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Abstract

The prevalence of disease in many populations is often low. For example, the prevalence of tuberculosis,

brucellosis, and bovine spongiform encephalopathy range from 1 per 100,000 to less than 1 per 1,000,000 in

many countries. When an outbreak occurs, epidemiological investigations often require comparing the

prevalence in an exposed population with that of an unexposed population. To determine if the level of

disease in the two populations is significantly different, the epidemiologist must consider the test to be used,

desired power of the test, and determine the appropriate sample size for both the exposed and unexposed

populations. Commonly available software packages provide estimates of the required sample sizes for this

application. This study shows that these estimated sample sizes can exceed the necessary number of samples

by more than 35% when the prevalence is low. We provide a Monte Carlo-based solution and show that in

low-prevalence applications this approach can lead to reductions in the total samples size of more than

10,000 samples.
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1. Introduction

Consider the problem of determining an adequate sample size to detect a specified difference in

the prevalence of disease in two populations (e.g., Adcock, 1997). In such a study, the null

hypothesis is that no difference in prevalence exists in the populations (i.e., H0: p1 = p2). However,

in many epidemiological investigations, the goal is to determine whether the difference in the

prevalence exceeds a pre-determined threshold. For example, suppose one wishes to determine if

the prevalence in an exposed population is at least five times higher than the prevalence in the
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unexposed population (i.e., H1: p1 � 5p2). If a is the significance of the test and if p1 and p2 are the

true prevalences, then the power of the test, denoted by 1 � b, is the probability that the null

hypothesis is rejected whenever p1 � 5p2 (i.e., Pr[reject H0jH1] = 1 � b). A common value for b is

0.20, but lower values should be considered when the cost of not detecting the difference is high in

comparison to the cost of collecting the data.

Casagrande et al. (1978) and Fleiss et al. (1980) provide estimators to determine the sample size

needed to detect a difference between two populations with a specified significance level and

power. Due to the discrete nature of the data and the reliance of these estimators on the asymptotic

behavior of the test statistic, a number of different continuity corrections have been suggested to

the original estimator given by Fleiss et al. (1980). Gordon and Watson (1996) summarize the

results of numerous authors and conclude that continuity correction is rarely beneficial.

Commonly available software packages have implemented many a number of different

sample size estimators, with examples being EpiInfo (CDC, 2006), the Hmisc library for R and

S+ (Alzola and Harrell, 2006), the sampsi function in Stata (StataCorp, 2003), and the Power

procedure in SAS (O’Brien, 1998).

These sample size estimators have been shown to work well in many applications. However, the

range of prevalences considered in these studies is often orders of magnitude larger than

the prevalence levels encountered in many animal surveillance applications, particularly when the

disease has been nearly eradicated from the populations in question. In this study, we consider the

performance of two of these estimators and show that the suggested sample sizes are often very

inaccurate when the prevalence of the disease is low. We propose a Monte Carlo simulator,

combined with a binary search algorithm, to determine the appropriate sample size to achieve a test

with a given power. A simulation study shows that while the Monte Carlo-based solution performs

well, the estimated sample sizes provided by the other two methods can exceed the necessary

number of samples by more than 35% when the prevalence is low. Computer code has been made

available to implement the Monte Carlo-based solution in either R or S+.

2. Review

Consider two large populations where the true proportion of diseased animals is given by p1 and

p2, respectively. From each of the populations, a random sample of size n1 and n2 is drawn and x1

and x2 diseased animals are found. Thus, x1 and x2 are such that X1jn1,p1 � Binomial(n1,p1),

X2jn2,p2 � Binomial(n2,p2), and p1 = x1/n1 and p2 = x2/n2 are the estimators of p1 and p2.

The statistic used in the test is

z ¼ ð p1 � p2Þ � ðp1 � p2Þ
varð p1 � p2Þ1=2

;

where var( p1 � p2) = var( p1) + var( p2) � 2cov( p1, p2) = var( p1) + var( p2) because the samples

in each population are assumed to be independent.

