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ABSTRACT

The Fermi-Thomes model has been used to &erive the equation of state
of matter at high pressures and at various temperatures.. Caloulations
have been oarriea out both without gnd with the exchange terms., Discussion
of similariti #ransformétions lead to the virial theorem and to correlation

of solutions for different Z-values.
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BQUATIONS OF STATE OF ELEMENTS BASED ON THR GRNERALIZED FERMI-THOMAS THEORY

1. INTRODUCTION

The Foermi-Thomas stetisticel model of the atom has be~n used by several
investigevors (1) for approximafé calculations of potential fields and charge
densities in metals as a function of lattice spacing. The method has also
served aé a starting point for the study of the behavior of matter under
axtremely high pressures as found, for example, in stars.

In its original form, the theory makes several simplifying assumptions:
the effeot of exchange foroces is not taken into account, and the temperature
of eleotrons and nuclei is taken as zero degrees absolute, T = O, With
theﬁe simplifications, & set of universal potential functions may be found,
applicable to all atomic numbers, Z, by a simple change in soale of linear
dimensions. |

(2)

Dirac has extended the‘theory to include the effscts of exchange
forces. However, the solutions of the modified equation do not lend themselves
to the above mentioned similarity transformetion and it is neéessary to obtein
separate solutions for each Z.

Marshak and Bethe (3) have carried through a perturbation treatment of
the simple Fermi-Thomas equation to include temperatures corresponding to
several electron volts. : - | .

In the following. we present first a set drvsolutions fﬁr ﬁhe simple

Fermi~Thomas equation without exchange foroes and for T= 0. Although

these numerical solutions are known, they have been oaloulatah agein because

(1) J. C. Slater and H. M. Krutter, Phys. Rev. 47, 559, (1935); H. Jensen,
2S. f. Physik, 111, 373 (1938) and edditional references given there,

(2) P. A. M. Dirac, Proc. Cembridge Phil. Soc. 26, 376 (1930).

(3) R. E, Marshak and H. A, Bethe, Ap. J., 91, 239 (194,0).
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they are the unperturbed_éolutions'in subsequent perturbation calculations.
Hence, rather pfeeiso values are needed. A set of solutions was given for
the case with_éxohange effects, but with T_: 0 as before, forrseveral
Z-values by Slater and Kgpttgr end by Jensen. To make more accurate inter-
polétipn possible we havebébtgined further solutipﬁs for 2-6 and 92. The
"various solutions for a given 2 correqunq to & series of etomic volumes.
The value of the potent;alAat the boundary is simply relatéd to the pressure.
Consequently & pressure-volume (or -density) reiation can be obtainedvfof
thet elément., Theée new solutions wifh previously calculated one; (b)
permit rether foliable interpolation for P-v relations corresponding to

any Z value. A set of numerical solutions is also given for the perturﬁation
problem corresponding to non-zero temperetures. Finally solutions are given
for the case of very high temperatures where the perturbation treatment is

no longer valid. and the complete equation must be considered.

IY. SIMPLE FERMI-THOMAS METHOD

. We congider first the simple Fermi-Thomas equation without exchange

ef fects and for temperature T = O,

2 ; 1
S YT
dxz ¢ o ' )

This equati n .is derived with the assumption that at esch point in coordinate
space there exigts a relation between the electron density)i end “the

potential V, namely

ji‘:‘ 8w [a_n(E-eV)]B/a

= B_hi— (1a)

(L) H. Jensen, G. Meyer-Gossler and H. Rohde, 2S. f. Physik, 110, 277 (1938);
- J. C. Slater and H. M. Krutter, loc. cit,
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where m is the eleotronic mass and E the total energy. This relation is in
turn obteined from the postulate that the electron wave functions in a amall
volume element behave like plane kxi‘afes and that the electrons satisfy the

Peuli exolusion principle. Spherical ‘synixﬁetry is &ssmﬁéd; X 1is the

d'i stance from the nucleus measured in unite of

s (9m%1280)¥3 = 0.8853L o /2 (1)
where 8, is the Bohr redius for hydrogen. ¢ is essentially the potential
multipliea by r; more preolisely ‘

) 266 = (B, - oV)r : | | (2)
where B, is the maximun total energy.

The boundary conditions may be written

$(0) =1 | | (3)
and at the surface voi‘ the at’om‘. since the potential gradient is gzero,
ad/ax = ¢/x | (38)

In an actual‘ orystal, the solutioﬁs of spherical 'symnotry are, of course,
not strictly valid. It is more appropriate to surround each nucleus with a
polyhedron containxng an averag;e number of electrons sufricient to neutralize

o

the nuclear charge.

In many ceses, the polyhedron maj be replacod in good approxunation by
a sphero. Then condition (3a) is valid on the surf‘ace of th1s sphere and
the radius R(-—/a x ) is def'lned as the atomic radiua. It ia to be notod

that use of this proeedure need not be- restricted to crystals of pnre

slementa,

b_m’y.be';e‘i;ﬁgnded élbout_ Vthe”orivg_in in a semi-convergent_ pow'ar, geries of
the form - o : :
| 3/2 2 |
1"‘ a,xX + a_ 1L . x + e & 0 .
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Onoce & value ‘is selécted for the initial slope, i.e., &2. the remsining
cosfficients are determined. Expressions for the first few coefficlients
in terms ‘oi‘ a_are given in Table 1. For a particular value of LY ¢
approaches the x-axis asymptotically. This solution gorresponds to the
freé atom, PFor nuserically s;naller_ initial slopes, solutions are obtained

for atams of finite radius. HNumericelly greater initial slopes yield

solutions for ions.

Por the numerical _integratioxi 1t 1s odnvenient to introduce a change

of independent wariable,

x = 12/2. ,
Thig in effeot, makes the intervel for each step of the numericel integration
conveniently. small near the origin where Q changes appreciably, and suto-
matically inoreas-s the i;terval farther out where the function changes more
sl&ly. To initiate the numericai integration routine, the series given
by (L) is rewritten in terms of w; it is eveluated at two points Q:O.BB
and w ;0;92, hence the derivative is obtained at w z 0.90. This pi'ocedure
is more accurste than ihe evaluetion of the derivative frofn thé dif‘f‘erenti;t.ion
of the series. Intervais'are taken as :.iv =0.0Lie. The error in each step |
is <O.000025_in o,

In Table 2, mme-r.ical solutions are given correspoﬁding to eight values of
the initial slope. ¢ is given at intervals aw= 0.08, These values are
frequent ‘enough for most purposes; if values for intérmediate w-values are
desired, quadratic' interpolation is adequate.

In Table 3 the values of &, are glven corresponding to these solutions
together with velues for the atomic Radius X and for ¢ (Xo). The last

two solutions, in which § reaches zers, correspond to ions.

~
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Finally one oan obtain a pressure-volume reiation based on this model
with the aid of the following virial theorem, )

(3/2) Pv = kinetic energy«b-(-%) (Potential Energy) - (5)
where P is pressure (dynes/cm ) end v = _(hrr/3)(/q 10)3 om?, the volume,
One oan etsily show that ‘ N

ro g (et § 2 (x ). (6)
Thus, having chosen a Z velue, one cen substitute values for lo and
¢(~Z,°) from Table 3 and obtain e series of points on a P-v diagram in this
approximation. e shall return to a more complete discussionbof equations

of stete after we have discussed the effects of exchange.

