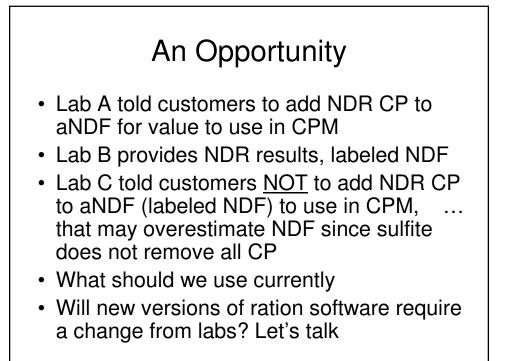


Outline


- · Analysis inputs needed
- · Differences in methods/calculations
- Results Comparisons among labs
- Consequences of differences
- Recommendations

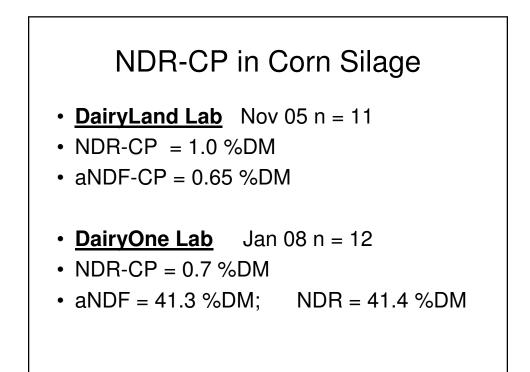
Needed CPM analyses & references

- DM Dry Matter , determined by heating below 60 C
- CP Crude Protein = Kjehldahl N x 6.25
- SP Soluble protein after 1 hr in borate-phosphate buffer
- NPN– Non Protein Nitrogen (ProtA), SP tungstic acid precipate (ProtB1)
- ADIN Acid Detergent Fiber Insoluble Protein (ProtC)
- NDIN Neutral Detergent Fiber Insoluble Protein; (NDIN ADIN = ProtB3)
- ADF Acid Detergent Fiber
- NDF Neutral Detergent Fiber without sodium sulfite, ie. NDR
- peNDF NDF remaining on a 1.18 mm screen after dry sieving
- Lignin ADF with 72% Sulfuric Acid; Lignin x 2.4 = unavail. fiber (ChoC)
- Available NDF = (NDF(no sulfite)-NDFCP)-(ligninx2.4) (ChoB3)
- Ash inorganic residue after combustion of organic matter
- · Ether Extract Fat and compounds extractable by ether
- NFC Non Fiber Carbohydrate; NFC = 100 (CP + Fat + Ash + NDF-NDIP)
- Silage Acids acids produced during ensiling (ChoA1)
- Sugar Cho extracted by water at 39 C Hoover WVU 1997 (ChoA2)
- Starch Hoover WVU method 1997 = starch, sucrose, fructans (ChoB1)
- Sol Fiber pectins beta glucans = NFC (acids + sugars + starch) (ChoB2)

CPM Carbo	ohydr	ate Tab –	adva	nced	rate in	nputs
	Ø Edit Fe	eed				
NDF(no SO3) = NDR or [aNDF + NDR-CP]	New C/Sil	28DM 1-6-07	35.00 3		Date 0-00-0000	Forage 💌
Avail NDF (ChoB3) =	\sim	ohydrate Fat MinVit		· · ·	Dataa	Tabaat Dissat
[NDR-NDRCP]- UnAvail		trient Fraction ADF	%DM 30.000	%NDF	Rates %/h	Intest Digest %Escape
Unavail NDF (ChoC) =		NDF	49.000	l		
Lignin*2.4		peNDF	45.080	92.000		box, RoTap, U box eq.
		Lignin	4.900	10.000		o box eq.
<u>"kd rate calculator"</u>	ChoB3	Avail NDF	35.245	71.929	3.800	20.000
Ex: NDF 45%, Lignin 4%, 3 hr	ChoC	Unavail NDF	11.760	24.000	1	_
lag; 45% NDFD24 = 4%/hr		Ash	4.000		_↓	
35% NDFD24 = 2.8 %/hr makes 3 to 5 # Milk		Ether Extract	3.188			s Release alysis rate
NFC = 100 - [CP + Fat +			36.308	%NFC	adj	justment
Ash + (NDR-NDRCP)]	ChoA1	Silage Acids	6.172	17.000	0.000	100.000
Soluble Fiber = NFC -	ChoA2	Sugar	1.452	4.000	300.000	100.000
	ChoB1	Starch	28.320	78.000	15.000	80.000
[Sil Acids+Starch+Sugar]	ChoB2	Soluble Fiber	0.364	1.000	15.000	80,000

