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ABSTRACT

The new NOAA operational global sea surface temperature (SST) analysis is described. The analyses use 7
days of in situ (ship and buoy ) and satellite SST. These analyses are produced weekly and daily using optimum
interpolation (OI) on a 1° grid. The OI technique requires the specification of data and analysis error statistics.
These statistics are derived and show that the SST rms data errors from ships are almost twice as large as the
data errors from buoys or satellites. In addition, the average e-folding spatial error scales have been found to
be 850 km in the zonal direction and 615 km in the meridional direction.

The analysis also includes a preliminary step that corrects any satellite biases relative to the in situ data using
Poisson’s equation. The importance of this correction is demonstrated using recent data following the 1991
eruptions of Mt. Pinatubo. The O] analysis has been computed using the in situ and bias-corrected satellite data

for the period 1985 to present.

1. Introduction

Global sea surface temperature (SST) fields are use-
ful for monitoring climate change, as an oceanic
boundary condition for atmospheric models, and as a
diagnostic tool for comparison with the SSTs produced
by ocean models. Because the SSTs can be estimated
from satellites, the SST field may be the best-known
ocean parameter on global scales.

The blended (SST) analysis of Reynolds (1988) and
Reynolds and Marsico (1993) has been widely distrib-
uted to researchers through the Tropical Oceans and
Global Atmosphere ( TOGA ) program. The technique
uses both in situ and satellite-derived SST data to pro-
duce a monthly analysis. The major advantage of this
method is an objective, time-dependent correction of
any satellite biases relative to the in situ data. To pro-
vide the bias correction, the technique degrades the
spatial resolution of the analysis to roughly 6° lat/long.

To better preserve the high resolution of the satellite
data, we have developed a new analysis technique for
use operationally at the U.S. National Meteorological
Center (NMC). The method uses the blended tech-
nique to provide a preliminary large-scale spatial cor-
rection of the satellite retrievals. The in situ and the
corrected satellite data are then analyzed both weekly
and daily using optimum interpolation (OI) on a 1°
lat/long spatial grid. This method retains the bias cor-
rection while improving the spatial and temporal res-

Corresponding author address: Dr. Richard W. Reynolds, National
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olution of the blend. In the sections that follow, we
first discuss the OI and the required error statistics. We
then discuss the satellite bias correction technique.

2. SST data sources

The in situ SST data are obtained from the NMC
file of surface marine observations. These data consist
of all ship and buoy observations available to NMC
on the Global Telecommunication System (GTS)
within 10 h of observation time. The distribution of
observations depends on shipping traffic and is most
dense in the midlatitude Northern Hemisphere. There
are large regions in the Southern Hemisphere with in-
adequate in situ sampling. This is shown in the ship
and buoy distributions for the week of 4-10 August
1991 in Figs. 1 and 2. The ship data are very sparse in
the midlatitude South Pacific east of the 180° meridian
and in the tropical Pacific east of 160°E. The buoy
data has been designed to fill in some areas with little
ship data. This process of supplementing the ship data
with the buoys has been most successful in the tropical
Pacific. However, it should be noted that there are
areas, such as the tropical Atlantic, that have almost
no buoy SST observations.

The satellite observations are obtained from the Ad-
vanced Very High Resolution Radiometer (AVHRR)
on the U.S. National Oceanic and Atmospheric Ad-
ministration (NOAA) polar orbiting satellites. These
data are produced operationally by NOAA’s Environ-
mental Satellite, Data and Information Service (NES-
DIS). The satellite SST retrieval algorithms are “tuned”
by regression against quality controlled drifting buoy
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FiG. 3. Distribution of AVHRR daytime retrievals on a 1°C grid for the week 4-10 August 1991.
One to nine observations are indicated by a dot; ten or more by an *“X.”

puted globally and are not a function of position or
time. Although the AVHRR cannot retrieve SSTs in
cloud-covered regions, the spatial coverage of satellite
data is much more uniform than the coverage for the
in situ data. This is shown for the week of 4-10 August
1991 in Figs. 3 and 4. There, the number of weekly

daytime and nighttime observations has been averaged
onto a 1° spatial grid. The sparsity of daytime obser-
vations in the tropics is unusual and was due to the
effect of stratospheric aerosols from the eruptions of
Mt. Pinatubo. The effect of the aerosols on the SST
retrievals is discussed in more detail in section 5.
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FIG. 4. Distribution of AVHRR nighttime retrievals. Otherwise as in Fig. 3.
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In situ and satellite observations are sparse near the
ice edge. To supplement these data, sea ice information
is used. These data became available at NMC in real
time in 1988 and have a 2° spatial resolution and a
weekly temporal resolution. The fields combine snow
coverage from NESDIS and sea ice coverage from the
Navy/NOAA Joint Ice Center. If a grid box was ice
covered (concentration of 50% or greater), an SST
value was generated with a value of —2°C. The freezing
point temperature of seawater with a salinity of 33 to
34 psu is —1.8°C. This range of salinity is typical near
the ice edge in the open ocean. Thus, —2°C is slightly
too negative. After the SST field has been computed,
any SST gridded value less than —1.8°C is set to
—1.8°C. The use of simulated SSTs of —2°C over ice-
covered regions allows the analysis to reach its fixed
minimum more robustly. The simulated ice observa-
tions of SST are shown in Figs. 1 and 2.