I1I. FERMI-THOMAS-DIRAC EQUATION

Dirasc (2) has introduced modificeticns to the original Fermi-Thomas
theory: to include effects of exchange. Instead of Eq. . (1) we have now to

consgider

daxy/di"’ = x(& ny"/x%) o
l has the same meaning as bef‘ore, ' ‘
= (3/327 )1/3 2'2/3 = 0.211873 el
The potential vwithout oxchange effects, denoted by v, ts connected with
W by the reiation R ' - A
oV, = E, +2n eh/h2 - vZeziy/'ux; )
Eq. (7) is obtamed by includmg in the expressxon for the avve'tr'age potential

energy of an olectron an exchange term equal to 2ego/h where p_ois the

maximum momentum for the coordinate point under consideration. Tho eleotron

(5) To be discussed in Section VI,




6 AECD - 2448

(6)

density is now connected to the olectrostatic potential by the relation '

3

L= 8T 23:"‘+[h°22“2.+.2m(30-ev0)]
| 30> h ,

In order to get the numerical integration of Eq. (7) started, ¥ is first-
-expanded into a semi-convergent power series about the origin. The form of this
- series is identical with that of Eq. (L). For convenience, we list the
oorres;;onding ocoefficients up to _a_9 in Table Lj. Again we introduce a change
in independent veriable X = v2/2 and use the same mumerical integration procedure
beginking at w 20,92,

Sluter and Krutter (2) have carried through nunerical integratiens for
2 = 311,29 and Jensen (L) for 2 = 18,36,54. We have obtained a family of :
six solutions for Z=6 and of ten for Z2=92., The initial >slopes end boundary
values are shown in Ta"b].es 5 and 6 for Z=6 and 92 respectively., Valuesz for
the two sets of V functions are listed in Tables 7 and 8 at intervals of

4 w = 0,08, Here again quadratic interpolation is adequate to oitain ‘\_V"for
intermediate w-values.

From these results one may obtain A relation between pressure end density
“(or voiume) for‘varioius elements at T =0, The pressure depends only on the
minimum‘4of the potential, Ze V/r, which is attained at the boﬁndary of the
atom. On that bouqdary no average force scts on the electrons, and the
pressufo is the same as would be caused by a density _of free elaoctrons equal
to the eloctlroﬁ densityx At the boundery. This electron density is in turn

determined by the potential at the boundary, and one obtains for the pressure

(6) cf. eege, Jo C. Slater and ¥, M. Krutter, looc. cit.
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the formula
b= 262 ,V(x o - széu )
1013/4 ¥ (%) +E
V"T;::““

The relation juat obtained is in effect a dependence of the pressure on

the atomic volymebsinée the value of 1V72: depends exclusively on the atomio
radius and hepoe on the atﬁmic volume. |

In this way the pressure-density rglationship is applicable to naterials
conposed of several kinés bf élé@pnﬁs. Tﬁe volume at>é.gi§6n pressure is
obtained by adding the atomic volumeg appropriateﬁfor that pressure.

In order to express préssure-density relationships fbr ;arious Z values
in a form which permits convenient interpolation fpr intermediate Z values,
we follow Jepsen (7) and e;prgss the pressure in units of the pressure B
resulting from a uniform distritution of all the electrons of the material
throughout the total. available volumo (7a ). i.00,

p = pe/?

where

f(;)._.;;o | \/:'f-(:o) +€ 1. 55/1‘ 3
| z / ( X,

where 5 = zr2/3- gb -( 32 ,)’ L/S 0.701 o

L T . = X
h/‘xu %
18 the variable against which.we plot the function £,
In Figure. 1 we have compiled the velues given ny'Joﬁsan for Z =18,3€,54L;

rewritien data of Slater and Krutter in this form; and added the new oalculations

s

(7) cfe H. Jensen, Ref. 1, Eqni (ka, b, o and S).

(7a) Explicitly, P = 2/5(3/81) (hg/z m) (}5)5/3. where P is the uniform
density of electrons. . .
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for Z = 6,92, In thiz way we have obtained sufficient data, so that
satisfactory interpoletion for any Z—va}ue is possible. Finally we have‘
graphed our nﬁmarioal values for the case without exchange.

The pfessura-density~relations 50 derived ere valid only at rather high
'preséures.at which the detailed infiuenée'of fhe outer shell structure’of the
.atams has been oblierAﬁeﬁ.' This u§ua11y happens at pressures e#CQeding

ten megabars. _ | _ \
IV. PERTURBATION TREATE?WT OF TWVPFRATURB EFFECTS

If the value of the temperaturo is low compared %o the maximum kinetio

energy of electrans near the bbuhdaiy between atomh, l.e., if

kr < 28 $(xg) | (10)
o %

o .
the influence of the temperature can be treated by perturbation methods,
‘The 1nf1uance of this porturbation on the Fermi-Thomas distribution will
‘now be discussed and in this discusslon we ghall disregard the offects of

(8)

exchange. It has been shown by Ashkin that the influence of the tcmpera-
ture perturbstion and of exchange effeots are very nearly additive.

Marshek end Bethe (3).have shown that the perturbation from temperature
can be taken into amocount by modifying Eq. (la), which comnscts the elsctron
density and the eleotrosthtic potential. They derive the expr;aainn

.-Q—FTE-M {n"-’_;’(‘.if__—_ | (11)
-eV )

where E is the Fermi emergy and k is the Boltzmern constant. This leads to

(8) J. Ashkin, unpublished report.
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to the corresponding dif!‘erential equation for the potential

29§32 [1 K r‘?z } ] _' C e)

,_,)2

. ' .
where 200 - BE-eV analogous to: Eq. (2), 2?"'? 2/822 e, and « is
given by Eq. .(1b). The boundary conditions are § ‘(0)_2 1and d }/dx =§V§Z.

The solution of this equation can, ftﬁe writ.ten\

= Q+7 :
§ =91 4
" where 0 is the unperturbed sélution obtained in Section Il -and Qiaatiafiu

the differential equation
a® ¢y 302 6 *‘ V2 o ” )
ax 2 21 8 % S '
Expanding ¢1= ch" /2 - and uslng the séries expansion for ¢ given by

Eq. (L), one finds, taking Cp = O, that

c

1"
Q
H
«Q
"
«Q
n
o

34 5 6

1

L = 0;

where a, is the .initial slope of ¢ Here again it-is _convenient to make
the change of independent variable x-:."}.2 «- The serles. solution for. the
perturbetion 'fur;ét-iob _vfas’~evé,1uated-~ at w_ = .8 and was extended by @

numericai procedure similar tAo,-t\,h,oae :uged-above, -

Lt

H

Three nmnerio&l.'soluti ons for ¢1~ wore: obtained, . Theyf'are obtained by:
substituting three dxf‘ferent ¢ functions f‘rom Part II into Eq (13). These ¢
functions may be charaoterised by: their initial slopes t2=1f.58856 1.58865,

-and 1.5887h (of. Tables 2 and 3y, In"l‘able 9 numerical solutions are given

corresponding to these three cases for the range of w that is.of interest.




The derivatives are ﬁls; given as they are neehed.fo‘safiény'the boundary
conditions. ‘. ?

¥With these solutions, a series of points on & P-v-T diagrﬁm may be
obtained iﬁ the foiioﬁing'manner. For a given Z, one assumes & temperature:
T and determines x o;vahd hence atomic volume (or density), from the boundary
condition d @/dx = 5/1 « The pressure ina_v be obtained elther by the
approximete expression obtained by Marshak and Bethe or by using tables of
the complete expression worked out by XacDougell and Stoner (9). Specificelly

they tabulate

LS

3/2 (.f'\) = 15/2 di/(el‘h +1)

The expression for the pressure in dynes/omz'is

o™ -y

(10)

(2 721, ()

_ 8T
i o 3/2
where
ro= 9 (%) /(21J2/; )e
. 0

V. EXACT TREATMEMT OF TEMPBRATURE EFFECTS

Por the case of high temperatures the perturbation treatment given
in the preceding section is not very acourate, In this section the effects
of temperature will be taken into mcoocunt exactly. Inasmuch as the effedts
of exchenge for this range of temperature are relatively unimportant, we
congider only the approximation in whiok they ere neglected.

The effect of temperature is to alter the charge distribution of
electrons in the aton. The numter of states available to an electron of
momentum p at position r is 2 [h"padp} [hﬂ‘redr] /h3. The basis of the

simple Fermi-Thomas model at T =0 is to consider that all of the stetes up

(9) J. MaoDougsll and B. C. Stoner, Phil, Tran. Roy. Soo. 237, 67 (1938).
(10) In the next section, this expression is discussed in more detail,
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to fhe maximum available momentum are occupied and that the rest are empty.
If the tmperature 18 raiged, the atatistical analysis of Fermi and Dirac
tells us that the probability that a atate of ucmantum P a*xd hence of
energy, po/2m - oV, if £illad is 1/[exp ( Pfé?;..:ﬂ -f‘bl )+1] where

X is Boltzmann's constant and )Lia a constant which is determined by the
condition that the total number of elecfrons is given. Therefore the

density of electrons is

i 2 3
2°* 417 dp/!
-OPQ: h F P/“

U
° exp Pégan - oV +>L)+1 ()
T |

Substituting this éxprasaion for the charge density into Poisson's equation

we obtain
1 a v o _ 1672 \/—-——.5 A
FoRZ T3 evemr o kr ) (15)
where the funotion Il/ ()1) is defined by
I (’\) = j ‘ , (15a)
exp (y “\)*‘1
and ariges for n-1/2 from Eq. (1h) if one replaées pa/ank‘! by ye It is

the equation (15) that we aolve mmerically.

