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Since 1999, West Nile virus (WNV) disease has affected the northeastern United States. To describe the 

spatial epidemiology and identify risk factors for disease incidence, we analyzed 8 years (1999–2006) of 

county-based human WNV disease surveillance data. Among the 56.6 million residents in 8 northeastern 

states sharing primary enzootic vectors, we found 977 cases. We controlled for population density and 

potential bias from surveillance and spatial proximity. Analyses demonstrated significant spatial spreading 

from 1999 through 2004 (p<0.01, r2 = 0.16). A significant trend was apparent among increasingly urban 

counties; county quartiles with the least (<38%) forest cover had 4.4-fold greater odds (95% confidence 

interval [CI] 1.4–13.2, p = 0.01) of having above-median disease incidence (>0.75 cases/100,000 

residents) than counties with the most (>70%) forest cover. These results quantify urbanization as a risk 

factor for WNV disease incidence and are consistent with knowledge of vector species in this area. 

West Nile virus (WNV) disease arrived in the United States in 1999 in New York City, 

yet how the disease became established and details concerning the nature of the transmission 

cycle in the United States remain unclear. Experience in the northeastern United States suggests 

an urban concentration of human WNV disease cases (1,2); however, environmental factors, 

such as urbanization, that underlie the patterns of transmission to humans have not been 

explicitly evaluated. We used human surveillance data to describe and quantify the spread of 
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WNV cases in the northeastern United States and empirically tested the hypothesis that human 

WNV disease is linked to the urban environment independent of human population density. 

In the northeastern United States, a mainly urban cycle of WNV transmission is 

supported by the role of bird and mosquito species. This enzootic cycle occurs in urban bird 

species; human cases occur in late summer (2–7). Culex pipiens Linnaeus is the most commonly 

implicated mosquito vector in the maintenance of WNV in birds (1,2,8,9). In the northeastern 

United States, this species feeds on birds found in urban areas, such as the American robin 

(Turdus migratorius), house sparrow (Passer domesticus), and European starling (Sturnus 

vulgaris) (2,10). The role of Cx. pipiens mosquitoes as primary WNV vector is supported by 

consistent isolations of WNV from mosquitoes captured in surveillance traps (8,11–14) and by 

associations between virus-infected mosquitoes and dead-bird reports (15). 

A more contentious issue is the role of different mosquito species in transmitting, or 

bridging, WNV between birds and other vertebrates, including humans. Cx. pipiens mosquitoes 

are known to breed in the organically rich water of artificial containers frequently found in urban 

areas (16–18). Habitat modeling of potential WNV vectors in the northeastern United States 

indicates an urban focus for Cx. pipiens mosquitoes (19). However, its tendencies to mostly feed 

on birds make it an unlikely bridge vector, although other researchers have suggested that this 

species exhibits late season host switching to humans (5). Aedes vexans and Cx. salinarius 

mosquitoes have been implicated as bridge vectors in this region (1–3) because of their 

abundance and more nonspecific feeding patterns (20). Although both are present in urban areas, 

other land uses have been found to be more predictive of their distribution (19). These other 

studies do not indicate whether human incidence would be linked to the same ecologic factors 

driving enzootic transmission. 

In this study, we explicitly tested whether both enzootic and bridge transmission occur in 

urban areas by evaluating human WNV disease and degree of urbanization within counties. We 

estimated the initial spatial spread in time to first case in Queens, New York, the site of first 

WNV detection (21), from 1999 through 2006. We also examined the trend for increasing 

incidence with decreasing forest cover while attempting to control for surveillance efforts and 

removing the effect of spatial proximity. The methods provide an example of how surveillance 

data with low spatial resolution can be used to quantify risk. 
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Methods 

The study was focused in 8 northeastern states (Connecticut, Delaware, Massachusetts, 

Maryland, New Jersey, New York, Pennsylvania, and Rhode Island) where the same mosquito 

species are likely to act as primary vectors. States to the north of the study area have had limited 

numbers of cases and may involve different mosquito species. States farther south and west are 

likely to involve different species of mosquitoes; hybridization between Cx. pipiens and Cx. 

quinquefaciatus is more common in southern latitudes (16). 

Human Incidence Data 

We used annual numbers of human WNV cases reported to the Centers for Disease 

Control and Prevention (CDC) from 1999 through 2006. Human case data were acquired through 

multiple sources but met the CDC case definition, which includes clinical disease with laboratory 

confirmation. Data for 1999 were extracted from the Morbidity and Mortality Weekly Report 

(22), and data for 2000 were downloaded from the National Atlas website 

(http://nationalatlas.gov; 23). Human case data for 2001 through 2006 were downloaded from the 

US Geological Survey maps page (http://nationalatlas.gov/printable/wnv.html; 24). To protect 

anonymity, human data from these sources are compiled at the county level. All other data were 

aggregated by county to match this resolution. 

