/FGD	SDA/FF
Bituminous	Miami Fort 6	Lee		Independence	Yates 1	
		Buck		Gavin	Yates 1	
	Yates 1&2	Portland	Buck		Conesville	
		Sevier			Conesville	
		Monroe				
Subbituminous	Crawford	Meramec	Council Bluffs			
		Dave Johnston	Louisa			
			Will County			
Lignite (North Dakota)		Leland Olds 1			Milton Young	Antelope Valley 1
		Leland Olds 1				Stanton 10
		Stanton 1				Stanton 10
Lignite (Texas)					Monticello	
					Monticello	
					Monticello	
Blends		St. Clair		Big Brown		Holcomb

Sorbent Injection	Sorbent Injection & Oxidation Additive
Oxidation Additive	Oxidation Catalyst
Chemically-treated sorbent	Other – MERCAP, FGD Additive, Combustion

DOE/NETL Phase I & II Mercury Field Sites

Evaluation of Sorbent Injection for Mercury Control *ADA-ES*

- Evaluate full-scale sorbent injection with existing pollution-control equipment at four sites:
- Sunflower Electric's Holcomb Station
 - burns PRB/Bit coal blend and equipped with SDA/FF
- Detroit Edison's Monroe Station
 - burns bituminous coal and equipped with ESP
- AmerenUE's Meramec Station
 - burns PRB and equipped with ESP
- AEP's Conesville Station
 - burns bituminous coal and equipped with ESP and wet FGD

Evaluation of Sorbent Injection for Mercury ControlPreliminary Results

Sunflower Electric's Holcomb Station

- Baseline mercury removal < 20%
- 30-day long-term test using halogenated activated carbon (Norit FGD E-3)
- Average mercury removal 93% at 1.2 lb/MMacf

Amended Silicates for Mercury Control ADA Technologies

- Evaluate a new non-carbon sorbent, Amended SilicatesTM
- Avoid impact on fly ash sales
- Full-scale testing at Cinergy's
 Miami Fort Station Unit 6
 – burns bituminous coal and equipped with ESP

Sorbent Injection for Small ESP Mercury Control URS Group

- Evaluate sorbents injected upstream of ESP with small specific collection area (SCA)
- Full-scale testing at Southern
 Company's Plant Yates Unit 1 & 2
 - Unit 1 equipped with ESP (173
 SCA) and wet FGD
 - Unit 2 equipped with ESP (144
 SCA) and NH₃/SO₃ conditioning
 - Both units burn bituminous coal

Sorbent Injection for Small ESP Mercury Control Preliminary Results

Plant Yates Unit 1

- Short-term parametric testing
- Average baseline mercury removal ~34%
- Additional 30 40% mercury removal with sorbent injection at ~6 lb/MMacf
- No significant increase in ESP outlet particulates
- Similar results on Unit 2

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems URS Group

- Evaluate honeycomb catalyst system for oxidizing elemental mercury
- Removal in downstream wet lime or limestone FGD systems

- Pilot-scale testing conducted over 14 months at two sites:
- TXU's Monticello Station Unit 3
 burns Texas lignite
- Southern Company's Plant
 Yates burns bituminous coal
- Both plants equipped with ESP and wet FGD

Evaluation of MerCAP for Power Plant Mercury Control *URS Group*

- Evaluate EPRI's Mercury Control via
 Adsorption Process (MerCAPTM) technology
- Regenerable, gold-coated fixed-structure sorbent
- Mercury not contained in combustion byproducts
- Testing at two sites over a six month period:
- Great River Energy's Stanton Station Unit 10
 burns ND lignite coal and equipped with SDA/FF (Full-scale at 6 MW equivalent)
- Southern Company's Plant Yates Unit 1
 burns bituminous coal and equipped with ESP

and wet FGD (Pilot-scale at 1 MW)

Evaluation of MerCAP for Power Plant Mercury Control Preliminary Results

Great River Energy's Stanton Unit 10

- Baseline mercury capture <10% across SDA/FF
- Full-scale testing results a good news –
 bad news story
- Initial 24-hrs mercury removal ~90% across gold plates
- After 24-hrs mercury removal decreased to 40% to 50%
- After one-month mercury removal stabilized at 30% to 40%
- What's next? Revise gold-plate spacing from 1" to ½"

Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems UNDEERC

- Evaluate two approaches:
 - Use of chlorine-based additive to coal and activated carbon sorbent
 - Use of chemically-treated sorbents

- Full-scale testing at four sites burning North Dakota lignite coal:
- Basin Electric's Leland Olds Station Unit 1
 equipped with ESP
- Basin Electric's Antelope Valley Station Unit 1
 equipped with SDA/FF
- Great River Energy's Stanton Station Unit 1
 equipped with ESP
- Great River Energy's Stanton Station Unit 10
 - equipped with SDA/FF

Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems *Preliminary Results*

Basin Electric's 220 MW Leland Olds Station Unit 1

- Baseline mercury removal ~15% across ESP
- Average mercury removal ~63% during one-month long-term testing with coal additive equivalent to 500 ppm chlorine in coal and 3 lb/MMacf sorbent injection