The equation Gan be aimplified by e change of variables. | “lat s = r/e
where i V ' V

f_.n .- 1.602x 107%m
J}?woam./ r o ¢ VL

kv y
where Tkv is the tomporature moa.sured in kilovolts. ‘!‘ho oonstant n in

(16)

Eq. (15) can be removed by a Yohange in the zero of potenticl Ve SQtting

Alege =M
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BEq. (15) becomes

L - e, B/ | | (1)
2 /2
ds , - _ ,
Tha boundary condition is .
‘dﬂ-/d-s :«ﬂ/s at s=b \ » - (18)
where. e =cb .

ig the atomlc radius. At the origin, since V is to vary as Ze/r,ﬁ must

approach a constant value

2 . ! » . A
Ze°  _ . 3/
A = g = 0.0899 Z'T, , (19)

-3/2
Because of the singular tehavior of I, ,2(ﬁ/s) as 8 -3 0 (it varies as s 3/ )
L 1,

nmumerical integration from the crigin is laboricus. To avoid this difficulty,

another procedure was used. Set;ing s=w2/2, Eq. (17) becomes,

N AN - (20)
The equaticr was integrated from the outside (w2: 2a/c) inwards (to w= 0)
and no dif'f‘.icul’ties arise as the origin is approached. The limiting .vablu/e
of /3 asw—> 0, i.e.,  is ea'sillyf.vdétennin_ed. The solution is started by
choosing, .erbitrarily, a.value of b, and Of(s at s=b and using Bq. (18)

or its equivalentlg'z 28/w to get the initial valuel of the derivative .of
B . It is only after the -éolutiop is complete-and the valus ofoC'ig -
determined that the temperature (fram Bq. (19)) and the density (from a- be
where ¢ is given by ¥q. (16)) can be evaluated. That these turn out to be

in an interest_ingregion requires judicious choice of the initial values of

b and 3, but this is not a real aifficulty.
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The numerical procedure is é}milar to that desoribed earlier.

The values of I ( 2 ) are'ébtained with the help of tables of the function

/2 (9)

Il/Q(Y) given by MacDougall and Stoner . The interval g is so chosen
thaet the error in er step which is approximately [ d '51
a er 2@3p P P % -

L/g( )
w d2

+3 —p (ig):l is kept below 0.0001l. This usually means that for large v,
P 8 .A 2

the interval g ocan be‘Q.OOE but as the origin is approached it is frequently
necessary (below w =1.) to reduce it to 0.025.

The wvalues of /3 as'a function of w for various cases are given in
Table 10,

After the potential digtribution”v 1s.known, we can calculate at
a given temperature and density, values for the internal energy and pressure,
The 1nt§rna1 suergy Etot is the sum of two terms, the potential onergy,
Epot' and the kipgtic energy, Ekin' e shgll caloulate tbego qgantities
in turn.

In calculating the potential ‘energy we must be careful to avoid
adding the‘(infinite) self;eneréy oé the nucleus. We find, ifd is some
very small radius,

Epot :_g. ‘fﬁa—: f Ve hTTr dr+.2. Z (V - Z°) . ) (a1)

N

The first term is the energy of the atomic electrons, belng theif‘charge

density. times the potential‘in.wh;ch_thex fipd‘themselves,'and the second

term is the energy of the nucleusjof‘chéége_ié because;qf:its‘ihteraction"

with the elactrons, the potential of this interaction being ¥ - z ."»1..9’:_. .

the total potential less that due to the nucleus itself. (The factor 1/2

arisges in the usual manner because calculating this way we count each 1nte}§ction

twice.) If for,F; » the expression given by Eq. (14) is used, the lower limit
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of the integral can be put equal to tero. For (V - %2 ) at emall r, we can

write 1ts equal, [d (Vr)/dr] s 0'. Chenging then to the coordinates 3

and s, we find

[P R
| Epot = -ZkTJ‘, (ﬁ TI ) -3 1 (2p/w ) dw., | (gz)
The integral is obtained numerically from the data of the solution.

The kinetioc energy of each electron of momentum pisp /an. Yultiplying
by the desntiy of eleotrous with 1ntegrati‘ng over all spece, we find for the

kinetic energy of all electrons

a ®
E = j Lmef ar _ p/2n '?2 : thpe ap/n’
kin o | . © {exp ( P /a-n - ev+)l)+1] .

This‘expression can be simplif‘iéd by a rather long sequence of operations.

(23)

If one inf:.e:grates'by parts first by r, and then again bty p» and theu uses

Bq. (14) to ‘re;')la.ce‘or»xe of the integrals on p one can show finally that

Jurt 2 f’" AR ()
kin ham 3 o [eoxp (p/f; AeVa+,\)*1]

where Vu is the velue of the potential at the surface of the atam r - a.
The inﬁegfal_ is, of ocourse, proportional to 15/2 (%'a eVy - ,\) (see Eq. (158)).
We next ocompute thg preasurc;. Since there is no field at r = a, all of the
momentum carried ‘across this surface (which in one ‘second per om2 is P, the"
' pressur'e)“must be carried by electrons crossinlg this surfece. This is the
‘reason why ccmput‘i»ng .the pressure at r = a is particularly simple., At this

point ptqssura';imply,appears as the pressure of a free eleotrom gas.
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One obteins

p= w% p* (pdm)"e 'hﬂ“p dp/h3
° [exp (2 2/om - eV
kT -

(25)

\)+1J

The value of Pv per atom where v = 35 is the atomic volume, is therefore

%‘rr
1>v=§.'¢‘.”‘“3 (om % 1)3/ (k'r)x (°v-'1) (ZkT) * 31 (B2
9h3 3/2 3/2 %
(26)

where ﬂb is the value of 3 on the boundary s=b. Comparison of Eqs. (2)

and (25) shows that we can express the kinetic energy as

- -1 .
Ekin = %pv B Epot' - (27)

This equation will be obtained more directly by consideration of similarity
transformation in Section VI.

The total energy per atom is therefore most conveniently calculated from

B, =2 Pvsl .
tot % +E'Epof:'

where Pv ig computed from Eq. (26) and the potential energy E . from Eq. (22).
= po

Actually the total energy is not interesting. What we should like to
know is the excess of this 'enefgy over what the energy would be if the

material were at zero temperature .and pressurs. That is, to find the net

internal energy U we must subtract from E_ , the energy of a single atom at

(11)

tot

zero temperature and pressure. This energy is biven by

3 %2 ¢ (0)
T A _ '
where £¢ is given by Eq. (1b) and ¢' (0) has been ocalculated to be -1.58875

(of. Section II).\' In terms of our present quantities, Zzezlq*:k T Z(2~“<-2/3)2/3,

(11) Cf. Slater and Krutter, ref, 1, end Section VI.’
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'

80 We have _
T=E + (k T 2) 0.6809 (2#2/5)2/3. o (28)

In this way Pv and U have been calculated for the various conditions
for which the differential equation was solved. The condifions/@b and b are
ziven iﬁ the first two colgmn; of Table 1l. The value of & which results
is given in the third coiumu. In the next three columns the potential, kinetic,
end net ihternai energy are given in units of kTZ so that they are applicable
for any Z. The ratio of the net internal energy to Pv, which we have called
1/(3 f1) is given, as well as the value of 4 to which this corresponds. The
ratio is written in this form in anaiogy to the perfeét ges formulae but it |
1s not to be assumed that in our ca;e.?.is actually yhe ratio of specific

heéts, nor the exponent in the isentropic equatiom Pv 7= constant. Yie define

# only through the equation % = Pv/( 4 -1)

The above quantitiés a;e independent of the value of Z; But to obtain
actual ﬁumericalz;alues for the temperature, atomic volume, density, and
prassure one must assume & definite substance.

