

Rapid Biomass Analysis – NIR Spectroscopy

•Corn Stover Feedstock Equation:

- •77 samples in the calibration
- Predicts 14 constituents (4 shown) with average mass closure 94.1% and std. dev. 5.0 % (dwb)

- Wet chemical methods are used to calibrate rapid analysis methods
- Retain precision and accuracy of calibration methods
- Fast/Less labor intensive
- Inexpensive for routine samples

	Constituent	Min	Max
 77 samples analyzed with newest methods 	EtOH_sol	1.5	6.7
	Sucrose	0.1	13.6
	H2O_ext_oth	3.7	21.9
	Glucan* C-6	25.7	40.7
 Average mass closure- 100.0 <u>+</u> 3.8% Implemented in WinISI® and Vision® 	Xylan* C-5	11.2	30.8
	Galactan	0.5	2.4
	Arabinan	0.9	6.1
	Mannan	0.2	1.4
	Lignin*	6.2	25.1
	Struct_inorg	0.3	13.5
	Ext_inorg	0.0	7.5
	Protein	1.3	8.4
	Acetyl	0.7	4.2

Corn Stover Feedstock Model (SNV-detrend-1D)									
Constituent	Mean	Max	Min	Samples	PCs	SECV	1-VR	SEC	
Ethanol Extractives	4.2	2.0	10.7	68	7	1.4	0.41	0.97	
Sucrose		66%	oft	otal	5	0.9	0.92	0.71	
Water Extractives	1	00 /0	01 1		3	2.6	0.50	2.17	
Glucan	3	19%	of to	otal	7	1.5	0.79	1.09	
Xylan	18.4	13.5	21.5	68	7	0.9	0.76	0.58	
Galactan	1.5	0.5	2.9	69	3	0.3	0.38	0.29	
Arabinan	2.6	0.9	4.1	69	3	0.4	0.46	0.33	
Mannan	0.4	0.2	1.4	69	3	0.2	0.20	0.16	
Lignin	14.1	8.6	24.7	68	6	1.4	0.73	1.02	
Structural Inorganics	3.4	0.8	8.8	66	7	1.2	0.70	0.88	
Extractable Inorganics	2.6	0.4	7.5	69	8	1.2	0.39	0.74	
Protein	3.4	1.3	7.0	69	8	0.5	0.78	0.34	
Acetyl	2.2	0.7	3.4	69	5	0.3	0.69	0.24	
						-¢‡+NR≣	L National Renew	able Energy Laboratory	

Effect of Spectral Pretreatment on Glucose Model Predictions

Pretreatment	PCs	SECV	1-VR	SEC		
SNV, detrend, 1st derivative	7	1.66	0.75	1.22		
None	10	1.81	0.70	1.36		
MSC	9	1.78	0.71	1.39		
MSC + 1st derivative	7	1.60	0.77	1.16		
SNV	10	1.82	0.70	1.35		
SNV + 1st derivative	7	1.62	0.76	1.17		
1st derivative	9	1.65	0.75	1.05		
None are statistically significantly "better" (P=0.05)						