Great River Energy's 60 MW Stanton Station Unit 10

- Baseline mercury removal across SDA/FF <10%
- Mercury removal ranged from 65% to 75% during one-month long-term testing with halogenated activated carbon injection at 1 lb/MMacf (Norit's FGD E-3)

Mercury Oxidation Upstream of an ESP and Wet FGD UNDEERC

- Evaluate chloride-based additive to increase mercury oxidation upstream of ESP and wet scrubber
- Full-scale testing at two sites burning lignite coal and equipped with both ESP and wet FGD:
- Minnkota Power Cooperative's Milton R. Young Station Unit 2

 burns ND lignite
- TXU's Monticello Station Unit 3
 burns TX lignite

Advanced Utility Mercury Sorbent Field-Testing Program Sorbent Technologies

- Evaluate brominated powdered activated carbon (B-PAC) sorbent
- Full-scale testing at two sites:
- Duke Energy's Buck Station
 - burns bituminous coal and equipped with hot-side ESP
- Detroit Edison's St. Clair Station
 - burns blend of bituminous and subbituminous coal and equipped with ESP

Advanced Utility Mercury Sorbent Field-Testing Program Preliminary Results

Detroit Edison's St. Clair Station

- Baseline mercury removal across ESP varied from 0% to 40%
- One month long-term test using brominated activated carbon injection (B-PAC)
- Average mercury removal 94% at 3 lb/MMacf

Detroit Edison St. Clair Plant - Total Hg Removal Thirty Day Average = 94%

Field-Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station *UNDEERC*

 Evaluate several activated carbon sorbents in a TOXECON configuration

- Full-scale testing at TXU's Big
 Brown Station
 - burns blend of lignite and
 PRB coal and equipped with
 ESP and COHPAC fabric filter

Field Demonstration of Enhanced Sorbent Injection for Mercury Control ALSTOM

- Evaluate proprietary chemicallytreated activated carbon sorbent injection process – Mer-CureTM
- Full-scale testing at three sites:

- Basin Electric's Leland Olds Station Unit 1
 - burns ND lignite and equipped with ESP
- Reliant Energy's Portland Station
 - burns bituminous coal and equipped with ESP
- PacificCorp's Dave Johnston Station
 - burns PRB coal and equipped with ESP

Low Cost Options for Moderate Levels of Mercury Control ADA-ES

- Full-scale sorbent injection for hot-side ESPs will be tested at two sites:
 - MidAmerican's Council Bluffs Energy Center
 - burns PRB coal
 - MidAmerican's Louisa Station
 - burns PRB coal

- TOXECON II will be tested at two sites:
 - AEP's Gavin Station
 - burns bituminous coal and equipped with ESP and wet FGD
 - Entergy's Independence Station
 - burns PRB coal and equipped with ESP

Brominated Sorbents for Small Cold-Side ESPs, Hot-Side ESPs, and Fly Ash use in Concrete Sorbent Technologies

- Evaluate brominated powdered activated carbon (B-PAC) sorbent
- Full-scale testing at three sites:
- Midwestern Generation's Crawford Station
 - burns PRB coal and equipped with cold-side
 ESP (112 SCA)
- Progress Energy's Lee Station
 - burns bituminous coal and equipped with cold-side ESP (300 SCA)
- Midwestern Generation's Will County Station
 - burns PRB coal and equipped with hot-side
 ESP (173 SCA)

Field Testing of a Wet FGD Additive for Enhanced Mercury Control URS Group

- Evaluate chemical additive in wet FGD systems to prevent reemission of mercury
- Full-scale testing at three sites equipped with ESP and wet FGD:
- TXU's Monticello Station
 - burns lignite coal
- Southern Company's Plant Yates
 - burns bituminous coal
- AEP's Conesville Station
 - burns bituminous coal

Demonstration of Integrated Approach to Mercury Control at John Sevier Station *GE EER*

- Evaluate boiler combustion modifications for combined NOx and mercury control
- Full-scale testing at TVA's John Sevier Station
 - burns bituminous coal and equipped with ESP

Full-Scale Demonstration of ToxeconTM Retrofit for Mercury and Multi-Pollutant Control

• Demonstrate:

- Multi-pollutant control with PRB coal
 - 90% Hg reduction
 - 70% SO₂ reduction
 - 30% NOx reduction
- Testing to begin in January 2006

We Energies Presque Isle
Power Plant

Summary

- Significant advances made in research and development of technology for capturing mercury from coal-fired power plants
- Sorbent (e.g., activated carbon) injection and oxidation technologies (coupled with scrubbers) are leading approaches for coal-fired power plant mercury control

Future Plans

 Continue Phase II field testing of technology capable of achieving 50-70% Hg removal through FY06-FY07

 Issue competitive solicitation in July 2005 for Phase III field testing of control technologies capable of > 90% Hg capture

DOE/NETL Environmental and Water Resources (Innovations for Existing Plants Program)

To find out more about DOE-NETL's Hg R&D activities visit us at: http://www.netl.doe.gov/coal/E&WR/index.html