The numerical values for these quantities for Fe 6 (unit of density

5
is 1 g/bmj) are given in columns 10 to 13 of the Table. For any other atom
of atomic number 2, atomic weight A, these values should be multiplied by
variéus.afctorsx
(1) temperature T by (2/26)
(i1) atomic volume V by (26/2)
(111)  density P by (2/26)(4/56)
{iv) :pfeséure P by (&/26)1Q/3.
The above calculations from the Fermi-Thomas model can be scaled, as

wag indicated, to apply to a substﬁnce with arbitrary Z. Por any definite
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A there are houever an effect it ls worthwhile to taka 1nto account.

H

To, the 1nterna1 energy per atom, Fe, one should add 3kT/2 to account for the
kinetic energy of motion of the nuqlei. For the seme reason, kT should be
added. to Pv to mcoount for the extra pressure developed by this motion.

Vi. SIMILARITY CONSIDERATIONS

We shrll summarize in this section a few simple reletions which apply
to the sleotron distributions obtained above.
The first of thése relations is the virial theorem, cénnecting pressure

P, volume v, with kinetio energy B and potential energy E
kin - pot

Pv= : 29
% Boot " Pan - ' o (29)

Ve shall égoi below ehatyfﬂ;¥ﬂe Fermi-Thomes approximation this virial
theorem is exactly satisfied. This fact has indeed been proved in the
literature for sdne spe}ihi cEséﬁ(I?). The proof'given'hé}é is more general,
We consider first a similarity transformation in which all charges
(iﬁclﬁdiﬁg the eleméntarj 8ﬁ£rkéief‘é?e chanéed by the factor (1+E), all
distanoces by the faotor (1'?,p'7'§nd all anergies by (1 + *K) The quantities
€, P, w\ ‘are ussumed ‘small compared to unltv. “The quantum of action h and
the eleotrén mnks n are asaumad to be unchanged. »
From the’ exprnssion for potential enérgy, the followxng relation obtains
i 1+q-(1+6)2/(1+f’) T
or }l 26~ p Jf‘ A

S5

(12)xLY.;Fqck;%Phys. zs.fd*Soijnf-Uhion;‘1{7u7.(1932)om
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The deBrbgliQ wavarlengthbk , as all lengths, must change as (1 + P );
thus momente change as 1/(1-+,P ) and kinetic euergies as 1/(1-+,p ) . However,

these energies, like potential enargles, must change ae (1 +"l). henee we

obtain ’L= 20  , | | : D ' (30)
and with the above.relatign '
6= -p. ‘ . - (31)
Equations (30) and -(31) give the change in potential distribution and in energy
due to a ckange of the changes,

If T%0, the two sim{iar systems to be compared must be such that the
temperature should changevproportionally to the energy of an'electrqn. Henoce
the entropy whioh,changesvaS'the hest trensfer divided by température Wilf
redain'unaltered.

We shall now tredat the effect of the change of charges by a'pcrturbation'
treatment. Consider first the effect of thé change iﬂ all charges gy tﬁe
factor (1 + € ), w1thout altering the eleotron d15tr1but1an., This we can ;

'consider accomp11shed w1th the aid of imaginary rigid and infinitely thin
wall; which subdivide the system and which prevent any change in electron
densities. (It is consi stent with the assumptions of the Fermi-Thanas modei;
to localize sharply,eleétrons even thpugﬁ their»momédtum distritution
is given, Iﬁtroduction of such‘wglls is therefors permissible.)” Thus densifiel
end hence kinetic énergies will remsin unaltered ;nd the change of total
~_9norgy will be‘ given by the change in potential énerg;’, namely, 2£Bp°t.
As a secend step we now permit'yhe imeginary walls o readjust themselves,
but we shall-keep in this step the’total‘volume unchanged, The éumpresaion

and dilatation of the volume elements will introduce temperaturé changes

which we allow to be equalized by heat conduction. Since any energy
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conducted awav fran one slement must go into another, the total energy
chanpe by conduction is zero, The work done by the moﬁion of the walls
' does not vanish exactly. Howé;e;} the displacement éf'fhe walls is
proportional to the electron density differences; sinee the pressure
differences ﬁfe also infihﬁtesimal, the actual work performed is quadretically
small;'"fhus'the eneigyrﬁﬁdnge in¥roducéd by changing the charge distribution
remains, to the firat"ordbf. éflEpot. We also observe that the ?ntropy
change due o heat conduction desoribed above is infihitesimél'té second
-ofder, sinoce both the amount of heat conducted and the temperature differances
are infinitesimals of the first order. |

In ordér to errive at the same "co-nf’igurati'on reached by the similarity
transformation, the volumé’muétindw’bé readjusteds ‘This is done by‘q volune
inorease {1 {/J) In this process, the entropy will be kept constant.
At the same time, however, the enéfgy of the system wili decrease by an
anount equal to the pressufe multiplied by the volume.chénne, i,8., by
p{3 P v)e Thus the'totgl'éngfgyfeﬁahge‘is ?ZSEpot - 3P Pv. Equating this
with Tltimek the originalhfoéainénérgy #e obtain

EEEOt -3‘va~)\(E§+Ekin)' T -
Us1ng Eq. (30) and (31) to express *\andjo in terms of £ we ‘finally have
2€E +6€Pv hi(s °t+gkin '

o Epot+2Kk1n =3 I )

The reaaoning Nhlch has just been described can be anplied equally

to oalculataons WIth and without exohange effects. The reason is that the

exchnnge energy, as all other potantial energles, is proportional to o /}.
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The chargctqristic distance entering into the exchange energy hgppgnp toAbg
the deBroglie wave lergth of tﬁe faptost,electron. ‘-
~ It is well known thst the virial theorem is exactly.validvfor & quantum
mechanical system (as well as for a élassical ;ystgm) *hen_the einct eguati;;s
of motion of the eieétrpns_and nupigi are taken into acgqpnt. _The above
gsimple argument merely shows that the viri#l theérem is not invalidated by
the simplifyinz assumptions introduced in the Fermi-Thomas metrods
It is 6; intere;t.to study a second similarity transformation which.
co,:_usists' of increasing the nuclear change and .gimultaneous‘ly.~.;1._ncrjeasing the
number of electrons so'that the sysfem remains neutrai, This similarity
trgnsforﬁatéon.deggribés‘co;relations‘bafweeq sclutions for_vnrious nuclear
charges;. it also leads to a fuﬁthe:_relation_beﬁween the various forme
of energy in tpekFérmitThomqs model. The prooedure to be desérised and
the relat}oné (ollowing frqm»it hold<on1y_fqr thé case where e;chhnéq'fprCea
are neglected. o o >. . | o - -
{t‘ig_tqkbﬁ‘notedlthat inithis simi}grity,ﬁrapsformation’iidoos npt.;ii
‘ ohange like other lengths, :Ih:fgcy, the FermijThomné equdtioq remains ;
unchanged,_butlwe do not retain thp dgtgiled migrqécopic-rélatiﬁns fraﬁ
wﬁich it is derived? ,The transrorﬁation'donsists of the folléwing'changoa:
Z—> 2(1 +3) |
r—— r(ll + L) g
E— §(1 + r\ )
Heré !.repfesents aﬁ&_féﬁm of_enorgj per elgctrpn, ;nd also stands for the
tembgégture T. Aﬁ fhe éame time electrén densiti;s Aré changed by the facto::

1+ )e

N _—— e
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We shall consider
S Fomy < 1.

