PHOTOSYNTHETIC CHARACTERISTICS OF **FIVE** HARDWOOD SPECIES IN A MIXED STAND'

Shi-Jean S. Sung, Paul P. Kormanik, and Stanley J. Zarnoch²

Abstract-In 1998, photosynthesis (Pn) was measured on cherrybark oak, green ash. swamp chestnut oak, sweetgum, and water hickory in a mixed stand established in February 1994. Based on the apparent quantum yield Obtained from light response curves, cherrybark oak had the lowest Pn in August whereas sweetgum, green ash and water hickory were squally active in Pn. Daily August Pn of sweetgum and green ash peaked before 10 am and decreased sharply thereafter. Between 3 and 5 pm, sweetgum and green ash Pn were about 40 percent of their peak Pn. Daily September Pn did not show such sharp decreases in the afternoon for any species. Sweetgum had the highest chlorophyll level and the largest specific leaf weight in August. The ability of cherrybark oak and swamp chestnut oak to maintain leaves with adequate chlorophyll contents contributed to their active Pn in mid-December.

INTRODUCTION

Multiple species coniferous stands are generally unsuccessful **tecause** a tingle species usually becomes dominant in the stand due to **differences** in seedling growth rates. Stands with multiple hardwood species characteristically coexist in the **forest** with **species** distributions ranging from random to clumped. These mixed species stands can be invaluable for providing forest products and for providing food for wildlife.

One wmmon and **central aspect** of **tree** physiology is that survival and growth of transplanted seedling stocks are dependent upon the availability and metabolism of sucrose (Sung and others **1994, 1995, 1998a,** b). For most plants, the product of photosynthesis **(Pn)** is **translocated** in the form of sucrose to all carbon sinks such as stems and roots for growth and storage **(Shiroya** and others 1962). We report the photosynthetic characteristics of **five** hardwood species in a mixed stand 4 years after establishment. Details on the establishment of this five-hardwood **species** study and results of **survival** and growth of individual species are reported by Kormanik and **others (this** proceedings).

MATERIAL8 AND METHODS

All seedlings in this study were grown at the Georgia Forestry Commission's Flint River Nursery (Montezuma, GA) using a single hardwood nursery protocol developed by Kormanik and others (1994). Prior to sowing, soil levels of Ca, K, P, Mg, Cu, Zn, and B were adjusted to 500, 80, 80, 50, 2, 6, and 1.2 ppm, respectively. Nitrogen was applied as NH,NO, at an annual rate equivalent to 1322 kg per ha. Seedling bed density for all species was 54-57 per m², In February 1994, two hundred 1-0 seedlings from each of the five hardwood species—cherrybark oak (CBO, Quercus pagoda Raf.), green ash (GA, Fraxinus pennsylvanica Marsh.), swamp chestnut oak (SCO, Q. michauxii Nutt.). sweetgum (SG, Liquidambar styraciflua L.), and water hickory (WH, Carya aquatica Nutt.)—were selected from the top 50 percent of the crops based on first-order lateral root number, root collar diameter, and height (Kormanik and others, this proceedings). These seedlings were randomly planted at a 3.3 x 3.3 m spacing on a cleared 2.5-ha site at the National Environmental Research Park (Savannah River Natural Resource Management and Research Institute, New

Ellenton, SC). Soil series on this sit8 is mainly **Rembert** sandy loam with **Homsville** fine sandy loam, **Neeses** loamy sand, Norfolk loamy sand, Ailey sand, and Albany loamy sand in some **areas.** Fertilization and vegetation control on **this** stand is reported **in detail** by Kormanik and others (this proceedings).

In 1998, three areas within the stand were systematically **selected** so that **five species were** located within a **radius** of IO m of each other. **These** areas **were** at least 30 m apart. One tree from each species was tagged within each area. In August 1998, Pn light response curves were determined from each tagged tree in the three areas using a portable open-system infra-red gas analyzer (LiCor 6400) equipped with an internal **red-blue** light source and a CO, mixer. Measurements were made between 8 am and 11 am (Eastern Standard Time) on one fully **expanded,** attached leaf from the outside canopy of each tagged tree. The same leaf was **measured over** a **range** of different levels of photosynthetic photon flux density (PPFD, 400 - 700 nm) levels. During **Pn** measurements, **selected** PPFD levels **were used** randomly with a **3-** to **5-min** adjustment period between measurements. The reference chamber CO2 was set at 350 ppm for all measurements. Individual values of Pn obtained from three CBO, three SCO, two GA, two SG, and two WH were pooled to construct a light response curve for each species using the model of Long and Hällgren (1993):

$$Pn = \frac{Pmax \cdot PPFD}{Km + PPFD} = Rd, \tag{1}$$

where

Pmax ≡ the maximal Pn,

Rd = the dark respiration rate, and

Km = the PPFD at one-half of Pmax.

tight compensation point **(** Γ , PPFD at which Pn **equals zero**) was calculated as

<u>Rd · Km</u> Pmax - Rd

¹ Paper presented at the Tenth Biennial Southern Silvicultural Research Conference, Shreveport, LA, February 16-18, 1999.