3. OI SST analysis

The OI SST analysis is now produced both daily and
weekly on a 1° grid [ e.g., see Gandin (1963) and Thié-
baux and Pedder (1987) for discussion of the Ol}. The
weekly analysis is discussed here. The daily analysis,
which is run operationally, is discussed in section 6.

Before the SST data are used in the OI they must
pass the quality control procedures. These procedures
include the use of programs that track ships and buoys
by their identification codes and eliminate observations
with unlikely position changes. All in situ observations
that pass the tracking tests and all satellite retrievals
are tested for accuracy of the SST. All observations are
discarded if the SST value is less than —2°C or greater
than 35°C or if the SST anomaly lies outside +3.5
times the climatological standard deviation. These tests
were designed to eliminate some of the worst data.
Other procedures could be used that would be more
comprehensive, however.

To reduce the number of observations used in the
Ol, averages over 1° squares are computed. These “su-
per observations” are computed independently for each
ship and buoy identification code and for day and night
satellite retrievals. Because ships typically report only
every 6 h, they usually travel through each 1° box in
that time. Thus, computing 1° superobservations for
each ship has little influence on the number of ship
reports. The superobservations process substantially
reduces the number of buoy and satellite SST reports,
however. It should be noted that the day and night
satellite observations are processed separately because
different retrieval algorithms are used during the day
and the night.

The analyses are determined relative to a first guess
or predicted analysis. Following the notation of Lorenc
(1981) we define two equations, The first equation gives
the analysis increment at a grid point, k, in terms of a
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weighted sum of N data increments. The analysis in-
crement is defined as the difference between the analysis
and the first guess; the data increment is defined as the
difference between the data and the first guess. The
expression for the analysis increment, 7., can be written
as

N
Yo = 2 Wadi,s

i=1

(1)

where g; are the data increments and w;, are the least-
squares weights that are given below. The subscript k&
ranges over the grid points where the solution is re-
quired. The subscripts i and j (used below) range over
the data points. When (1) has been evaluated at all
grid points, the analysis is completed by adding the
analysis increments to the first guess at each grid point.
The analysis is computed in terms of increments rather
than the entire field so that the first guess is preserved
in regions with little or no data. In that case the weights,
Wi, approach zero.

Our first-guess field is the analysis for the preceding
week. (For the initial Ol analysis, the blended analysis

-was used as a first guess.) Other investigators (e.g.,

Clancy et al. 1990) have used climatology as a first
guess. There are advantages for each choice. If clima-
tology is used, the first guess is independent of the
analysis. Thus, the data increments are also indepen-
dent of the analysis. Because these increments are used
to define the error statistics that are required by the
Ol, the statistics are also independent of the analysis.
In addition, the increments are, in this case, identical
to SST anomalies and can be directly related to other
studies. However, because time scales of SST anomalies
have been found to be of the order of months (e.g., see
Reynolds 1978), the analysis from the previous week
is a better forecast of SST than climatology. When there
is no data, the OI returns the value of the first guess.
Thus, if climatology is the first guess, the OI SST
anomaly would be zero. If the previous analysis is the
first guess, the OI SST (in our case the SST anomaly,
see discussion in section 7) simply persists. Because of
this advantage, we believe that the analysis from the
previous week is a better first guess than climatology.

The weights in (1) are determined by a least-squares
minimization. This procedure results in a set of linear
equations

N
2 Mywy = {mmi) (2)
i=1

forj= 1,2, - - -, Nand where M is defined by

Mij = <1I','7I’j> + €[€j<ﬂjﬁj>. (3)

Here, {m;m;) is the ensemble average of the first-guess
correlation error and {8;8;) is the ensemble average
of the data correlation error. The term, ¢;, is the stan-
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dard deviation of the data error normalized by the
standard deviation of the guess error at point i. The
weights, w;,, are the optimum weights only when
{m;m;y, {B:iB;y, and € are accurately known. The OI
method assumes that any data biases are zero.

Because {m;m;), (8:8;), and € are defined in terms
of increments, they are specific to the analysis. As a
starting point for the analysis, initial estimates of these
terms were made. This is necessary because the statistics
for {m;m;), {B:B;), and ¢ must be computed relative
to the first guess that has been defined as the previous
analysis. Improved estimates were derived from these
initial analyses and are presented in the next section.