It follows directly from the charge balance that

Fv)Ia+pPz 141 | (32)

‘or ': | v+ 3P = l;

" Sinoe the potentlal energy ‘of an eleotron must change as (1 *‘?l).

we have
S »
1705 - 1+n o
1 +.P - . &,‘:,, - 5
or -

Crepe L e

Since the kinetic enargy is proportional to the two-thirds power ot tho

eleotron density. for T Q,vwe grq‘}qu to postulate
{1+ ")2/3.. 1 +37i',.

or : o o o :

2y=xn - ' . - (3L)

) R

If we assume that the tamperature T nas changed by the faotor (1 4-?1), 1t

1s easily seen that the kinetic energy per electron will transfonm as (1 + P Yo

Bliminating v from Eqs.‘,(ie) (53) (5&). _we sot

f’“?" 38 )

If we now contlnuo to apply auoh similarity transformations until there is '

B R

4

a finita change of the nuclear charge and of the othar quantities 1nvolvod,

!"

we find that solutions of the Fermi-Thomas equation for different z values

~v -‘-(a,

are oorrelated ty the statements that the radius’ ohanges proport1ona11y to .

-1
2 /3, energy per electron 3 and the temperature change as Zh/z ) Por the

cass T=0, these statements follow directlv fror the well known form of

the Fermi-Thomas equation, We should also note that the total energy per
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atom changés as 22/3. Thus in an infinitesimal similarity transformation
the totél energy per etom is multiplied by 1 + 7:[/3.

We shell now treat the same problem by & perturbation method in the
following stepse. | .
(1) First we shall multiply the nuclear charge of a single pucleﬁs by
(1-+’Z ) and apply a perturbgtion_oaloulation. In this step we shall keep
the number of electrons, the volumé, ang the temperature uhchaﬁged. Due
to the complete shielding of & nucleus by its electrons, assumed through-
out thisbpap;r, the interaction of nuclei with each other and with electrons
of other atoms need not be considered. Thus ons obtains a ohange in energy
}f Ee s, Where Ee is the electrostatic interaction energy of electrons of -
’ ’
‘an atom with its nucleus. .
(i1) Second we édd;z Z electrons to re-establish the charge balaﬁoe.. This
addition gives'fhe'energy -f;ZEw, whera E' is the work function of the s0lid,
i.e., the energy needed to .extract an electron from the solid. If one wants
tq.apply ihis argument to an igqlate@ ion, then E' must be rasplaced by the ,'
ionizﬁtion energ& pf the outermost electron.
(134) As a2 third step the sélid is expanded. This expsnsion gives rise
to a change in enérgy of =3P Pv, where v is the atomic volume. |
(iv) As a final step the temperature is raiséd by)l T which gives the added
energyfq.TC*,'whére c, is the specific heat per atom st constant vﬁlume.
 The sum of tﬁesé eﬁeréy qbntributions is equal to the total energy chanpe
(7¢ /5)(Epot+ Bkiﬁ) obtained from the infinitesimai similarity transformation.

®e have thoraféré

7 . ' N T - |
35 Fpot” Bran) = DB g- LB - 3pevenic
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Using the relations betwsen l ,} , P we obtain

. % (Epot*skin) ?j'gﬁ,n:“—" .zgw* +3ch

’Uairig ‘the virial theorem and i_n:trbd‘uéing the relation

E  -E E ..
_ pot ~ e,_e* Ce,N 7 V
:where Eé o is the potential energy due to the interaction:of electrons

, ‘ , ,

E O

within an atofn, we gef ‘

3 Prrd B+ % "Ee' ?'x’:.-. ',-”zs:,’;, TC_.

jIn the speciala‘case of ::f‘%::OKand of isolated atoms, this relation becomes
particularly -simple. In favi:tt; i»n}_ this case P= O and the ionitation energy
‘E' is also set to zero, so that

E

s, N N ’TEe,o,_‘ *

This relation had been derived by. Fgfhi for the Fermi-Thomas equation.
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' CAPTIONS TO TABLES

Table 1

Coefficients of the series aolaﬁiﬁn for the Fermi-Thomas equation.
52 is the initial slope. See Equation (L).

Table 2
Numerical solutions of the Fermi-Thomas equation (withoiit exchange effects).
The initiml.slope a, for the various solutions is shown. The independent
variable is w = J/2x , where x is the conventional Fermi-Thomas variable.

Table 3

Sunmary of the numerical integrations for the Fermi~Thomas equation (without
exchange effects and for T= 0)e &, is the initial slope, Xy is the radius of
the ‘atom, @ (x,) is the boundary value of the ¥ function.™"

Table L

Coefficients of the series solution for %ﬁf Fer@%zThomas-Dirac equation,
8o is the initial slope and €= (3/3272) Y% - 0.21873 77

Table §

Summary of the numerical results (with exchange effects) for carbon. The
initial slope 25 and the boundary values are given,

Table 6

Results of the numeriocal integration of the Fermi-Thomag=-Dirac equation
for uarnium.

Table 7

Solutions of the Fermi-Thomas-Dirac equation for carbon. It is to be
noted that the more convenient independent variable w is used here.

Table 8
Solutions of the'?ermi;Thomas4D£§aé equation for uranium,
| Tablo 9

Solutions of the temperature-perturbation equation. Thé unperturbed
solutions associated with them may be identified by the given values of
8, Only the 1nteresting region is tabulated.

Table 10
Solutins of the temperature dependent Fermi-Thomas eéu&tion.

Table 11
Summary of the numerical results for the temperature dependent Fermi-

Thomas equatinon (See Table 10)., Various thermodynamios quantities
are evaluated oorresponding to these solutions for the cease of iron.
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TABLE I

_ L
a}_?

- 0
ah_.

.2
a5:'5_‘ a2

- 1
aé_?
a'l:%%

o
aB:_l_s_aa
a ._2 - 1 a
9 %2

-1 32
100°TK =2
311:, 31 32+1
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. TABLE 2

- Case 1 Case 2 Case 3 Case L Case 5 Case 6 Case 7 Cage 8
&, = 1.58806 1.58842 1.58856 1.58865 1.58870 1.5887L 158881, 1.58876
.92 «6L693 6L676 L6L6T0 <AL666 <6LE6S L6L663 <6LE5T .6L661

1,00 60732 60712 6070, «60699 60698 .60695 60689 «60693%

1.08 56886 | 56862 .56853 «56847 «568L5 .568L2 .56835 «568L0

1.16 53179 «53151 53100 53133 +53130 53127 .53118 5312,

1.24 L9628 119595 L9582 L957L «L9571 L9567 19557 L956L

1.32 Jib2l6. o LL620T L6192 L6182 L6178 L6173 L6162 L6170

1.40 Ai3039 - . W99l L2976 L2965 112960 L2951 - «h2oL1 L2951

1.L8 L0012 T .39959 +39938" e39925 . #39919 «39913 39898 +39909

1.56 37165 «37103 +37079 3706l «37057 «370L9 «37032 «370L5

1.64 -3LL96 JJdulialy | «34397 «3L4379 3370 34361 343041 34357

1.72 232002 «31919 . 31887 «31866 31856 3185 .31822 .318L0

1.80 29677 +29581 295Uk -29520 29509 «29L96 « 29470 29490

1.88 27517 27L05 . L27362 «2733L «27321 « 27307 27277 «27300

1.96 .25513 2538y - .25335 «25302 .25287 <271 + 25236 025263

2.04 +23659 23511, 23053 23416 «23399 .23380 23340 23371

2,12 «21947 . W2Y777- 21711 +21668 21618 .21626 .21580 21616

2.20 «20371 20175 « 20099 .« 20050 20027 20001 19948 +19990

2.8 .18923 J18697 . 18610 .18554 .18527 :18L98 .18437 #1885

2.36 +17596 7337 17237 .17172 J17141 17108 .17038 - ,17093%

2.4, «16383 - 16086 . ' 15971 15897 15862 .15823 15743 $15806

2.52 1527190 . w1939 - .14807 JAL722 14681 14637 1L5L6 618

2,60 <14278 . . . 413888 13737 «13640 - «13593 «13543 .130,38 e13521

2.68 Q13374 312928 112756 12644 «12591 .12533 121l .12508

2,76 $13563 . 12054 .11856 211729 11668 .11602 .11466 $1157)

