Host Genes and Infectious Diseases

Janet McNicholl

Division of AIDS, STD and
TB Laboratory Research
National Centers for Infectious Diseases
CDC

A Model of Infectious Diseases

All Risk Factors

Genetic Risk Factors

Host Genes and Course of Infectious Diseases

Potential Timing of Impact of Host Genes

Identifying Host Genes Associated with Infectious Diseases

- Genetic approach
 - Candidate gene: twins, families, populations
 - Linkage: twins, families, populations

- Issues to consider
 - Race/ethnicity
 - Sample size
 - Laboratory tools
 - Analytic tools
 - Attributable risks
 - Ethical issues

Host Genes and Infectious Diseases

- Pathogenesis
- Resistance
- Severity
- Vaccine design/evaluation
- Drug design/response

- Malaria
- HIV
- TB

Host Genes and Malaria

- Reduced severity of disease
 - Hemoglobin/RBC proteins (HbS, HbC, α-thall, β-thall, Duffy, G6PD, Erythrocyte Band 3)
 - HLA alleles (B53, DR2)
 - INOS-954 promoter (C allele)
- Increased severity of disease
 - TNF α –308 promoter (A) homozygosity
 - ICAM-1 coding region (T) allele

Hemoglobin S and Malaria

Single nucleotide polymorphism in the β -hemoglobin gene (Chr11)

Under low O₂ tension HbS polymerizes and RBCs assume sickle shape and adhere easily to blood capillaries

Sickled Red Blood Cell

Geographic Distribution of the Sickle Cell (HbS) Gene

Adapted from Harrison et al.

HbS gene distribution: 15-40% in Sub Saharan Africa

Hemoglobin S and Malaria

- Protective effect of heterozygosity against malaria anemia and severe malaria known for decades
- Mechanism of protection not clear
- Timing of protection unknown

CDC Study, Kisumu, Kenya Survival of Children by HbS genotype

Survival Advantage of HbS is Before the Onset of Immunity to Malaria

Comparison group	Relat. risk	95% CI	p- value
HbAS vs HbAA during 2 - 16 months of age	0.45	0.2-0.8	.0001
HB AS vs HbAA in first 2 months or > 16 months of age	1.2	0.7-2.1	0.5

Summary - Malaria

- CDC Study:
 - Sickle cell trait confers highly significant protection against overall mortality
 - ➤ The time window of protection is between 2 to 16 months of age
- Malaria and Host Genetics
 - > Complex, multifactorial, multigenic
 - > Implications for pathogenesis, vaccine design

HIV

- Host Genes Impact Multiple Aspects of Disease
 - Resistance: HLA, CCR5
 - Disease progression: HLA, CCR, SDF, MBP, Vit DR, IL-10, TNF
 - Vaccine responses: HLA
 - Drug responses: HLA, MDR1

Chemokine Receptor (CCR5) used by HIV

Cell Membrane

Rucker et al, Cell, 1996, 87:437

CCR5 and the 32 bp Deletion

CCR5 △ 32 Genotype

10% Caucasians are heterozygous, 1% homozygous Complete resistance to HIV infection (with NSI variants) Presence delays progression to AIDS Attractive therapeutic target

Geographic Variation in Δ 32 CCR5 Distribution

1TO8%

Effect of \triangle 32 CCR5 Genotype on HIV Disease Progression

HLA Genotype influences Multiple Aspects of HIV Infection and Disease

- Resistance to infection (HLA-A2 supertype, HLA-A11, HLA discordance)
- Rate of progression to AIDS
 - Delayed: HLA-B27, B57
 - Accelerated: HLA-A1,B8,DR3
- Vaccine responses
 - Enhanced (canarypox HIV vaccine: HLA-B27)
- Drug reactivity (abacavir: HLA-B57)

HLA type and Responses to a Candidate HIV Vaccine

Vaccine Protein	HLA-B27 +	HLA-B27-	OR
Gag	64	15	10.3
Env	36	11	4.6
Any	40	11	5.4

% CTL responses observed at 6 weeks post vaccination with ALVAC-HIV Canarypox vaccines. Kaslow, R et al, JV, 2001, 75; 8681

HLA Genotype Determines Hypersensitivity to Anti Retroviral Therapy

HLA type	Abacavir Hypersensitive	Abacavir Tolerant	OR
HLA-B57+	78	2	117
B57 Haplotype	72	0	822

% subjects in each group. Mallal S et al, Lancet, 2002, 359;9308 Abacavir = Ziagen (Trizivir when combined with AZT/3TC) Haplotype = HLA B57-DR7-DQ3

Host Genes and HIV

- Multigenic, complex, multiple aspects
- Implications for therapy and vaccine design

Host Genes and Mycobacterial Infections

TB Pathogenesis

Genes associated with TB

- Immune Genes
 - HLA class DR and DQ (6p21)
 - IL-1RA (2q14)
 - $IL-1\alpha$ (2q14)
 - MBL (10q11)

- Other Genes/loci
 - Vit DR (12q12)
 - NRAMP-1 (2q35)
 - X chromosome
 - Chromosome 15 locus

Importance of Family Studies

- IFN-γ R-1 (6q23)
 - Recurrent M. avium and other non-TB mycobacteria
 Newport et al, NEJM, 1996
 - Disseminated BCG infection Jouanguy et al, NEJM, 1996
- IL-12 Rβ (5q31)
 - Recurrent atypical mycobacterial infections
 De Jong et al, Science 1998

IFN-γ Receptor Deficiency in an Infant with Fatal BCG Infection

Future Directions Host Genes and Infectious Diseases in Public Health

Needs:

- define attributable risks
- define interaction of risk genotypes with other risk factors
- identify other genes

Long term

- identify populations at high risk for diseases
- Understand pathogenesis
- Develop new prevention or therapeutic strategies

The Future....

- New treatments based on genes associated with resistance/susceptibility
- Host genetic typing in the clinic?
- Host genetic typing in epidemics?
- Host genetic typing of populations for prevention or treatment?

CDC's genetics web site: www.cdc.gov/genetics