We initially assumed that {m;m;) could be repre-
sented by a negative squared exponential, or Gaussian,
function given by

— . — 32
(mom) = exp[-—‘x—'—"f—)—] , (4)

)\2

where x; — X; is the scalar distance between points /
and j and the e-folding scale, A, is fixed at 222 km. For
in situ and ice data, we assumed that the data errors
were uncorrelated, {8;8,) = é;;, where §; = 1 fori = j
and O for i # j. For satellite data we assumed that the
data were composed of equal parts of correlated and
uncorrelated error: (8;6;) = 0.5({m;m;) + 6;). The
value of ¢ was constant for each data type unless the
number of superobservations was very low (see Table
1). Because in most cases the number of ship superob-
“servations was one while the number of satellite and
buoy observations was four or more, this resulted in a
value of ¢ = 3 for ships and ¢ = 1 for all other types of
data.

The solution of the N linear equations in (2) is found
using Cholesky decomposition (e.g., see Stewart 1973).
This procedure consists of two steps: first the matrix,
M,;, is decomposed into upper and lower triangular
matrices, then the values of w;; are found using the
decomposed matrices and the right-hand side of (2).
The decomposition is computationally intensive. Be-
cause, as noted by Lorenc (1981), M;; does not depend
on the location of the analysis points, M;; can be de-
composed once for a number of analysis points, k. It
would be theoretically possible to solve the OI for the
entire globe by computing one decomposition of Mj;.
This would not be practical due to limited computer
storage and numerical instabilities due to round off,
however. With some experimentation, we found that
we could solve for Mj; using all data within an 8° by
8° box. The weights in (2) were then obtained for 16
1° values that were arranged in a 4° by 4° box. The
centers of the two boxes were defined to coincide. Thus,
we have one matrix decomposition for each set of 16
analysis points. The 8° boxes are shifted at 4° intervals
to cover our 1° global grid. The use of 8° boxes, which
are larger than the 4° box defined by the grid points,
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TABLE 1. Initial global assumed data to guess ratios.

Number of Satellite
superobservations Ship Buoy day and night Ice
1 3.0 2.0 1.8 1.0
2 2.2 1.4 1.2 1.0
3 1.8 1.2 1.0 1.0
4 or more 1.8 1.0 1.0 1.0

allows some overlap of the data between boxes and
produces a smoother analysis. This system was designed
to balance the number of observations, N, used in each
matrix decomposition versus the number of decom-
positions.

If there are too many data points that are too close
together, M;; will be nearly singular and this may lead
to difficulties in obtaining a numerical solution by the
above method. The averaging of the observations to
form 1° superobservations was done to reduce this
possibility. However, because this averaging was not
done for all observations but by categories (i.e., indi-
vidual ships, individual buoys, day satellite, night sat-
ellite, or ice) the decomposition of AM; can still be nu-
merically unstable. If M; was found to be unstable, the
number of observations was reduced within a given
radius, R, which was initially set to 25 km. If the ob-
servations were the same type (e.g., both ship obser-
vations), the observations were replaced by an averaged
observation. If the observations were of different types
(e.g., ship and day satellite), the observation with the
lower e was kept and the others were discarded. In the
special case that the observations were of different types
but the €’s were equal, the observations were averaged.
If this procedure fails, then R was increased by a factor
of 1.5 until the solution became stable. This procedure
was needed in no more than 5% of the 4° boxes for
each global solution. A few of these boxes required up
to four iterations of increasing R before a solution was
obtained.

The weekly analysis using these statistics was run
from March 1990 through the end of December 1991.
An example of the OI SST analysis is shown in Fig. 5
for the week 13 to 19 January 1991, a period without
important satellite biases. This can be contrasted with
the blended product, which is shown in Fig. 6 for a
special 15-day period, 9 to 23 January 1991. The time
period for the blended product was reduced to the
practical minimum for that analysis scheme and chosen
so that the centers of the two analysis periods coincide.
The higher resolution of the OI is apparent. In the
tropics, the equatorial eastern Pacific and Atlantic cold
tongues are more realistically shown in the OI. At
higher latitudes, the OI shows tighter gradients, partic-
ularly in the Gulf Stream, the Kuroshio and Falk-
land Current regions. This higher-resolution depiction
qualitatively agrees with patterns shown in the satellite
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FiG. 5. Mean SST from the Ol using the assumed statistics for the week 13-19 January 1991.
The contour interval is 1°C with heavy contours every 5° starting with 0. The —1°C contour is dashed; SSTs below —1.79°C are shaded.

data and the patterns simulated by high-resolution
ocean models.

4. OI statistics

The OI is only optimal when the correlations and
variances are known for the analysis increment and
each type of data increment. As discussed above, the
initial OI analyses of SST at NMC assumed globally
constant statistics with isotropic correlations. Here, we
discuss a more realistic computation of these statistics.