2.8l 11842 +11259 o .11034 .10889 +10820 <1070, .10589 .10711

2.92 $11206 «10541- 1028} .10118 .10039 .09953 09776 09916

3,08 <10180.. . . . .09316 _ .08982 08767 08665 .08553 .0832) .08505

3,16 09786 -08802 08123 .08178 .08062 .07935 07675 .07880

3.2, 09472 08351 . .07920 L0760,2 .07510 .07365 .07070 .07303

gthic - TOEV

L2



Cags 1

w Cage 2 Case 3 Case L Cage 5 Case 6 _Case 7 Case 8
3,32 .09236 07960 L7470 07154 .07005 .0681,1 06506 L06771
3.0 09079 <0769 .07072. 06714 #0651 06358 05979 06279
3.LB .09004 07354 06723 06316 06120 05914 .051,85 .0582L
3,56 .0901L 07137 .06,21 .05961 <0574L3 +05505 05020 .05L03

3.6, .09111 06978, 06165 05604 05398 .05129 .04581 L0501,
3.72 «09303 06876 .05955 05365 .05087 .oL78l. 04165 . 0L65
3,80 00595 .06833 +05789 . .05123 .0L808 - .OLL66 .03769 04319
3,88 . 09997 .06851 05669 OL195 .OL560 .OL17L .03%90 04009

- 3,96 . . 06933 +05594 LOoLT7L2- .0l342 .03907 03026 - L0372
L.0L .07083 05565 .0L,603 .04152 «03662 .02673 03153
L2 07306 .0558 +0LLIT .03989 034,38 02329 .0320L
L.20 .07608 «05653 .0LL26 .03853 .0323], 01991 02971
L.28 «07995 05775 04383 03743 .03018 01658 .02753.

L.36 Lo +05953 .04,386 03660 .02880 01327 .025L9
Lobdy .06193 +0LL20 03603 02721 00996 .02357
Le.52 +06500 0LI93 03573 02591 00663 - 02177
L.60 . .04,606 03570 02169 .00327 .02007

- L.68 +O0LT763 «03595 02361 -.00015 .018L5
L.76 .0L967  .03650 .02267 : .01692
L.8yL .05223 03736 .02186 01505
L.92 - .03856 .02118 .01405
5,00 .04011 02062 .01270
5.08 04,206 .02020 .01139
5.16 ~OLLL3 .01989 .01012
5.2 ‘ 01972 .00886
5.32 .01968 .00764
5.L0 01977 .00643

5.8 .01999 .00523
5.56 - 402037 +00403
5.6, 02089 .00282
5.72 - .02158 .00160
580 . 00037
5.88 -.00087
5 .

82

. Bife - doxv
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TABLE 3
- a2» _XO o (xg)
1.58806 7.3854 «0979
1.588,2 8.588, .07395
1.58856 9.5651 ..0599'0
1.58865 10.8038 .oh’}ol
1.588 11.96 0381
5 -70 9 3& 3 13
1.5887L 15.8 .0208.,
5 698 &
1.5888];* 140'9358 o]
1.58876% . 16*»‘.982}; 0

* jons




30

ARCD - 2LL48
In
€
2
324-%.6
as € +€'3
- B
2 2
gee +%U &2+%€
77 ¢ ©
21 €
1 11
= "2t yp %ef
s 52+%§é3+-i%56h




AECD - 2448

v (x,)
0.23194

0.160L6

. 0.,06124

0.039L2

0.01079

31
TABLE S
b H

fi.é?bb %.2617

'1.6800 3.7153

21;68h0 L3784

§1.6858 5,1678

;1.6865 5.7201

fl.é&éz . 7,008l
b _
x5 %, = 6.2¢
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TABLE 6

Tey %, "““i}i;;f”

1.6039L  6.5139 0.1016l
1.60LLL © 7.L877 ~ 0.07L95
"1.6048L 10.2143 0.03507
1.60488  11.3326  0.02623

1 1.60490 12,4037 0.01991
"1.60L91 13.3862 © 0.01551
1.60&915 1Lh.2941 0.01228
1.60l92 15,6084 0.00871
1.601;92h. 19.13301 0.00286
1,60500 * 0
* Ion,

Xo (}): 19.0) = 16.’47




"TABLE 7

Case 1 Case 2 Case 3 Case [y Case 5 Case &

ay = 1.6740 1.6800 1.68L0 1.6858 . 1.6863 1.6867
Y v ¥ v Y Y

92 62232 | 461957 1 61774 61691 61668 61650
1.00 .58007 57676 «5T7U55 «57356 57328 «57306
1.08 +5392L 53528 <5326l 53145 53112 53086
1,16 50013 - WLosl3 L9230 L9089 .LgoLg .Li9018
1.24 . L6300 ©elsTlL -L45373 L5206 .1i5160 L5123
1.32 © LL2803 216 A1709 41513 L1458 Lkl
1.40 +3953L .38763  .382L9 . «38018 «3795L +37903
1.18 © o e36507 . 435602 «3L999 34728 «3L653 «3L593
1,56 - #3377 S «32667 «31962 «316LL 31556 .31486
1.72 0208935 « 27487 . 2652l « 26091 «25970 «25874
1.80 26933 L2522 .24118 «23613 23472 «23361
1.88 e 25202 23228 «21916 021327 .21162 21033
1.96 237LT 242 .19913 . .19227 +19033 .1888L
2.0l L e22578 419888 .18104 17304 +17078 016905
2.12 © 21707 .. . e18565,  © .1648L 015552 15288 +15087
2.20 «21150 PR ITLTT .. «15050 01296l +13656 13422
2.28 .20927 - $16630°° | 13797 .12532 .12172 .11901
2.36 .21067 216034 - . .12725 11251 .10831 21051
2.4, | .21605 .15701 .11833 .,1013 «09623 .0925),
2.52 . 22589 +156L9 . JA1120 .091 08542 .08112
2,60 +21,080 " +15903 .10595 .08250 .07582 .07081
2,68 26156 <1690 .10261 .07518 .06738 06153
2.76. .28920 . «17465 10129 06917 06005 05321
2.84 : +18870 .10214 06417 .05378 04579
2.92 : : .10536 .06109 .0L857 .03920
300 omwe e 011123 .05909 - -0L);38 0330
2,08 . . o ; .12011 ~ .05853 - .0l123 02833
3.16 o - C W13247 . .05953 - 03914 402396
3.2 - J1l892 0622 .03814 .0202)4

-03975 -01L65

githc - AdIAV
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TABLE 7 (Cont‘'d)

Case 1 Case 2 = Case 3 Case h " Cese 5 o Case‘é
. ' v . A

04261 01275
: 01143
01072
. +01063
01123

.01259

o 4]