Geographic Data 

County boundaries for the United States and 2000 census data were downloaded from the 

National Atlas website (http://nationalatlas.gov/boundaries and http://nationalatlas.gov/people), 

and county centers were identified to facilitate the calculation of distances between counties. 

Land-use data were downloaded by state from the US Geological Survey National Land Cover 

Institute (http://landcover.usgs.gov/natllandcover.php; 24). Percentage of land cover class by 

county was extracted by using Fragstats Software (25). Land uses classified as low-intensity 

residential, high-intensity residential, commercial/industrial/transportation, and 

urban/recreational grasses were grouped into a class called urban. Land uses classified as 

deciduous, evergreen, and mixed forest were grouped into a class called forest. These 2 land use 

types were considered biologically relevant to the study question. 
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Statistical Analyses 

To document evidence for the temporal and spatial spread of WNV disease, we generated 

cumulative incidence curves by state and by year and examined the distance between counties 

with cases. Time-to-first-case detection (in years) was used as the outcome predicted by distance 

to the origin, which was Queens, New York. For distance calculations, we ignored counties 

reporting no WNV disease cases because the first case is theoretically still to be determined. To 

visualize WNV disease spread, we plotted the mean incidence by year, using the spatial statistics 

tools of ArcGIS (26). 

Distance measures were then used to adjust for the effect of spatial proximity in the 

regression analyses (27). Incorporating measures of spatial proximity in a regression model 

removes the effect of spatial structure that might otherwise result in overestimation of the 

strength of the association between the outcome, WNV incidence, and the explanatory 

environmental variables (28,29). 

Logistic regression modeling was initially used to identify the relevant predictors and to 

quantify their relative effects by calculation of odds ratios (ORs). Number of cases per county 

was standardized by using the 1990 US Census population density. Cumulative WNV disease 

incidence data from 1999 through 2006 were dichotomized at their median to provide 2 

categories of high and low risk. Predictor variables, percent urban, percent forested, county area, 

and per capita county income were stratified by quartiles. Logistic models were tested by using 

the Hosmer-Lemeshow goodness-of-fit test. The best model was selected based on the Akaike 

information criterion (AIC), which is a measure of fit that accounts for the number of parameters 

in the model. Models within 2 AIC units are considered comparable; models within 7 AIC units 

have less support but are still comparable; and models with differences >10 AIC units are not 

comparable (30). The relationship between increasing cases and decreasing percentage of 

forested land was tested by using generalized least-square regression in STATA (31). 

A risk model of total incidence was developed by using log (count +1) transformed 

incidence as the response variable and the variables identified as important in the logistic 

regression analyses as predictors. To obtain a better fit, predictor variables were entered as 

continuous values for this regression. The κ statistic was used to assess agreement greater than 

chance between the median dichotomized original incidence and the predicted incidence, for 
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which <0.21 is considered slight to poor and >0.61 is considered substantial to almost perfect 

(32). 

All models were initially run using only the land-use predictors; and the Moran I test was 

used to assess whether closer observations were more similar than those farther apart. This 

finding of an association based on spatial location could indicate that proximity, rather than 

environmental factors, explains the distribution of disease incidence. Distance variables control 

for this potential spatial proximity effect and reflect the presumed biological relationships within 

the data. 

The models were also adjusted for surveillance effort. Human disease surveillance data 

must be interpreted with knowledge of the biases inherent to its collection (33). County per 

capita income was used as a measure of potential investment in surveillance and laboratory 

testing, as has been used in prior studies of surveillance for animal rabies (34). 

Results 

The Epidemic 

From 1999 through 2006, the 204 counties in the 8 states reported 977 WNV disease 

cases (county mean 4.8, SD 8.7, median 1, range 0–49) (Table 1). The median county incidence 

over the 8-year interval was 0.75 cases/100,000 residents (mean 1.77, SD 3.0, range 0–

20.2/100,000). The median incidence, excluding counties with no reported cases, was 

1.70/100,000 residents (mean 2.94, SD 3.45, range 0.22–20.2/100,000) (Figure 1). The highest 

incidence occurred in Forest County, (20.2/100,000), followed by Cameron County 

(16.8/100,000) and Adams County (15.3/100,000), all rural counties in central Pennsylvania with 

very few cases (Forest County n = 1, Cameron County n = 1, and Adams County n = 14 [13 in 

2003, 1 in 2004]), and small populations, probably representing data outliers. 