² Research Plant **Physiologist and Principal Silviculturist, USDA Forest Service, Southern Research** Station, **Tree Root** Biology, **Athens, GA** 30602; and Mathematical **Statistician, USDA Forest Service, Southern Research Station, Asheville, NC 28804, respectively.**

The apparent quantum yield (the slope (derivative) avaluated at the midpoint between I and 100 µmol m² per s ppFD)was

$$\frac{Pmax \cdot K m}{\left(Km + \frac{\Gamma + 100}{2}\right)^2}.$$

Light response curves were fit to the individual photosynthesis observations using PROC NLIN (SAS institute Inc. 1987). Parameter estimates and asymptotic standard errors were obtained for Pmax, Km, and Rd. Apparent quantum yield, T. and Pn at 2000 µmol per m² per s PPFD were calculated from the estimated parameters. Due to the complex mathematical nature of these quantities, standard errors were computed.

The same tagged trees used to obtain light response curves were measured for daily Pn between 7 am and 5 pm (Eastern Standard Time) in August and September. One fully expanded leaf randomly selected from the outside canopy of each tree was **me.sured** throughout the day. Since the selected leaves may be shaded during measurement, Pn was measured at 1800 µmol m² per s. The reference chamber CO2 was set at 350 ppm for all measurements. In November, because of leaf discoloration and abscission, different GA and SG trees that had adequate foliage and were in the vicinity of the previously tagged ones were measured. One GA and two SG were measured in November. By December, only CBO and SCO were measured.

Leaves were harvested at the end of the daily Pn measurements, stored on ice, transported back to the laboratory, and stored at -80 °C until chlorophyll analysis was performed. A leaf segment of 1 cm² was weighed, quickly placed in liquid N_2 , and powdered with a pestle and mortar. Ethanol (95 percent) (30:1, volume : leaf fresh

weight, ml:g) and CaCO₃ (I :2, weight : leaf fresh weight) were used to extract chlorophyll. Immediately after centrifugation, supermatant OD's at 849,854, and 885 nm were determined using a Beckman DU-70 spectrophotometer.

RESULTS

Light response curves for all species are curvilinear with calculated Pmax ranging between 8.7 µmol per m² per s for CBO to 14.1 µmol per m² per s for WH (table I). Swamp chestnut oak and CBO had similar values of Pmax and Pn at **2000** μ **mol** per m^2 per s (equivalent to full sunlight). These values were similar to and greater than greenhouse-grown second year SCO and CBO, respectively (Angelov and others 1998). Except for the apparent quantum yield, there were no statistical differences in other light response curve parameters among species. Based on the apparent quantum yield, CBO had the lowest Pn in August whereas SG, GA, and WH were equally active in Pn (table 1).

No significant **differences** due to **time** of day were observed for CBO in either August or September (fig. la). Based on the August through December data, the highest Pn was measured in November for CBO. Surprisingly, measurements taken on a cool December morning (ambient temperature 13 °C, leaf chamber temperature 18 °C) indicated that CBO photosynthesized as much as it did during the morning measurements in September (fig. la). In fact, December CBO Pn was comparable to that measured in September for GA, SG, and SCO (flg. I).

In August, GA Pn peaked before 9 am and then decreased 88 percent from 9 am to 3 pm (fig. I b). Peak daily Pn for GA **occurred** around noon in September and remained at the same level in the afternoon. Peak August and September Pn values for GA were similar to CBO Pn (fig. la, I b). In contrast to CBO, November Pn for GA was lower than peak Pn of August and September (fig. I b). August daily Pn for **SCO** was similar in trend to August CBO Pn measurements

Table 1—Estimates (and asymptotic standard errors) of August photosynthesis light response curve parameters for cherrybark oak (CBO), green ash (GA), swamp chestnut oak (SCO), sweetgum (SG), and water hickory (WH) in a mixed stand

Parameters	СВО	GA	SCO	SG	WH	P-value*
Pmax ^{bc} Pn at 2000 µmol m ⁻² s ⁻¹	8.7±0.9a ^d 6.7a	10.9±0.3a 9.8a	8.9 ±0.3a 7.4a	13.5±0.3a 11.0a	14.1±0.6a 12.1a	0.0553 .0366
K m Light	280 ±120a 32.4a	121 ±13a 5.8a	II8 ±16a 15.4a	115 ±10a 16.6a	150 ±27a 11.1a	.0310 .4054
Compensation Apparent	.0249b	.0820a	.0589ab	.0892a	.0810a	.0034
quantum yield Dark respiration	.9±0.6a	.5±0.3a	1.0±0.3a	1.7±0.3a	1 .0±0.5a	2718

The P-value from an analysis of variance based on parameters fitted to each individual tree.