AGRICULTURAL MATERIALS

JINTZ ET


Effects of Sodium Sulfite on Recovery and Composition of Detergent Fiber and Lignin

RODNEY W. HINTZ and DAVID R. MERTENS U.S. Department of Agriculture, Agricultural Research Service, U.S. Dairy Forage Research Center, Madison, WI 53706 KENNETH A. ALBRECHT

en of Agronomy, Madison, W	NDR	aNDF, %	
Crude protein, %	Without Na ₂ SO ₃	With Na ₂ SO ₃	Difference
53.94	30.44	6.27	24.17
30.44	52.32	40.87	11.45
25.57	38.56	27.89	10.67
52.91	30.79	22.18	8.61
46.15	18.48	12.44	6.04
17.06	43.57	42.15	1.42
7.65	36.08	34.74	1.34
	Crude protein, % 53.94 30.44 25.57 52.91 46.15 17.06	Crude protein, % Without Na ₂ SO ₃ 53.94 30.44 30.44 52.32 25.57 38.56 52.91 30.79 46.15 18.48 17.06 43.57	NDR aNDF, % Crude protein, % Without Na2SO3 With Na2SO3 53.94 30.44 6.27 30.44 52.32 40.87 25.57 38.56 27.89 52.91 30.79 22.18 46.15 18.48 12.44 17.06 43.57 42.15

	NDR CPE	in aNDF, %	-units
Sample	Without Na ₂ SO ₃	With Na ₂ SO ₄	Difference
Fish meal	10.43	1.29	9.14
Brewers' grains	12.16	4.65	7.51
Distillers' grains	11.01	3.68	7.34
Meat scraps	15.70	8.37	7.33
Soybean meal	3.63	0.48	3.15
Alfalfa haylage	2.53	1.45	1.08
Corn silage	0.72	0.50	0.22

а	NDF & Da	NDR-C		iges		
aNDF NDR-CP						
Legume	Silage	39 – 8	50	2.3 - 4.5		
Corn Sila	ge	37 – 49		0.9 – 1.5		
Distillers Grains		28 – 38		6.2 – 12.9		
2008 n=24 DairyOne	NDR_CP	aNDF	NDR	aNDF + NDR-CP		
Нау	4.6	49.3	53.7	53.9		
Haylage	2.8	50.4	52.8	53.2		

NDR @ 46 or aNDF @ 43 effects

- peNDF: .92*46 = 42.3 or *43 = 39.5 over/underestimate fiber adequacy/capacity
- Affect on Avail NDF Kd (8.6 lig; 3hr lag; 43 NDFD30)
- NDFD: Digest total then aNDF or NDR? Or isolate aNDF or NDR then digest? Flask/crucible or Filter bag? Effect of 1, 2, 4, 6 mm grind size on Kd prediction equation
- RFV and RFQ effect using aNDF vs NDR ?!?

Wh	What CNCPS/CPM input ?								
				-	/I "True NDF DR – NDR C				
	aNDF	NDR	NDR CP	aNDF- NDRCP	NDR – NDRCP				
Corn Silage	34.7	36.1	0.7	34.0	35.4				