Associations Based on Spatial Proximity 

A cursory examination of the epidemic curve of WNV cases reported from each state 

during the 8-year study indicated that peak incidence was broadly overlapping in all states 

(Figure 2, panel A). However, cumulative distribution functions of total WNV cases (Figure 2, 

panel B) by year indicated that New York experienced its median case earlier in the regional 

epidemic than did other states (Massachusetts, New Jersey, and Connecticut), which suggests a 
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spatiotemporal spread of WNV. Because a spatial component to spread was evident, we 

evaluated distance between counties to assess the spatial relationship between counties and to 

control for the effect of spatial proximity. The spatial component alone explained 15% of the 

variance in time to first case when Queens, New York, was used as the origin (n = 123 counties 

with cases reported, p = 0.001). After 2004, no new counties reported WNV cases, and the 

incidence centroids of cases in 2005 and 2006 were close to one another and had shifted back 

toward the origin, which suggests that the disease may have reached endemicity in the region 

(Figure 3). 

Environmental Risk Factors 

Risk (high or low) for WNV cases was significantly associated (by county quartile) with 

measures of urbanization and with percentage of forested or urban land. Because these 2 

measures were highly correlated, we used only a single measure in the final analysis (Table 2). 

Total county area and other demographic indices (age) were not significant predictors and are not 

shown. 

A logistic regression of the median split for total incidence with categorical predictor 

variables of percentage forested area and county-based per capita income showed that percentage 

of forested land (χ2 = 26.13, df = 6, p<0.001) and percentage of urban land (χ2 = 5.62, df = 6, p = 

0.02) were both significant predictors of incidence (Table 2). Both models provided a good fit 

(forested: Pearson χ2 = 7.82, df = 9, p = 0.55; urban: Pearson χ2 = 3.26, df = 8, p = 0.92). No 

effect of spatial proximity was found among the residuals for either model (forested: Moran I = –

0.008, Z = –0.49, p = 0.31; urban: Moran I = –0.002, Z = 0.40, p = 0.34). 

To adjust for surveillance bias and the spatial relationship among proximal counties, we 

included the variables of county-based per capita income and distance from Queens, New York, 

respectively (Table 2). Both forested (χ2 = 36.67, df = 11, p<0.001) and urban (χ2 = 33.55, df = 

11, p<0.001) predictors were significantly associated with WNV incidence and provided a good 

fit (forested: Pearson χ2 = 209.27, df = 192, p = 0.19; urban: Pearson χ2 = 202.78, df = 192, p = 

0.28). As before, no effect of spatial proximity was found in the residuals (forested: Moran I = –

0.007, Z = –0.38, p = 0.35; urban: Moran I = 0.001, Z = 0.93, p = 0.18). Although all models 

were significant and fit the data, the latter model was preferred on the basis of AIC (not 

controlling for spatial proximity AICforested = 270.7, AICurban = 281.2; controlling for spatial 
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proximity AICforested = 264.1, AICurban = 267.3) and included biologically relevant controls for 

the effect that spatial proximity might have in estimating the association between the outcome, 

disease incidence, and environmental variables of interest. A general, dose-dependent trend 

indicated increasing incidence as measures of urbanization increased (higher incidence with 

decreasing percentage of pixels classified as forest in each county: χ 2 = 9.47, df = 1, p<0.01; 

goodness of fit χ 2 = 3.50, df = 2, p = 0.17; higher incidence with increasing percentage urban 

land: χ 2 = 7.13, df = 1, p<0.01; goodness of fit χ 2 = 1.98, df = 2, p = 0.37). 

The logistic regression model of dichotomized total incidence for the 8 years of the study, 

controlling for income (categorical variable by quartile) and for the effect of spatial proximity 

(distance variables), also showed a distinct trend of increasing incidence with percentage of 

forest cover; counties with <38% forest cover were 4.4× more likely (95% confidence interval 

1.4–13.2, p = 0.01) to have high WNV incidence than were counties with >70% forest cover 

(Table 2). 

Predictive Model 

We used the predictors identified in the logistic regression analysis to develop a linear 

regression model to predict total incidence (log count + 1 transformed for a normal distribution), 

using the quartile percent forested land by county. Per capita income (as a continuous variable) 

was used to control for surveillance effort. This model explains 9.7% of the variance in the total 

incidence (log count + 1) (p<0.001); however, the residuals indicated an effect due to spatial 

proximity (Moran I = 0.0349, Z = 5.925, p<0.001). Controlling for this spatial effect and 

surveillance effort resulted in a better model (r2 = 0.20, p<0.001; Moran I = –0.003, Z = 0.26, p = 

0.40). The κ statistic indicated good agreement (κ = 0.343, SE = 0.066, Z = 5.22, p<0.001, 

agreement = 67.16%) between the predicted and the observed outcomes when the binomial 

categorization of incidence was used and resulted in 51 county incidence entries being correctly 

identified as being below the median and 86 being correctly identified as being above the 

median. Errors were primarily in the direction of predicting the incidence above the median. 