The data errors that will be estimated by the OI sta-
tistics originate from different sources. These include
measurement errors, which are due to the expected
error of making an observation, and representativeness
errors, which occur because a point measurement in
space and time is used to represent a spatial and tem-
poral average. The representativeness “errors” include
physical signals, such as the diurnal variations, that
cannot be resolved by the Ol. Some authors (e.g.,
Clancy et al. 1990) have estimated each type of error
and then computed a total error for use in the OL
Others (e.g., Meyers et al. 1991) have used data incre-
ments to divide the error into a correlated and uncor-
related part as discussed by Thiébaux and Pedder
(1987). We have chosen the second approach.

In general, the correlation between two SST obser-
vations decreases with increasing separation. Although
a range of functions, F, can be used to determine the
correlation with separation distance, we used the neg-
ative-squared exponential, or Gaussian, function given
by

~(x; — x))° Lo )?
22 A2

ny=Aexp (5)

Here x and y are the coordinates in the zonal and me-
ridional directions, respectively. The expression is sim-
ilar to (4) except that (5) is no longer isotropic and
allows different zonal and meridional spatial scales
given by Ay and A,. This model assumes that the axes
of the covariance function coincide with the zonal and
meridional axes.

The variables A4, A, and A, can be obtained by a
(nonlinear) least-squares fit to correlations obtained
using observations at all possible combinations of (x;
- X)), (¥ — ;) (M. Pedder 1993, personal commu-
nication). However, we chose to simplify this proce-
dure by first setting y; = y; and then x; = x;. Equation
(5) reduces to two separate equations:
[—(x;i — xj)z]

F.=A,e
P AexpL ¥ (6)

and

(7

— (i —»)°
F,=A4,exp —7\2~y’— .
L Y

This is the same spatial covariance model used by many
others (e.g., Clancy et al. 1990; Meyers et al. 1991).
The fitting procedure will determine A,, 4,, A, and
A, from (6) and (7). The variable 4 in (5) is defined
by the averages of A, and A4,, which are assumed to be
ensemble estimates of 4. As mentioned later in this
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FIG. 6. Mean SST from the blended analysis for the 15-day period 9-23 January 1991. Otherwise as in Fig. 5.

section, there are many other possible assumptions for
the correlation functions.

To determine A,, 4,, A, and A, in (6) and (7), a
1-year period from July 1990 through June 1991 was
selected. This period gives a full annual cycle, avoids
any initial “spinup” problems and avoids the satellite
biases that occurred after June 1991 (discussed in the
following section). The statistics were determined from
the 1° superobservations that had been converted to
data increments. The 1° superobservations were used
here because they are the observations used in the OI
and the statistics must be derived from them. The su-
perobservations include information on the average
position of the observations. To simplify our compu-
tation of the statistics, this information was ignored.
Thus, for each type of data, weekly increments were
computed at locations centered on a 1° grid.

The data increments are assumed to consist of a cor-
related part, given by (6) and (7), plus an uncorrelated
part. Thus, the equations will not, by themselves, have
a correlation of 1.0 with a separation distance of zero.
The fitting procedure uses all correlations except those
at zero separation to determine 4 and A. Once 4 is
known, the variance can be partitioned into correlated
and uncorrelated parts.

Because the OI analysis uses current data as well as
a first-guess field obtained from the previous analysis,
the current analysis will tend to lag behind the current
data. This occurs because of a strong seasonal cycle in
middle and high latitudes. During a week this change
can occasionally exceed 1°. Thus, the data increments
will tend to have a seasonal component. If this is not

removed, a large spatially correlated signal will remain.
This signal was removed by first determining a least-
squares fit to the mean and the annual and semiannual
cycles and then subtracting these terms from the data
increments. This was done at each grid point.

The detrended data increments were then used to
compute the correlation statistics. This could have been
done by computing the meridional and zonal corre-
lations at each 1° grid point. However, even in the case
of the satellite data, the results were found to be too
noisy to produce stable statistics. Thus, all data within
20° latitude by longitude boxes were processed and
average statistics were computed for each box. The
centers of the 20° boxes were defined on a 10° global
grid. Thus, the results will have an overlap of 10° in
latitude and longitude. The spatial correlations and
variances were computed for daytime satellite retriev-
als, nighttime satellite retrievals, buoy data and ship
data.

In each 20° box there are a maximum of 400 (20
times 20) time series, one for each 1° grid point. The
correlations were computed for all pairs in the zonal
and meridional directions. To simplify the processing,
correlations in each direction were separated into bins
with a width of 55 km. (The bin size was selected to
be less than or equal to the east-west 1° grid separation
between 60°S and 60°N.) It was found that the results
were not very sensitive to small changes in the bin size.
For each bin the mean correlation, mean separation,
and number of correlations per bin were saved for
analysis. The area-average variance was also saved for
each area. The fit to (6) and (7) was done using a least-
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FI1G. 7. The binned correlations at 40°N and 40°W are indicated by
the heavy line. The correlations were computed in the zonal direction
from the daytime satellite data increments. The fitted function (6)
is indicated by a light line.