Parameters for a given species were estimated with data pooled from all photosynthetic measurements collected from two or three for that species. Three CBO, three SCO, and two trees for the other species were measured.

All parameters are in µmol m² s⁻¹ except that apparent quantum yield is in mot C mol⁻¹ quanta.

Parameters in a row followed by the same letter are not significantly different at the a = 0.05 experimentwise error rate based on Bonferroni pairwise comparisons.

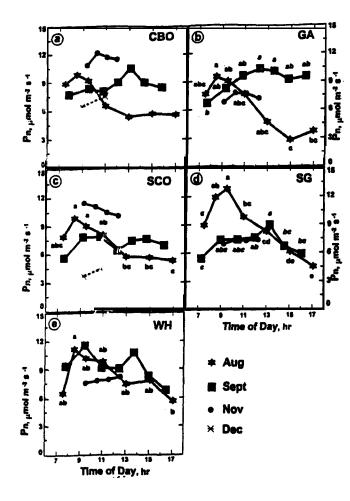


Figure 1—Daily photosynthesis (Pn) of five hardwood species in a mixed stand established in February 1994. Photosynthesis (Pn) measurements were made in 1998. The Same leaves were measured throughout the day with a 1600 µmol per m² per s photosynthetic photon flux density. (a) cherrybark oak (CBO); (b) green ash (GA); (c) swamp chestnut oak (SCO); (d) sweetgum (SO): (e) water hickory (WH). Statistical analysis was performed on time of day for August and September within each species using a randomized block design where block was tree. Symbols without a letter were not significantly different at the a = 0.05 level.

(fig. Ia, 1c). Peak September SCO Pn was lower than that of CBO during this month. December SCO Pn was 50 percent lower than December CBO Pn (fig. Ia, 1c).

Of all species Pn measurements in August, SG had the most active Pn (fig. 1). its peak Pn occurred before 10 am. The 5 pm Pn then decreased to 33 percent of the peak (fig. 1d). By mid-September, the majority of SG in this stand began to discolor. its **daily** peak Pn decreased from 13 μ mol per m^2 per s in August to 8.5 μ mol per m^2 per s in September (fig. la, 1c). By mid-November, most SG and GA leaves in the stand have completely **abscised. Values** of November Pn for GA, SG, and WH that still had some leaves ranged between 7 and 9 μ mol per m^2 per s (fig. 1 b, 1 d, 1 e). Unlike GA or SG, WH had similar Pn among the months.

Storage of GA leaves at -80 °C resulted in a dark discoloration. For this reason, the levels Of GA chi Presented in table 2 are probably under estimated. in August, SG leaves had the highest levels of chlorophyli (chi) per Unit area and the largest leaf specific fresh weight (LSW) among ail species (table 2). in September, chi contents increased for CBO and WH; remained the same for SCO; and decreased slightly for SG (table 2). Compared to September, November CBO and SCO chi contents increased whereas SG and WH chi decreased. The chi a to b ratios ranged from 2.07 to 3.15 and did not differ significantly among species (table 2). There were no changes in the LSW for all five species over the growing season (table 2).

DISCUSSION

To our best knowledge, **this** study is the **first** to **report** Pn of these **hardwood** species in an artifidally regenerated, mixed stand. **Similarities** among most parameters of the light response curves for each species indicated that ail five species are equally responsive to light photosynthetically. In **this study all Pn measurements** were conducted on leaves of the outside canopy. **Light** response curves might be different if leaves inside the canopy were **also** measured.

Ail species, except for CBO, had a dear daily Pn pattern in August (fig. 1). These patterns were similar among species. Furthermore, the August daily Pn patterns of all five species windded with the summer drought (fig. t). There was little precipitation in July and August of 1998. Low Pn in the afternoon was mainly caused by stomatal closure (data not shown). Apparently under drought conditions, these trees photosynthesize actively early in the morning and then conserve water in the afternoon by dosing the stomata. By mid-September, however, several major precipitation events were receded on this study site. No such drastic decreases in Pn (fig. 1) or stomatal conductance (date not shown) were observed in the afternoon. For most species, the daily peak Pn in September also occurred later in the morning as compared to August data.