Under H0, the prevalence of the disease is the same in each population, so p1 = p2 and

z ¼ ð p1 � p2Þ
varð p1 � p2Þ

1=2
:

The sampling distribution of this statistic is approximately Normal and the distribution of the

test statistic agrees well with a standard Normal distribution when both the sample size and

proportion of diseased animals are high.
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For the typical significance level of a = 0.05, the test statistic will fall in the interval (�1.96,

1.96) for roughly 95% of all samples. In other words, if the null hypothesis is true and the sample

size is sufficient for the distribution of z to be approximately Normal, then

P½�za=2 < z< za=2� � 0:95:

The interpretation of failing to reject H0 can be misleading because even though a test fails to

reject the hypothesis that p1 = p2, it does not imply that no difference exists. Rather the result can

imply that, for the given sample size, the difference in the two populations was too small to be

detected. It can be misleading to use statistical tests without considering their power, where the

power of a statistical test is the probability that H0 will be rejected when the difference between

the two population parameters is p1 � p2.

Assume that the specified significance level is a = 0.05 and a priori it is known that the

appropriate alternative hypothesis is H1: p1 > p2. Then the power of the a-level test for the null

hypothesis H0: p1 = p2 is given by

P½reject H0j H0 false� ¼ P½z> za=2�:
The power of the test can be determined for a given p1 � p2 as follows;

P½z> za=2� ¼ P

�
ð p1� p2Þ

varð p1� p2Þ1=2 > za=2

�
¼ P

�
ð p1� p2Þ�ðp1�p2Þ

varð p1� p2Þ1=2 > za=2 � ðp1�p2Þ
varð p1� p2Þ1=2

�

¼ P

�
z> za=2 � ðp1�p2Þ

varð p1� p2Þ1=2

�
’ 1�F

�
za=2 � ðp1�p2Þ

varð p1� p2Þ1=2

�
:

This result forms the basis for the derivation of the sample size calculation provided by Fleiss

et al. (1980). Casagrande et al. (1978) derive the appropriate sample size for the case where an

equal number of samples is taken from each population. However, in many cases an unequal

sample size is desirable because of the factors such as the difference in cost to collect samples

from each population. Let r define the relationship between the sample sizes drawn from each

population. If n1 is the sample size in the first population and n2 = rn1, with r specified in advance,

then Fleiss et al. (1980) give

n1 ¼
½za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ 1Þp̄ð1� p̄Þ

p
þ zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp1ð1� p1Þ þ p2ð1� p2Þ

p
�2

rðp1 � p2Þ2
; (1)

with p̄ ¼ ðp1 þ rp2Þ=ðr þ 1Þ. This formula is used to determine the approximate sample

sizes in the Hmisc for R and the Power function in SAS using the Pearson’s Chi-squared test

option.

Fleiss et al. (1980) and Ury and Fleiss (1980) add the following continuity correction factor

ncc
1 ¼

n1

4

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðr þ 1Þ

rn1ðp1 � p2Þ

s �2

: (2)

This formula is used to determine the approximate sample sizes in the EpiInfo package. The

utility of this correction factor has been questioned by Gordon and Watson (1996).

The sample sizes (n1, n2) and ðncc
1 ; ncc

2 Þ will be referred to as the uncorrected and continuity

corrected sample sizes, respectively.

M.S. Williams et al. / Preventive Veterinary Medicine 82 (2007) 151–158 153



3. Performance for low-prevalence populations

In the articles relating to the derivation of Eqs. (1) and (2) the prevalence levels considered

typically ranged from p1 = 0.05–0.80 and the differences between the p values in the two

populations are relatively small. However, in many animal surveillance applications the

proportion of diseased animals in the two populations can differ by orders of magnitude and at

these low-prevalence levels a small number of infected animals can drastically change the

estimated prevalence. The example used in this section relates to the prevalence of tuberculosis in

an exposed and an unexposed population of wild deer. An initial small sample from the exposed

population suggested an apparent prevalence of tuberculosis of four animals per 1000

(p1 = 0.004). It was determined that samples from both populations should be collected so that at

least a 10-fold difference in the prevalence between the two populations could be detected

(p2 = 0.004). The relatively small size of the geographical area that was thought to be exposed

limited the total number of samples that could be collected, so the relationship chosen for the

sample sizes was r = 4. Using Eqs. (1) and (2), the estimated sample sizes to achieve a power of

0.80 were (n1 = 1246, n2 = 4984) and (ncc
1 ¼ 1574; ncc

2 ¼ 6296), respectively.