squared criteria ( see the appendix for details). Because
there will be more pairs with separations near 1000
km than at 100 km, all bins with data were equally
weighted. This prevented correlations at middle sep-
arations from having a higher weight than correlations
at small separations. Bins with separations greater than
1100 km (10° of latitude) were not used. This pre-
vented sparse correlations at large separations from
adversely effecting the fit. If less than eight bins had
correlations, no fitting statistics were computed.
Examples of the binned correlations and the nega-
tive-squared-exponential fit are shown in Figs. 7 and
8. The correlations shown were computed in the zonal
and meridional direction using daytime satellite data
increments at 40°N, 40°W. A residual was also com-
puted that was defined as the sum of the squares of the
difference between the binned data and the fit nor-
malized by the sum of the squares of the binned data.
Both figures show fits with residuals of 2%. When all
four of the satellite results (daytime zonal, nighttime
zonal, daytime meridional and nighttime meridional )
were combined, the average residual was 3% with a
standard deviation of 3%. As shown in the figures, there
is a tendency for (6) and (7) to underestimate the cor-
relation at small and large values while overestimating
the correlation at middle values. This effect would tend
to overestimate the e-folding scale. As the residual in-
creases, the overestimation becomes more evident. This
may be clearly seen in Fig. 9, which shows the merid-
ional fit at the equator and 160°W and has a residual
of 5%. The zonal fit at the equator and 160°W has a
residual of 4% (not shown) and also demonstrates the
same tendency. (The noise in the computed correla-
tions in Fig. 7 is due to the 55-km binning distance
that tends to alternately under- and oversample some
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Meridional Correlations at 40N, 40W
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FI1G. 8. The correlations at 40°N and 40°W computed in the
meridional direction with fit from (7). Otherwise as in Fig. 7.

of the bins as the zonal distance between the 1° gridded
data varies with latitude.)

Although, the residuals are low, a careful comparison
of different fitting functions, such as that by Thiébaux

“et al. (1990), could find a set of functions with lower

residual errors. In particular, the axes of Fy, in (5) can
be generalized so that the fitting procedure would de-
termine the correct orientation based on the data (e.g.,
see Buell and Seaman 1993 ) rather than assuming they
coincide with the coordinates. M. Pedder (1993, per-
sonal communication ) suggests that the relatively con-
stant values of the data correlations (heavy curve in
Fig. 9) could be caused by a nonstationary process such
as a slowly varying mean superimposed on a stationary
random process. During this period, the equatorial Pa-
cific was beginning an anomalous warming caused by
the start of an El Nifio-Southern Oscillation (ENSO)

Meridional Correlations at 0, 160W

0.80

0.701

0.50+

Correlation
o
E3

0 200 400 600 800 1000 1200
Distance (km)

FIG. 9. The correlations at the equator and 160°W computed

in the meridional direction. Otherwise as in Fig. 8.
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event [ for general discussion see Rasmusson and Car-
penter (1982)]. The ENSO warming is the nonsta-
tionary process suggested by Pedder. If it were removed,
the e-folding scales would be smaller. The simplified
correlation functions (6) and (7) were found to give
results that were spatially noisy, however. Further
computation will be deferred until more analyses have
been obtained (see section 7) and a longer times series
of data increments can be formed.

The computed correlations (examples were shown
in Figs. 7-9) have been normalized by the total data
variance, o2. As mentioned above, 402, where the A
is from (5), is equal to the correlated part of the error
variance while (1 — 4)o? is the uncorrelated part. If
the data errors could be assumed uncorrelated, then
the correlated error must be the guess error and ¢, the
ratio of the data to guess error, would be defined by

1_
e = A

Y, (8)
for each data type. It should be noted that the variance
of the guess should be the same for all data types.

Equations (6) and (7) were fitted to the daytime
and nighttime satellite data increments for the 20°
boxes centered on the global 10° grid. The difference
between A, and A, was small for each data type. As
mentioned earlier, 4 = 0.5(A4, + 4,). In Fig. 10, the
zonal average of o2 (the total, correlated plus uncor-
related, variance) and A ? (the correlated variance) is
shown for daytime and nighttime data. It is clear that
Ac? is not the same for day and night. Furthermore
the daytime-correlated variance is actually larger than
the nighttime total variance in the Tropics.

To account for this discrepancy, we must allow the
data errors to consist of a correlated and uncorrelated
part. It is still assumed that the guess errors are all
correlated. This guess error, which must be common
for all data types, is now assumed to be the local min-
imum of the daytime and nighttime satellite value of
Ac? (the correlated variance). If this value for the guess
error is written as o2, then the remaining correlated
error is assigned to the data and must be given by the
difference, Ao — ¢2,. This partitioning of the correlated
error between the guess and data does not affect the
uncorrelated error. The uncorrelated error is still as-
signed to the data and has a value of (1 — 4)o?. Of
course o2, could (and probably does) include correlated
data error. Thus, the guess error is less than ¢2,. This
assumption was necessary to define ¢, however. Al-
though the assumption is arbitrary, it was the only way
we could find to partition the data and guess errors in
a consistent way. Because satellite measurements are
made with one instrument, however, it seems reason-
able to assume that satellite SSTs would have correlated
errors. With these assumptions, the satellite data in-
crements can be written as
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FIG. 10. Zonally averaged total (correlated plus uncorrelated)
variance (¢?) and correlated variance (4¢?) from the daytime and
nighttime satellite data.