When surveillance and spatial proximity were controlled for, the risk for WNV disease increased 

by 0.25% for every 1% decrease in forest cover. For more direct comparison with the logistic 

regression outcome, moving from the highest category of forest cover (>69.59%) to the lowest 

(<38.29%), resulted in a 6.16% increased risk for WNV disease. 
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Discussion 

This study documents the concentration of WNV cases within urban areas of the 

northeastern United States and provides a quantitative estimate of the effect of varying degrees 

of urbanization on the risk for WNV infection at the county level. Land-use data were used to 

ascribe degree of urbanization as a predictor for WNV disease risk; incidence models were 

generated, controlling for human population density, environment-based spatial associations in 

the predictors, and potential biases in WNV incidence reporting resulting from the unequal 

resource bases among counties. 

Beginning in 1999, human WNV cases were reported in counties distant from Queens, 

New York, the presumed origin of infection. Although the epidemic initially appeared to spread 

in a west/southwesterly direction in the 8-state region examined, by 2005 the initial epidemic 

appeared to wane, and reports of disease among newly affected counties dropped to zero. The 

resulting incidence maps suggest a WNV disease–endemic situation in the northeastern United 

States. The initial spread was not continuous along neighboring counties; rather, greater 

incidence was seen in urban counties after controlling for human population density, surveillance 

bias, and the effect of spatial proximity. The best model indicates 4× the risk for disease in the 

counties that fall in the lowest incidence quartile of forested land compared with the highest. The 

predictive nature of the data is also explored with the caveat that additional predictor variables 

are needed; nonetheless, it indicates increasing risk for WNV disease with decreasing forested 

lands. 

The association between urban land use and human cases indicates that urban/suburban 

land use enhances environmental conditions for both enzootic and bridge transmission, at least at 

the county level. The spatial resolution of human surveillance data did not allow for finer 

evaluation of within-urban associations. Brownstein et al. linked human WNV cases to greenness 

indices in urban areas and found an optimal vegetation index associated with higher human cases 

(35). Brown et al. found an environmental separation of bridge and enzootic vectors; bridge 

vectors occurred in areas with vegetation that might be associated with residential areas within a 

city (36). Finer spatial resolution human data would allow for within-county analyses that might 

provide better estimations of where the cases (urban, periurban) are occurring. This would 

improve the predictive power of land use in the models, and the better association between land 
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use and cases might help further elucidate which mosquito species are involved as bridge 

vectors. 

Because of the type and resolution of the data, a sample predictive model, and not a 

predictive map, is provided. Nonetheless, the data and analysis provided are insightful as 

potentially predictive models. Additional data, such as bird abundance and perhaps also mammal 

abundance, are needed (37). Because of the often strict host and habitat preferences of mosquito 

species, mosquito surveillance data could also improve the predictive power and validity of the 

model. Our best predictive model explains only 20% of the variance; additional variables such as 

these might improve the model because the abundance of hosts and mosquito species will have a 

considerable effect on WNV transmission. 

Despite the reluctance to use human surveillance data for models of disease transmission 

(33), such data can provide information about spatial associations in vector-borne disease as 

shown here and by others (34,38,39). This type of human surveillance modeling provides some 

useful insight into the distribution of human WNV cases and supports the current understanding 

of the transmission cycle. 

To predict WNV disease requires understanding of the factors driving both enzootic 

transmission and bridging to humans. Different data availability and scales are involved in 

studying these 2 processes. We took advantage of the national coverage of the human incidence 

dataset to examine the spatiotemporal spread of WNV in this region and to generate a risk model 

based on land use, adjusted for the effect from spatial proximity. We show that human 

surveillance data at the county level are consistent with the urban nature of this disease system, 

as has been found in studies of enzootic transmission, indicating that the 2 processes occur in or 