in this study, each species had its characteristic seasonal Pn pattern. For example, WH photosynthesized similarly throughout the growing season. However, SG was most active in Pn in August but its Pn decreased the most among the five species in September, On one hand, high Pn values for SG in August were doseiv associated with its high chi contents. On the other hand, the summer drought of 1998 might have accelerated SG leaf discoloration thereby reducing chicontents in September. Sun9 and others (1994) reported 9-year-old SG trees grown in sludge treated soil still had green canopy and maintained active sucrose metabolism in stems toward mid-October. However, nonfertilized SC trees discolored and their sucrose metabolism decreased sharply after August, just as in the current study. Maintenance of green leaves and thus active sucrose metabolism late in the **growing** season was shown to increase volume growth for sludge-grown SG as compared to the control SG (Sung and others 1994). Thus, another component relating to competitive strategies of certain tree species may be the amount of photosynthetically active leaf retention late in the gmwing season.

Table 2—Leaf chlorophyll a and b (chi) contents, chl a/b ratios, and leaf specific fresh weight (LSW) (and standard error) for cherrybark oak (CEO), green ash (GA), swamp chestnut oak (SCO), sweetgum (SG), and water hickory (WH) in a mixed stand

Parameters	CBO'	GA	sco	ŞG	WH	<i>P</i> -value⁵
			August			
Chl, mg g ⁻¹ Chl a/b Chl, mg m ⁻² LSW, g m ⁻²	2.13±0.07a ^c 2.75±0.06a 304.0±5bc 144.0±3b	1.46fo.21 a 2.69±0.15a 229.0±25c 158.0±9b	1.95±0.11a 2.37±0.21a 296.0±26bc 151.0±8b	2.24±0.21a 2.07±0.28a 472.0±12a 213.0±14a	2.23±0.16a 2.29±0.09a 374.0±32ab 167.0±3b	0.0331 . 0985 . 0002 . 0010
			September			
Chl, mg g ⁻¹ Chl a/b Chl, mg m ⁻² LSW, g m ⁻²	2.25±0.24a 3.15±0.33a 356.0±48a 159.0±8ab	1.46±0.23a 3.05±0.09a 249.0±53a 168.0±9ab	2.23±0.69a 2.85±0.25a 31 0.0±68a 146.0±12b	1.80±0.17a 2.29±0.27a 432.0-a 239.0±17a	2.71±0.17a 2.60±0.14a 498.0±111a 180.0±28ab	.2170 .1367 .1939 .0224
			November			
ChI, mg g ⁻¹ ChI a/b ChI, mg m ⁻² LSW, g m ⁻²	2.30±0.21a 2.75±0.04a 471.0±59a 203.0±11a	1.39a 2.58ab 266a 191a	2.29±0.30a 3.07±0.12a 405.0±53a 177.0±4a	1.64±0.10a 2.07±0.11b 325.0±11a 199.0±6a	2.09±0.21a 2.30±0.02b 392.0±41a 190.0±17a	2204 .0004 2712 .5529
			December			
Chl, mg g ⁻¹ Chl a/b Chl, mg m ⁻² LSW, g m ⁻²	1.78±0.31a 2.85±0.04a 340.0±51a 193.0±9a	<u>-</u> -	1.62±0.18a 2.93±0.03a 274.0±25a 171.0±16a	<u>-</u>	- 	.6890 2109 .3083 .3056

^{• 1-0} seedlings were transplanted in February 1994. Same leaves used for daily photosynthesis measurements were harvested at the end of the day for chl analysis. One GA and two SG trees were measured in November. Only CBO and SCO were measured in December.

Cherry bark oak and SCO are two examples of late season Pn. In contrast to SG, CBO and SCO increased their Pn and chl contents from August to November. The ability of CBO to maintain green leaves and photosynthesize well into the winter may enable this species to be competitive in a mixed stand. It was reported that in December both stem and taproot cambial tissue of second year nursery-grown CBO seedlings had low activities of sucrose metabolizing enzymes (Sung and others 1995). Thus, with active Pn and almost no diameter growth occurring in CBO stem and taproot in December, photosynthates probably are used for food reserves in stems and taproots and possibly for continuous lateral root development. We will follow seasonal and daily Pn in 1999 beginning in the spring to confirm the results obtained in 1998.

ACKNOWLEDGMENTS

This research was funded by Department of Energy grant **DE-AI09-76SR00870** via Savannah River Natural **Resource** Management and Research **Institute.**

REFERENCES

Angelov, M.N.; Sung, S.S.; Doong, R.L. [and others]. 1996. Longand short-term flooding effects on survival and sink-source relationships of swamp-adapted tree species. Tree Physiology. 16: 477404.

[•] The P-value from an analysis of variance.

Parameters in a **row followed** by the same letter are not significantly **different** at the a = 0.05 **experimentwise** error rate based **on Bonferronipairwise** comparisons.