&=+, 9)

where ¢, is the correlated data to guess error and e, is
the uncorrelated data to guess error given by

Ao’ — o},
632__02_0 (10)
Tm
and
1 —A)s?
g-U=Do (11)
Gm

Using (10) and (11), (9) can be written as

2_02—03,,
€ 2

Om

The fitting procedure thus defines ¢ for the daytime
and nighttime satellite data. However, they also must
be defined for ships, buoys, and ice. There were not
sufficient data to carry out the fitting procedure every-
where for ships and buoys. At those places where there
were sufficient data, the results were spatially very
noisy. Thus, just the variance, ¢2, was computed and
it was assumed that the data errors were uncorrelated
(i.e., ¢, = 0). This assumption is usually made with in
situ data (e.g., see Clancy et al. 1990). Because the
guess error is already defined, the ratio for ships and
buoys can be found by :

o2 — o2,

o

e€=c

g —
In the figures that follow, all fields of ¢ and ¢ were
smoothed by application of zonal and meridional bi-

nomial filters with weights 1/4, 1/, and 1/4.
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FIG. 11. Guess error standard deviation (,,). The contour interval is 0.1°C. The 0.2°C contour
is a heavy line; values greater than 0.4°C are shaded.

A plot of the standard deviation of the guess error,
6,,, is shown in Fig. 11. The errors are lower in the
Tropics and increase into the midlatitudes. They reach
local maxima in the western boundary regions, es-
pecially in the Kuroshio and Gulf Stream regions. The
guess errors are thus larger in regions where higher
variability is expected. The magnitude of the guess error
drops below 0.5°C over most of the ocean. It is difficult
to distinguish guess differences less than 0.5°C using
independent data. Thus, the size of the guess error
seems to be too low. Some of the reduction is due to
the detrending procedure, which reduces the variance
by about 15%. This does not affect the ratios, ¢, because
the detrending change affects both the numerator and
the denominator.

The zonally averaged e for each type of data is given
in Fig. 12. Because the denominators of all the types
of data are the same, this shows that the daytime and
nighttime satellite and the buoy data increment errors
are of roughly the same size while the errors for the
ship data increments are much greater. Each type of
data error tends to be roughly proportional to the guess
error. Thus all are higher in midlatitudes than they are
in the tropics. The figure shows that ¢ is roughly con-
stant with latitude for the ratio of the ship data to guess
error. However, the night satellite and the buoy ¢’s have
a minimum in the tropics while the day satellite has a
maximum. This day satellite maximum does not occur

at all tropical longitudes. The contribution is primarily
from the western and central Pacific where the SSTs
are subject to large diurnal cycles during periods with
weak winds. It is important to recall that our “error”

“estimate includes space and time scales that the analysis

cannot resolve. Thus, some of the daytime satellite error

Data/Guess Standard Deviation Ratio
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3.5
3.0
2.5
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—— Daytime —— Nighttime ----- Ship

F1G. 12. Zonally averaged data to guess standard deviation ratios:
¢. The values are shown for ships, buoys, daytime satellite, and night-
time satellite.
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is due to the inability of the analysis to resolve the
diurnal cycle. This may partially explain why the day-
time satellite error is larger than the nighttime error.

Figure 13 shows the zonal average of the ratios, e,
and ¢,, which occur from splitting the satellite data
increments into correlated and uncorrelated parts. In
the tropics €. and ¢, are almost the same for the daytime
satellite data. Outside the tropics the daytime value ¢,
drops to half the size of ¢,. Although the daytime ¢, is
important, the nighttime ¢ is never very important,
and it is defined as zero in the tropics by the definition
of ¢2,.

The global average of these “new” statistics is shown
in Table 2 along with the “old” assumptions. The val-
ues for sea ice ¢ could not be easily calculated from the
data. Thus, it was assumed that e, = 0 and e = ¢, = 1
for ice. This is roughly the same size as the value from
the satellite and the buoys. The change in ¢ from old
to new is relatively small and will have minimal impact
on the OL

The ship and buoy fields of ¢ were examined, but
these fields seemed noisy and the differences could not
be explained by ocean features. Thus, for ships and
buoys, the global average value of ¢, given in Table 2,
was used everywhere.