2.5

11.0

39.7

16.9

41.1

27.6

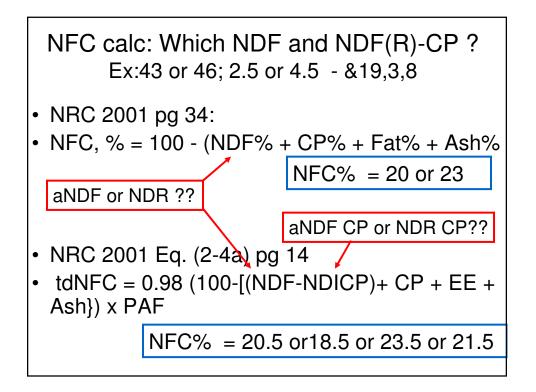
Haylage

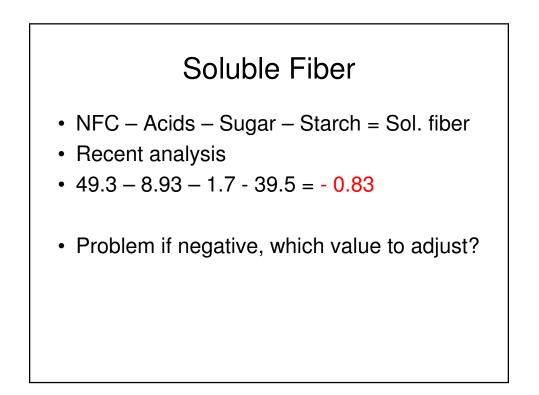
Distillers

42.2

27.9

43.6

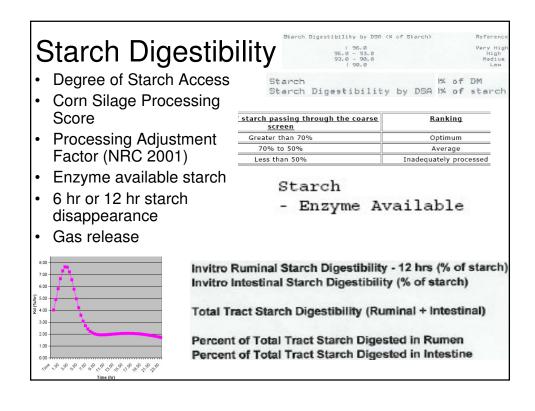

38.6

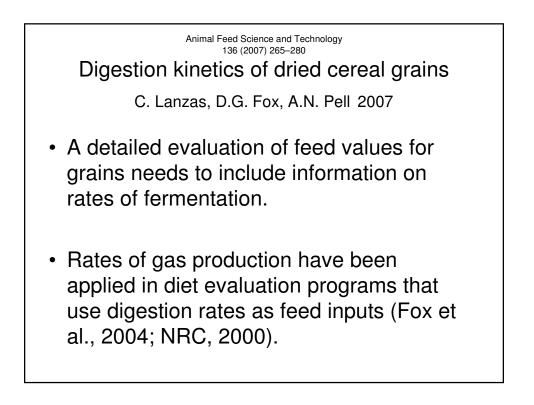

How	did on F		com 2006	•)							
Grand Avera	ge of 13 CS	5 samples	s across La	ıbs								@ Acid=7
	DM	СР	ADF	NDF	Lignin	L/NDF	Ash	Fat	NFC	Sugar	Starch	Sol Fiber
Grand Avg	35.5	8.0	24.5	41.1	3.3	8.1	4.2	3.2	45.2	3.1	32.4	2.7
Lab #1	35.9	8.4	25.6	42.5	3.6	8.5	4.2	3.4	43.0	4.1	30.2	1.7
				hi 9					h 4	hi 10	hi 1	
				mid 4					m 7	mid 3	mid 6	
				lo O					12	lo O	lo 6	
Lab #2	34.5	7.9	23.5	40.7	3.2	7.9	4.0	3.2	45.7	3.6	35.8	-0.8
				hi3					hi 4	hi 3	hi 11	
				mid 6					mid 8	mid 10	mid 1	
				lo 4					lo 1	lo O	lo 1	
Lab #3	35.9	7.7	24.5	40.1	3.1	7.8	4.2	3.0	46.9	1.6	31.3	7.0
				hi 1					hi 8	hi O	hi 1	
				mid 5					mid 4	mid O	mid 7	
				lo 7					lo 1	lo 13	lo 5	

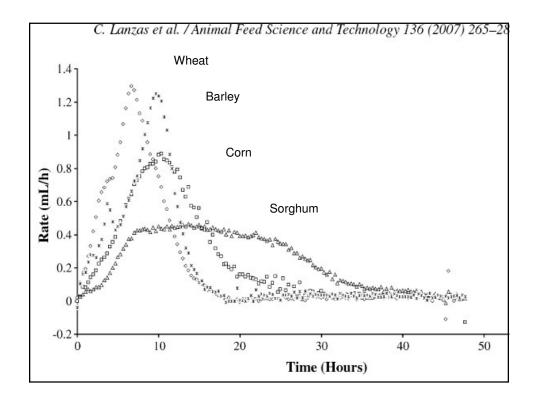
NFC = Non Fibrous CHO NSC = Non Structural CHO (NRC 2001)

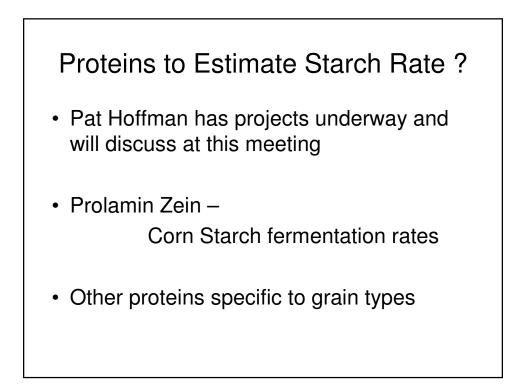
pg 34
NFC% = 100 - (NDF%+ CP% + Fat% + Ash%)
pg 14 Eq. (2-4a)
tdNFC = 0.98 (100-[(NDF-NDICP)+ CP + EE + Ash}) x PAF