gne - aoEy



" TABLE 8

Case 2

C&se;9

Case 1 Case 3 Case L Case 5 Case 6 Case 7 Case 8 Case 10
a, = 1.6039L  1.60LLL  1.60L8L  1.60L88 1.60L90  1.60491 1.60L915 1.60L92 1.60L92L  1.60500
v DA 4 b hd hd ' ¥ Y \d
92 L4210 84187 L1659 L6L167 L6166 L6166 61165 64165 WAL L6
1,00  .60189 .60161 .60139 .60137 .60136 .60135 60135 L60135 60134 .60130
1,08 .5628L 56251 56225 56222 .56221 .56220 56220 +56220 56219 56214
1.16 .52521 Sas2  .52451 L5218 S2Lh6 <5215 «52LL5 <52l <52LbLlL .52438
1.2, 18017 18871 14883 .1,8830 .118828 ..,8ge8 - .,,8827 .1;8827 .1,8826 .1,8819
1.32 L5485 Jdshi31 0 W15387 45383 L5381 .115380 153719 L5378 - L5378 L5370
1.40 Leez2 L2160 42118 .L2113 142110 442109 L2108 L2108 - L2107 142097
1.48 .3916L - .39089: 39030 .3902 239021 .39019 | +39018 439018 « ¢39017 «39006
1.56 «36279. $36192 - 36123 36116 .36113 ¢ 036111 «36110 ~e36109 «36109 - «36095
1.64 33578, 33477 233396 .33388 03338l 433382 .33381 © 33380 33380 <3336,
1.72 «31057 - «30939 L3086  .30836 - .308%32 . .30829 ;30828 430827 | .30826 . 30808
1.80  .28710  .2857h  .28L65 - <28L55  +28LL9  .28LL7  .28LLS - s2BLLL .2BLL3 .
1.88 « 26532 26375 L2629 26237 $ 26231 . ,26228 26226 26225 - .26223 . 26199
1.96 21517 .23%6 2190 - s2L176 L2Lleg o L2L165 25163 24161 .2,160 24132
2.04 « 22658 22418 $22280 . 2226l .22255  .22251 2229 22247 22245 .22213
2.12 . 20947 «20705 .20511 20492  .20L83 . 20478 - 20475 « 20473 «20471 20434
2.20 .19%78 .19099  ,18875  .18853 .18842 .18837 .1883L .18831 .18829 .18736
2.28 LA70L6 . .7621 0 L1736 .17339 17326 17320 17316 .17313 17311 .17262
2.36 14637 .16266 7.15970 «15941 .15926 .15919 - .15915 .15912 +15909 .15852
2.1l 15452 - .15006 ~1L686 JL652 14635 JL627 L6222 618 14615 <14550
2.52 <1384 «1389L° 713503 JA3L6L L1365 L13L36 - L13L30 3426 -.13L22 13347
2,600 13427 L1286 - L12l16 12371 .12319  L12338° 12332 212327 «12323 . e12237
2.68 JASBT7T 0 CW11931 0 011417 L11366 0 L113L0 .11328 11321 $11315 .11310 - W11212
2,76 . .11831 7 ,11089 .,10500 Jd0LL2 - .10L13 .10398 »10390 .1038, ..10378 10265
2.8,  J11185. .10335 ..09660  ©.09593  .09500 -~ .095L3 - .0953L 09527 09520 09391
2,92 ~ 10637 - .09663 -.08891 - 08815 08776 .08757 0874LT .08738 .08731 .08583
3,00 .10187 09072 ~ .08188 .08101 ~ ,08057 .08035 .08023 +08014 .08003 .07836
3.08 .0983L .,08557 . sO75L7  LO7LLY 07397 07372 «07359 07347 - 07337 07115
3.16 . 09579 . LOB117 . ..06963 L0689 06792 06764 06748 06735 L0672, 06504
3.2 <o9k2l,  ,07750  L06L32 .06302 .06238 . 06205 .06187 L06173 .06160 .05910
3,40 09430 - 407235 .05519 .053250 05266 05224 .05201 .05182 .05165 .0L8la

ghhe - aQOHvV

g




TABLE 8 (Cont'd)

Case 1 Case 2 Case 3 Case Iy Case § Case 6 Case 7 Case 8 Case 9 . Case 10

v v v vy vy Y v v W

09603 .07088 .05130 04538 .oLBL2 OL7IL - J0LT768 LOL7TLT  LohT7e7 .0l,359
«09900 %<07017.  ,04783 .0L56L .OLL56 .041,01 LOL371 - LoL3LT 0l325 .03907
«10332 .0702, LOLLT76 04227 .0L10L .oLoL2 .0,008 .03981 .03956 .03,80
07114 .04207 .03925 03785 L0371, L03676 L0360, .03616 03077
07293 - L,03975: . 03655 . .03[,96 031416 03372 . +033536 .03305 0208,
07567 03779 .03L15 .03235 L0311, .03095 L0305, .03018 .02326
03619 .03205 .03001 .02898 L0282 02796 .02755 01973
03193 ,03024 02792 02676 02612 . L02560  L02514 .01629
<0302 .02870 «02€07 02475 .021,03 2023 02292  .01293 .
L03347  ..027h2 L0245 .02296 L0221 L2148 .02088  ,00962
.03328 0262  ,02305 .02136 0204} 01969 .01902 00633
03347 .02568 02186 ~ .01995 .01'91 .01806 01731 .00303
03406 .02%521 . ,02088 01873 .01755 .01659 .0157L :
.03507 .02502 .02012 .01768°  .0163, .01526 .01430

° © © 0o o @ © .9 & @ _6_
RRrESRLATITERRYRLREERNERE (¢

. .0%11 ~ ,01955 .01680 .01529 .01L07 .01208
0551 .01920 .01608 .01},38 .01301 . .01178
. .02622 .01907 01554 .01351 .01206 .01068.

.02728 .01916 .01516 .01298 =~ .0112, 00967
© - L,019L48 01495 01249 .01052 00876
02005 .01)92. 01214 .00991 .00793

: .01507 .01192 .00941 .00718

.01541 .01185 00001 - .00650

.01596 .01193 .00872 .00589

.01216 .00853 L0053}

.01255 .00815 «0L85

L] *® 0 © o

.

L] * 3
=
©

A8 .0081,8 oolLL2
56 .00862 .ooLoL
6l .00889  LO0371 -
o 72 00301,
.80 00321
.88 0030l
<96 .0029] -
0L .00263

2912 .00280
;20 .

g 00282

«00290°

9¢

ghhe - qoAY



TABLE 9

2, (gzz;.58856) i_g, ¢ (a,=1.58865) é—f’ 8, (8= 1.5887&)3.5.

€

LRSS TS S SN

[ I S ARV C VAN AR VAR VEG VG VAN VR VAN VAR VAU T RGN

19.211 19.223 3,60 .310.28
68.757 68,833 3.6l 829.73
2l 712 ,_ 211,730 3,68 376,66
86,027 86.179 3,72 987,60
21.594L : 31.621 3.76 L55.67
1107.07 107.2 3,80 1171.9
Lo.160 - - . L0.200 3.8 5L9.42 o
132,61 132.84 3,88 138646
50'768' N ' 50-827 3992 660035 m@
163,15 ‘ 163.79 3.96 : 1636.,0
63.8L, . 63.931 L.00 791.23
_79.868 80,014 ' L.08 945423
T 215,00 al5.69 L12 22590
99..88 RS 99.669 L.16 1126.0
Stase . 298406 299,03 L1620 2641143
12333 o ‘ 123.59 L.2y 1327.5 :
‘ 361.16 362,51 L.28 3087.6
152,22 152.59 ' L.32 158L.5
LY L35.94 . L37.79 Le36 3596.6
187.10 187.61 . LeLO 1872.2
229,04 - 229476 L.L8 2206.6
o 628.2, 631.62 L.52 - L8L7.1
27930 Con 260.29 Les6- - 2594l Co
e 750430 ‘ 754 T7 L.60 5608,7
339433 S 3L0.67 L. - 3043.1.
. - 893.18 ' 899.00 L.68 Q7647
L10.79 ' L12.59 L.72 356142
s © 1060.0 ' 1067.L4 L.76 TLéL .3
L95.59 ’ L97.98 _ .80 L1581
. : 1254L.4 1263.7 L.8L 8586.L
595.94 _

599.08 L.88. L8LS.3
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TABLE 9 (Cént'd)

B, 1LEe)EE g, L) TE e Lsterh) S
"3,92 : 1480.5. ; U91.7 - L.92 9859,8
3,96 - Tihe38 718.11 | L.96 56341,

L;.00 R 174360 17561 5400 - | 11303,
L.oL 853.82 i 858.90 K S0l T 653843 :

L.08 ' 2044746 - 2062.1 5408 12938.
Le12 1017.6 1023,9 | 5.12 o 7573.L

lie16 2,01,0 ‘ 2415.7 5.6 ' 1L,789,
Le20 - 1209.7 o 1217.1 \ 5420 875645

Le2l | 2611.1 g 2823.8 542, ' 1688L.
L.28 1434.6 o 1L43.0 e 5,28 10107,

L.32 - © 3287.5 3290 5432 S 19256,
Le36 1697.6 . 1706.6 \ 5436 11648,

LeLo 38L,2,0 3837.0 540 - ' 21942,
L LL89.1 LL62.8 548 2987,
L.52 - 2361 - 2370.6 , 5.52 15402,

L.60 2785.4 5460 17678, B

Le6ly | 60209 5u6ls | 32375.,
L.72 6989.3 5472 36856.
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AECD - 2448
Tsble 10.

Case 4

- Case 5

=

B

2o
o O

PN T e e e e 4 e e e e e e a e e e s e e
FW N OO~ FWw OV @) AW N OW @~ AU F W OMN M- AN Lo N H O - O\ l"kn'f\)HO\O(D—\lO\\ﬁ{—‘qu\).