The e determined in Table 2 greatly reduce the in-
fluence of ship observations on the OI compared with
the other types of data. A simple example can help
clarify this. Assume there are n observations with un-
correlated errors at n distinct locations. If the obser-
vations are close enough to the analysis point and each
other that the exponent in (5) is equal to 1.0, then the
weights, w, are equal and (2) reduces to

w = .
e€+n

Data/Guess Standard Deviation Ratio
200
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1.50+
1.254

1.001

Ratio
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FIG. 13. Zonally averaged correlated and uncorrelated data to guess
ratios: e;and ¢,, respectively. The values are shown for daytime satellite
and nighttime satellite data.
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TaBLE 2. Global average ratio of data to guess error
from the “new” statistics and the ““old” assumptions.

Data/guess ratio: €

Type of data “New"” statistics “Old” assumptions

Ship 39 3.0-1.8
Buoy 1.5 2.0-1.0
Day satellite 1.6 1.8-1.0
Night satellite 0.9 1.8-1.0
Ice 1.0 1.0

If the SST data increments are a constant, g, the an-
alyzed SST, r, in (1) becomes

nq
e+n’

r=nwq= (12)
Now we assume that we have one buoy observation
and » ship observations for which (12) is valid. If ¢
and r are the same for the » ship observations and the
one buoy observation, then from (12) » is defined by

_&
€3’
where ¢, and ¢, are the buoy and ship values of e, re-
spectively. Using the values in Table 2 for the new
statistics, 7 = 6.76. In this example it takes almost seven
ship observations to equal one buoy observation!

There is no reason to expect that the correlation e-
folding scales should be the same for the guess and data
errors. However, because the residuals were low and
because of the noise in the \’s, it was assumed that the
scales were identical. The variables, A, and A, were
computed from the fits using both daytime and night-
time satellite data increments. The two values of A,
and of A, were qualitatively similar but spatially noisy.
To improve the final product, the day and night A, and
\, fields were first averaged. These averaged values of
A and A\, were then smoothed by application of a five-
point binomial smoother in both the meridional and
zonal directions with weights: 1/16, 416, 616, 416,
and l/16.

The smoothed e-folding scales (see Figs. 14 and 15)
show that the zonal scales are larger than the meridional
scales at most locations. Other studies (e.g., Clancy et
al. 1990 and Meyers et al. 1991) have found the same
result. However, along the west coast of North America,
where upwelling produces a meridional band of cooler
waters, the meridional scales are larger than the zonal
scales. The meridional field is also noticeably flatter
than the zonal field. Both fields show longer scales in
midlatitudes than in the Tropics. There is also an in-
dication of shorter scales in the eastern tropical Pacific,
along 10°N, that suggests the influence of the inter-
tropical convergence zone. However, there is only an
indication of the shorter scales that could be expected
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F1G. 14. The zonal error e-folding correlation scales, A, derived from (6). The contour interval is 100 km.
The 1000-km contour is a heavy line; values greater than 700 km are shaded.

in the Kuroshio and Gulf Stream. The analysis on 20°
boxes has degraded the resolution significantly. Thus,
these scales should be considered only rough estimates.
It will be necessary to extend the 1-yr period of study
to improve the resolution.

The global average e-folding scales are shown in Ta-
ble 3. These new scales are much greater than the as-
sumed value. Although the scales are used for both the
data and the guess, they do not imply that there are
no data or guess signals on shorter scales.

Two versions of the OI were run. One used the
“new” statistics and the other used the “old” assump-
tions. Both versions used their respective previous
week’s analysis as first guess. However, because there
was no initial first guess for the analysis with the “new”
statistics, the first pair of analyses began with the same
first guess. The OI versions were run for a 4-week period
to allow the differences to stabilize. The results of the
OI with the new statistics are shown in Fig. 16. The
OI with the old assumptions is shown in Fig. 5 for the
same period. Comparison of the two figures shows that
the OI with the new statistics is smoother than the OI
with the old assumptions. This difference is primarily
due to the change in the e-folding scales. The larger
scales allow more data to influence the guess and thus
result in a smoother field. As can be clearly seen in the
figure, however, the new scales are not simply the min-

imum resolution of the guess. The minimum resolution
is primarily determined by resolution of the SST signal
in the data. This resolution of the OI is still finer than
the 6° resolution of the blended field that is shown in
Fig. 6. It is encouraging to see the small differences
between Figs. 5 and 16. The large number of satellite
and other SST data causes the OI to be relatively in-
sensitive to the OI statistics.

To compare how well each analysis fits the data, we
computed the rms of the data increments for both cases.
The global value was 0.82°C using the old assumptions
and 0.85°C using the new statistics. The rms differences
were also computed for 20°-wide zonal bands. The
analysis with the new statistics was always slightly
larger. This increase of the rms should be expected be-
cause the analysis with the new statistics is smoother
than the analysis with the old assumptions. The rms
differences never exceeded 0.04°C, however. Thus, the .
improvement in the statistics only slightly degrades the
overall fit of the data to the analysis.