• NSC = mod. enzyme method of Smith 1981
• NFC - NSC Difference varies considerably ... caused by pectin and organic acids amounts






Proposed approach for Discussion


- For NDR-CP determination : use NDR
- For CPM input : use NDR (or aNDF + NDR-CP)
- For NRC ? For Spartan ?
- For NDFD, Kd calculation, RFV, RFQ: use aNDF ?
- For peNDF : use aNDF
- For NFC : use NDR NDR-CP (or aNDF)
- For Sol Fiber : use NDR NDR-CP in NFC calculation

Lab C	compar	rison 24	lhr NDF	D Kd rate	S
	Lab #	NDF	Lignin	NDFD24hr	Kd
	1	41.4	3.3	49.08	4.61
	2	41.2	3.6	37	3.36
	3	41.2	3.3	50.6	4.02
	4	43.6	2.51		3.07
	1	46.0	4.3	48.7	4.88
	2	39.3	3	38	3.26
	3	38	2.9	54.2	4.38
	4	37.8	2.24		3.61
	1	40.0	3.2	50.76	4.89
	2	37.2	3.1	47	4.57
	3	38.1	2.6	54.6	4.23
	4	41.2			4.23
	1	43.9	4.0	48.08	4.72
l ag time reportedu	2	42.7	3.3	38	3.29
Lag time reported: Lab 1: 3.5 to 4 hr lag	3	37.5	3.1	48.8	3.74
Lab 2: 4.8 hr lag	4	38.2			3.40
_ab 3: 2.5Hr lag _ab 4: gas release s	slow pool				

Effect of CS Fiber and Starch Rate of Fermentation on CPM predicted Milk

Fiber %/hr	Starch %/hr	ME milk	1 1		Starch %/hr	ME milk	MP milk
4.7	30	88	88	4.7	10	88	81
3.3	30	87	86	3.3	10	86	79
2.5	30	86	84	2.5	10	85	77

Edit Fee	d			Fatt	y Acid	Inputs	
Feed Na	ame	Cost	DM	Da	<i>y ,</i> toro		
CottonseedW	hlwLint	190.00	90.100	00-00-0000 Co	ncentrate 🔳		
Protein Carbohyd	rate Fat	MinVit Ami	ino Acids Qui	ck Edit		Really ?	
Composition Rates							
		% DM		Lipolysis	500.000) %/h	
Ether E	xtract	19.300	% EE	Adjust factor	0.000)	
Total Fatt	y Acid	18.914	98.000	LCFA Int	estinal Diges	tibility	
G	lycerol	0.386		Rumen Free	Rumen N	Non-lipolysed	
Pi	gment	0.000	% TFA	% Intestinal	% Intestina	l	
EE and/or	C12:0	0.000	0.000	95.390	95.390		
triglyceride	C14:0	0.131	0.690	75.060	48.580	Digest -	
and/or	C16:0	4.522	23.910	72.480	72.480		
Fatty	C16:1	0.104	0.550	64.000	64.000	0	
1 ally							
Acids	C18:0	0.441	2.330	72.800	72.800)	
Acids	C18:0 :18:1T	0.441 0.000	2.330 0.000	72.800 78.560	72.800 0.000		
Acids *especially						Hydro -	
Acids	:18:1T	0.000	0.000	78.560	0.000	D Hydro - genation	
Acids *especially	:18:1T :18:1C	0.000 2.882	0.000 15.240	78.560 89.250	0.000 66.930	Hydro -genationrate ?	

Estimate and Reduce variability

- · White Paper on NIR value compared to wet
- Multi sample testing to minimize variability
- Send 3, pay for 2 ?

- Lab differences can create confusion/frustration and lead to unwarranted "lab hopping" so..... Provide more info on reports and websites and stay current on procedures & definitions
- Participate in comparative sample programs
 NFTA, NIRSC, USDFRC, AAFCO, develop lab exchanges
- Ask nutrition groups for definition in the analyses requested, Cooperate with lead organizations to develop uniformity in reports
- Consulting Nutritionists should select one lab, understand how to implement reported results and change labs only with understanding of implications

Recommendations

- Consider Specific Reports for Specific Crops
 - Corn Silage Report
 - Legume/Grass/SmGrain Hay or Silage Report
 - Grain Report; TMR report
- More information/descriptions on reports, include analyte value ranges for your lab
- Examples of all reports by price pkg on web
- · Easy access to additional detail on website