Given the large discrepancy between the two sample sizes, a Monte Carlo simulation was

performed to estimate the true power of the test for the different sample sizes. The simulator

draws samples of size (n1, n2) and ðncc
1 ; ncc

2 Þ from the appropriate binomial distributions and

calculates the z statistic for each sample. This process is repeated 500,000 times to form a Monte

Carlo approximation of the sampling distribution. Using this process, the achieved power for the

two different sample sizes was 0.858 and 0.911, when using the uncorrected and continuity

corrected sample sizes, respectively. The simulator was then used to determine that a sample size

of only ðnmc
1 ¼ 974; nmc

2 ¼ 3896Þ was sufficient to achieve a power of 0.80. This constitutes a

reduction of 1360 and 3000 samples when compared to the sample sizes derived from Eqs. (1)

and (2).

Fig. 1 illustrates the large discrepancy between the nominal and achieved power levels. Clearly,

at these low-prevalence levels, the assumption that the distribution of the z statistics approaches

that of a unit Normal is not appropriate. Extensive simulation suggests that the sample size

estimates derived from Eqs. (1) and (2) consistently overestimate the required sample size.

4. A Monte Carlo approach to sample size determination

At the low-prevalence levels encountered in some surveillance applications, the assumption

that the statistic z follows an underlying Normal distribution in repeated samples of equal size is

not tenable. One option for determining the appropriate sample size is to use a Monte Carlo

approach to ‘‘search’’ for a sample size that achieves the desired level of power. While an

exhaustive search for the appropriate sample size is possible, a more efficient approach takes

advantage of the fact that the power of the test increases monotonically with increasing sample

size (Fig. 1). So rather than perform an extensive search for possible sample sizes, a search can be

employed to efficiently find the appropriate sample size to within a user specified tolerance. A

binary search, which is a technique for finding a particular value in an order list by ruling out half

of the data at each step, is an efficient method. The algorithm for finding the appropriate sample

size is as follows:

(1) Choose a tolerance value that describes the acceptable discrepancy between the nominal and

actual power of the test.
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(2) Select an upper and lower bound for the sample size. In low-prevalence applications the

uncorrected sample size (i.e., n1) serves as a reasonable upper bound and n1/3 is an acceptable

choice for the lower bound.

(3) Assess the power at the upper and lower bounds of this interval with the Monte Carlo

simulator.

(4) Use the binary search algorithm to choose new upper and lower bounds of an interval that

contains the desired sample size.

(5) Repeat steps 3 and 4 until the desired tolerance level is obtained.

The sample sizes derived from the search algorithm above will be denoted by ðnmc
1 ; nmc

2 Þ. R

and S+ code to implement the Monte Carlo sample size calculations is available at http://

www.aphis.usda.gov/vs/nahss/resources.htm#software.

5. Simulations

A series of examples illustrate the potential reduction in sampling effort associated with using

the Monte Carlo approach to sample size determination. The goal is to illustrate the factors and

situations where the use of the Monte Carlo approach is most beneficial. A tolerance of 0.00025,

for the discrepancy between the nominal and achieved power of the test, was chosen for this

study. The three factors were:

� The size of the effect that was to be detected. The values chosen were a 2-, 4-, and 10-fold

difference in the prevalence. These will be referred to as the effect size.
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Fig. 1. The achieved power of the test as a function of the sample size in the exposed population (n1). The design

prevalences in the exposed and unexposed populations were p1 = 0.004, p2 = 0.0004, respectively. The vertical lines show

the power achieved by sample sizes in the exposed population dictated by the Monte Carlo, uncorrected, and continuity

correction-based approaches.
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Table 1

Summary statistics for the simulation study

Prevalence,

p1

Effect

size

Allocation to

each population, r

Achieved power

for each mc,

uc, cc

Percent increase

in sample size,

Per(uc, mc)

Percent increase

in sample size,

Per(cc, mc)

Monte Carlo

sample

size, nmc
1

Sample size

difference,

D(uc, mc)

Sample size

difference,

D(cc, mc)