OV GNONON NI\ U AT UT AT LU 1= 47 27 3 4 B B 5 4 0 Lo (0 G0 o W W o RO RO PO R R R R RO R R R o bt e o b 1= b bt s

!\).ur(n FEWUWU ONON OV
P N NN
\
[l nal At I\ VI \ VA GV RGTR VS N WA N U R OS]
C

s

3.7659
3.7162
3.5762
3.3584
3.0736
2.7302 -
2.3338
1.8872
1.3906
8419
-2377
-.42L8
-1.1481
-1.9324
-2.77182
-3.6856
-4.6548
-5.6857
-6.7783
-7.9326
-9.1486
~-10.4262

. -11.765%

-13.1660
-14.6280
-16.1512
-17.7356
-19.3812
-21.0876
-22.8547
-2k 6825
-26.5708
-28.5192
-30.5278
-32.5962
-34.7242
-36.9116
-39.1580
41,4632
-43.8269
46,2487
-48.7282
-51.2653




-131.0720

40 AECD - 2hL8
Table 10 (Continued).
Case 6 Case T Case 8 Case 9 Case 10 Case 11
W B B B B I B
.00 6.8918 .31208 5.8808 2.3570 5.2326 30.3768
.10 6.8136 27857 5.8127 2.3156 5.1661 29.8kgk
2 6.6016 17822 5.6268 2,1961 4,9820 28.47Th
.3 6.287h .01115 5.3472 2.0044 4. 7006 26,5480
A 5.8992 -:2227 b 9964 1.7452 4,3415 ©2h.2840
.5 5.4604 -.5232 4 .5922 1.k217 3.9179 - 21,8776
.6 k.9902 -,8908 4.1h92 1.0351 3.4402 19.4648
T 4,502k -1.3250 3.6T73 5849 2.9148 17.1384
.8 4 007k -1.8262 3.1828 . 0694 2.3438 14,9551
.9 3.5111 -2.3940 2.6684 -.5130 1.7262 12,6442
1.0 3.0162 -3.0288 - 2.1336 -1.1631 1.0576 11,11L%
1.1, 2.5229 -3,7302 1.5756 -1.8812 .3328 G.4598
1.2 2,0294 -4 4986 .9902 -2.667h -.4530 T7.6651
1.3 1.5328 -5.3336 3731 -3.5216 -1.3036 €.6084
1.4 1.0224 -6.2360 . -.2804 -4 ukko -2.219% 5,364%2
1.5 .5028 ~7.2046 -.9731 -5.4346 -3.201% L, 2054
1.6 ~. 02762  -8.2400 -1.7048 -6.4933 -4 2498 2.1051
1.7 -.5698 -9.3422 -2 4766 -7.6201 -5.3648 2.0387
1.8 -1,1237 -10.5110 -3.2886 -8.8150 -6.5464 5857
1.9 -1.6887  -11.7L466 -4 1hk10 -10.0780 ~T.7947 -:06935
2.0 -2.2636 -13.0490 -5.0338 -11.4090 -9.1097 -1.1370
2.1 -2.8470  -14,4180 -5.9666 -12,.8081 -10.4914 -2,224€
2.2 -3.4365 -15.8536 -6.9392 -1k .2751 -11.9396 -3.3385
2.3 -4.0298 -17.3558 -7.9511 -15.8100 -13.4546 -4 LEL2
2.4 -4 ,6236  -18.9247 -9.0018 -17.4129 -15.0360 -5.6582
2.5 -5.2146  -20.5601 ~10.0908 -19.0836 -16.6840 -6.8€20
2,6 -5.7986 -22.2620 -11.2172 -20.8222 -18.3984 -8.0961
2.7 =6.3704  -24.0304 -12.3805 22,5284 -20.1790 -9.3604
2.8 -6.9243  -25.8652 -13.5797 24 .5024 -22.0260 -10.6544
2.9 - -7.b536 -27.7663 -14.81%0 . -26.4439 -23.9391 -11.9776
3.0 =29,7337 -16.0822 -28.4530 -25,9182 -13,3251
3.1 -31.7673 -17.3833 -30.5295 -27.9634 -14,707%
3.2 -33.8670 -18.7161 -32.6734 -30.0743 -16,1128
3.3 -36.0328 -20.0790 -34.8846 -32.2509 -17.5422
3.4 - -38.2644 -21.4706 -37.1629 -34,4930 -18,9946
3.5 -40.5619 -22,8893 -39.5082 -36.8006 -20,Lk682
3.6 -42,9250 -24.,3332 -41.9206 -39.173%4 -21,6610
3.7 -45.3538 -25.8002 L% 3996 -41.6112 -23,Lk70€
3.8 -47.8480 -27.2881 -46.9453 -k 1140 -24,5546
3.9 -50.4074 -28.7945 -49.5575 ~h6.6813 -26.5302
4.0 -53.0320 -30.3166 -52.2360 -49.3131 -28,074k
b1 -55.7214 (-31.0828; 4.05) =54 .9806 - -52,0092 -29.6236
h.2 -58.4756 -57.7912 - 54,7662 -31.1740
4.3 -61,2944 -60.6676 -57.5928 - -32.7216
Lh -63.6094 - ~60.4800 (-33.5928; 4.35)
h.5 -66.6165 . ~63.4368
4.6 -69.6886 -66.4564
b7 -72.8255 ~69.5388
4.8 -76.0268 ~72.6834
k.9 -79.292% -75.8899
5.0 -82,6218 ~79.1578
5.1 -86.0146 -82.4868
5.2 -89.4706 -85.8764
5.3 -92.9893 -89.3262
5.4 -96.570% -92.8355
5.5 -100.2132 -96.4039
5.6 -103.9176 -100.0308
5.7 -107.6830 -103.7156
5.8 -111.%5086 -107.4576
5.9 -115.3942 -111.2563
6.0 (-117.3593;. 5.95)  -115.1108
6.1 © =119,0205
6.2 - -122,9845
6.3 -127,0020
6.4

o




Table 11. . ‘ / For Fesg g
_ . .
Case By b @ B /MIZ By/krz Pyfkrz - Ufsz 1 vy Tiy = (428)B/3 160 3109% . ks,3 per/on’  Puegavars 3
: - 0.4936 -1 SV 3
™ TkV
1 ;_13.5000 5.4000  7.2021° .“-13.5756 7.5715  0.5227 1.2210 2.336 1.428 0.2231 1.259 A° 8.353 A°3,.‘-{~ 11.8_7.1; 581.5 ) o
2 -22.801k  6.6612 39T - 5‘.1?526 3.780p  0.7028 1.6014 2,278 1,439 0.4926 ‘lom . 8.659 11.455  1665. ::'%?;
-51.6200 11.5200 ~ 9.8160 -20.2666 10.882 0.5210 1.5976  3.066 1.326 0.1476 2.977 110.54 ‘ 897k 28.97
L -68.9520 13.5200  6.8602 -11.65T6  6.7993  0.6470 1.9122  2.924  1.342 0.2381 3.101 124 .91 .T64s 5140
5 -92.5120 15.6800  3.7659  -4.2351  3.360 0.8283 2.1681 2,618 1,382 0.5297 2,94k 106.88 .9280  170.9
6  -T.4536 L4.2050  6.8018 -15.0606 7.2902  0.5266 1.1017 2.092 1,578 0.2366 0.966 3.77h4 26.28  1375.
7 -61.294%F 9.2450  0.3121  -0.0676  O.77h2  0.5936 0.8165 1.654 1.605 14,660 0.757 1.816 5h.62  1.66 x 102 - S
8 -31.0828 8.2012  5.8808  -9.6867 5.T792  0.6239 1.6059 2.574  1.389 0.2923 1.787 23.893 b1ss 3,179 "
9 -117.3593° 17.7012  2.3570 -1.7505  2.2511  0.9172 2,1298 2,322 1,431 0.9892 2,844 96.30 1.030  392.k4 }‘
10 -131.0720 20.4800 © 5.2326. -7.0961  4.7536  0.8037 2.3760 2.956 1.338 0.3416 k. 292 331.04 2996 3h4.54
11 -33.{;928 9.4612 30.3768 - -97.300 49,0072  0.2380 0.7632  3.207 1.313 \0.0326 3.567- 189.52 5235  1.703
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