near urban areas.  
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Table 1. Incidence (per 100,000 persons) of West Nile virus disease in humans, northeastern United States, 1999–2006*  
State 1999 2000 2001 2002 2003 2004 2005 2006 Mean Median 25% IQR 75% IQR 
CT  0 0.11 0.70 1.97 5.15 0.11 0.7 1.06     
DE 0 0 0 0.79 8.55 0 0.99 0 3.44 1.80 0.64 7.90 
MA 0 0 0.44 2.57 2.19 0 0.61 0.27 0.43 0.11 0 0.93 
MD 0 0 0.8 9.52 32.01 11.88 1.32 1.69 2.38 1.47 0 3.90 
NJ 0 1.02 2.04 7.31 10.04 0.2 0.85 0.68 1.05 0.99 0.43 1.56 
NY 3.18 2.45 1.19 21.03 18.78 2.44 2.95 2.03 0.87 0 0 1.25 
PA 0 0 0.81 15.87 163.75 7.23 8.36 3.63 2.98 1.59 0 3.09 
RI  0 0 0 0.16 2.57 0 0.16 0 0.58 0.60 0 1.13 
Total 3.18 3.58 6.01 59.22 243.04 21.76 15.93 9.37 1.77 0.75 0 2.06 
*IQR, interquartile range; CT, Connecticut; DE, Delaware; MA, Massachusetts; MD, Maryland; NJ, New Jersey; NY, New York; PA, Pennsylvania; RI, 
Rhode Island. 

 
 

Table 2. Odds ratios for median split incidence of West Nile virus diseases in humans, for significant variables*  
Adjusted Unadjusted 

Predictor OR (95% CI) Significance OR (95% CI) Significance 
% Forest land use, per quartile     
 1st (<38.29) 4.40 (1.91–10.11) 0.000 4.36 (1.44–13.25) 0.009 
 2nd (38.29–56.56) 3.09 (1.38–6.92) 0.006 2.86 (1.01–8.06) 0.047 
 3rd (56.56–69.59) 0.84 (0.37–1.91) 0.675 0.81 (0.33–2.00) 0.644 
 4th (>69.59) 1 NA 1 NA 
% Urban land use, per quartile     
 1st (<1.68) 1 NA 1 NA 
 2nd (1.68–4.66)  1.52 (0.68 - 3.39) 0.309 1.42 (0.54–3.76) 0.478 
 3rd (4.66–15.13) 2.44 (1.09 - 5.43) 0.030 3.08 (0.94–10.12) 0.064 
 4th (>15.13) 4.38 (1.91- 10.03) 0.000 7.02 (1.78–27.71) 0.031 
*Variables categorized by percent of county classified as forested and percent of county classified as urban. Outcome categorized by median split to 
counties with low risk (incidence <0.75 cases/100,000 residents) and high risk (incidence >0.75 cases/100,000 residents). Overall trend is for increasing 
incidence with increasing measures of urbanization (for decreasing percentage forested land: χ2 = 9.47, df = 1, p< 0.01, goodness of fit χ2 = 3.50, df = 2, 
p = 0.17; for increasing percentage urban land: χ2 = 7.13, df = 1, p< 0.01, goodness of fit χ2 = 1.98, df = 2, p = 0.37). Both unadjusted and surveillance 
bias and spatial relationship adjusted ORs are provided. OR, odds ratio; CI, confidence interval; NA, not applicable. 
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Figure 1. Box plot of total incidence of West Nile virus disease in humans, by county, for the 8 

northeastern states in the study area (CT, Connecticut; DE, Delaware; MA, Massachusetts; MD, 

Maryland; NJ, New Jersey; NY, New York; PA, Pennsylvania; RI, Rhode Island). The box plot provides 

the median, lower, and upper quartiles; the standard deviation; and any data outliers. This plot excludes 

those counties that did not report cases. The outliers tend to be the few cases that occurred in areas with 

low populations. 

Page 14 of 16 



 

 

Figure 2. A) Epidemic curve of mean incidence (log+1 transformed) of West Nile virus disease in humans, 

by state, 1999–2006. The 4 states depicted are representative of the variation among the 8 states in the 

study area. CT, Connecticut; DE, Delaware; MD, Maryland; NY, New York. This graph shows the trend 

toward increasing incidence and a regional peak in 2003. NY seems to show a 2-year plateau with similar 

values for 2002 and 2003. B) Cumulative proportion of total cases for the 8 years also highlighting the 

2003 regional peak but suggesting a spatial spread where cases started to rise earlier in NY than in 

states such as DE that were more distant from the epicenter. 
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Figure 3. Incidence of human West Nile virus disease cases in 8 northeastern states, 1999–2006. 

Deviation ellipses indicate 1 SD of the geographic mean yearly incidence calculated as the incidence 

weighted average in space for each county. Incidence is attributed to the county centroid. This graph 

shows the urban concentration along the Eastern Seaboard as well as the outliers in western 

Pennsylvania (1 case in counties with low populations). The 2005 and 2006 regression of the geographic 

mean incidence is also depicted. 
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