0.1 2 1 79.9, 81.1, 84.1 2.3 10.4 423 20 98

0.01 2 1 80.2, 80.9, 83.9 2.1 9.6 4,578 190 974

0.001 2 1 80.1, 81.0, 84.1 2.5 10.0 45,816 2482 10,326

0.1 4 1 80.2, 82.5, 88.0 5.5 18.6 306 18 70

0.01 4 1 80.1, 83.7, 88.7 8.8 20.6 1,584 296 812

0.001 4 1 80.0, 83.9, 88.7 9.0 20.8 15,847 3166 8,322

0.1 10 1 80.3, 85.4, 92.1 11.0 26.4 89 22 64

0.01 10 1 80.1, 86.1, 92.0 14.1 28.5 910 298 724

0.001 10 1 80.1, 86.1, 92.0 14.6 28.8 9,100 3104 7,356

0.1 2 4 79.8, 80.3, 83.6 0.8 9.5 247 10 130

0.01 2 4 80.0, 80.4, 83.4 0.8 9.1 2,648 80 1,305

0.001 2 4 80.0, 80.3, 83.5 0.6 8.9 26,697 590 12,825

0.1 4 4 80.2, 82.3, 87.7 5.9 20.8 80 25 105

0.01 4 4 80.0, 81.5, 86.8 4.1 18.6 863 170 970

0.001 4 4 80.0, 81.6, 86.8 4.2 18.6 8,633 1945 9,950

0.1 10 4 79.9, 85.4, 91.0 21.3 38.3 37 50 115

0.01 10 4 80.0, 85.8, 91.0 22.1 38.2 386 555 1,210

0.001 10 4 80.0, 85.8, 91.1 22.3 38.5 3,889 5520 12,080

The differences in the estimated samples sizes necessary to achieve a test with power of 0.8 in low-prevalence applications are summarized. The achieved power and metrics

describing the difference in the estimated number of samples using a Monte Carlo approach and two alternatives.



� The proportion of affected animals in each population. Three different prevalence levels were

considered for the exposed population. These were p1 = 0.1, 0.01, 0.001. The prevalence levels

in the unexposed population were determined by the effect size.

� The ratio, r, determines the allocation of the sample size to each subpopulation. The values

r = 1 and 4 were used.

For each combination of these three factors, the study determined the sample size using the

Monte Carlo, uncorrected and continuity corrected approaches and compared the results using a

series of metrics. The first metric for comparison is the percent reduction in total sample size

resulting from the use of the Monte Carlo sample size, which is

Perðuc;mcÞ ¼ 100
ðn1 þ n2Þ � ðnmc

1 þ nmc
2 Þ

ðn1 þ n2Þ
and

Perðcc;mcÞ ¼ 100
ðncc

1 þ ncc
2 Þ � ðnmc

1 þ nmc
2 Þ

ðncc
1 þ ncc

2 Þ
for the uncorrected and Monte Carlo-based techniques, respectively. The achieved power for

each of the methods is also given. The final metric is the total reduction in sample size in

comparison to the uncorrected and continuity correct methods is also provided (i.e., Dðuc;mcÞ ¼
ðn1 þ n2Þ � ðnmc

1 þ nmc
2 Þ and (i.e., Dðcc;mcÞ ¼ ðncc

1 þ ncc
2 Þ � ðnmc

1 þ nmc
2 Þ). If the cost of col-

lecting and testing each sample is known, this metric represents the total potential reduction

associated with using the Monte Carlo-based sample sizes.

6. Results

The results are given in Table 1 where there are a number of clear patterns. The first is that the

difference between the achieved power for the non-Monte Carlo methods is always greater than

the nominal value of 80%, with the continuity corrected sample sizes overestimating the required

sample size by a substantial amount. The level of the bias is determined by the effect size, with

bias in the power increasing in accordance with the effect size. The allocation (r) and the

prevalence level had little or no affect on the achieved power for the various sample sizes.

In contrast, both the allocation of the sample (r) and prevalence levels significantly influenced

the difference in the estimated sample size provided by the non-Monte Carlo methods. As the

prevalence decreased, the percentage of excess samples increased from 0.7% to as much as

38.5%. The number of excess samples that these methods estimate ranges from as little as 10 to

nearly 13,000 samples.

7. Conclusions

The results of this study suggest that sample size calculations that rely on the assumption of a

Normal distribution often overestimate the required number of samples to achieve a specified

power. This poor performance is due to the failure of the distributional assumptions when the

prevalence of the disease is low. In contrast, the proposed Monte Carlo approach returns sample

sizes such that the achieved power of the test closely matches the nominal value. The examples

also illustrate that the use of Monte Carlo methods can reduce the overall sample size by

hundreds to thousands of samples while still meeting the study objectives.
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