It is difficult to compare these statistics with the sta-
tistics from other analyses. They depend on the spatial
and temporal resolution of the analysis, the pre-OI data
processing, and the first guess. The OI analysis of
Clancy et al. (1990) and Clancy et al. (1992) includes
an SST analysis that is similar to our analysis, although
there are important differences. The more recent ver-
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sion, Clancy et al. (1992), reports a “noise-to-signal
ratio” that is equivalent te ¢>. Their ¢ ranges from 1.2
to 2, which is roughly similar to the values in Table 2
and Fig. 12. Their values of the e-folding scales are
roughly half of the values given here. These statistical
differences are not surprising because of the analysis
dissimilarities. However, the contrast between Figs. 5
and 16 suggests that the differences between our sta-
tistics and the statistics of Clancy et al. (1992) would
not have a major impact on our SST results.

The OI theory (e.g., Lorenc 1981) also includes an
estimate of the normalized error variance, E, defined
at each grid point, k, by

N
=1 - 2 walmm;)
i=1

following the notation in (1)~(3). The estimated nor-
malized error will vary from one in regions where there
is no data, to near zero in regions that are densely sam-
pled by noise-free observations. The theoretical stan-
dard deviation for each analysis is then defined at each
grid point as equal to ¢, E. Thus, the initial OI error,
the first-guess error, is reduced by the factor E.

For the example shown in Fig. 16, the OI with the
new statistics gives an average value of E of 0.36. The
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TABLE 3. Global e-folding scales from the “new” statistics
and “old” assumptions.

Correlation scales (km): A

Direction “New” statistics “Old” assumptions
Zonal 850 220
Meridional 615 220

average guess error (Fig. 11) is 0.36°C. This results in
an average OI analysis error of only 0.13°C. The Ol
analysis error averaged only over the Tropics is even
smaller, 0.08°C. The OI analysis errors for the example
in Fig. 5 for the Ol with the old assumptions are larger.
The global average value is 0.29°C, while the average
tropical value is 0.16°C. ( These values were computed
with the assumed constant guess error of 0.5°C that
was used in the original statistics.)

The difference between the analysis errors shows that
the analysis error is sensitive to the error statistics. This
sensitivity is much greater than it is for the SST analysis
increments. The error estimates for the analysis are
probably too low. The normalized error, E, is strongly
affected by the satellite data because of its dense cov-
erage. The bias correction of the satellite data, which
is discussed below, is done outside of the OI and is not

Meridional Error Spatial Scales (km)
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FIG. 15. The meridional e-folding error correlation scales, A, derived from (7).
The 500-km contour is a heavy line. Otherwise as in Fig. 14.
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FIG. 16. Mean SST from the Ol using the ‘‘new” statistics for the week 13-19 January 1991. Otherwise as in Fig. 5.

included in E, however. Thus, further effort is needed
to define the analysis error estimate.

5. OI bias correction

The OI method assumes that the data are not biased.
This is not always a valid assumption. Reynolds et al.
(1989) compared several in situ and satellite analyses
with independent expendable bathythermograph
(XBT) data. These comparisons showed that most of
the difference between the in situ and satellite data was
due to satellite, not in situ, biases. They also demon-
strated that the satellite biases could be different for
daytime and nighttime retrievals. In addition, they
showed that the largest biases during the 1982-89 pe-
riod of record were due to stratospheric aerosols from
the April 1982 volcanic eruptions of El Chichon. The
usual retrieval algorithm adjusts for the attenuation by
tropospheric water vapor, but it does not adjust for the
different spectral attenuations by volcanic or other
aerosols. _

During June 1991, Mt. Pinatubo, located in the
Philippines (15°N, 120°E), produced new strato-
spheric aerosols with a volume more than twice that
from El Chichdn (Stowe et al. 1992). As discussed in
Reynolds (1993), the aerosols caused a severe reduc-
tion in the number of daytime satellite retrievals in the
vicinity of the volcanic cloud but did not affect the
number of nighttime retrievals. The sparsity of daytime
observations can be seen relative to the nighttime ob-
servations by comparing Figs. 3 and 4. The change

occurred because different cloud detection procedures
are used during the day than at night [see McClain et
al. (1985) for details]. In addition, Reynolds (1993)
shows that both daytime and nighttime retrievals had
large-scale negative biases over the tropical oceans with
magnitudes greater than 1°C. The biases in the night-
time retrievals are of greater importance for the Ol
because the number of nighttime observations re-
mained high.

To correct for possible large-scale satellite biases, a
preliminary step was added before performing the OI.
This adjustment uses the Poisson technique of Reyn-
olds (1988) and Reynolds and Marsico (1993) to pro-
vide a smooth correction field. In this method, prelim-
inary in situ and satellite analyses are produced using
spatial median filters to eliminate extremes. The in situ
analysis uses ship and buoy SSTs as well as SSTs de-
termined from sea ice information. Regions with suf-
ficient in situ observations ( presently five per grid box)
become internal boundary conditions and regions that
are ice covered become external boundary conditions.
The SSTs for the remaining grid points are determined
by solving Poisson’s equation

VP = p
for the SSTs, ®. The forcing term, p, is given by
p = VS,

where S is the SST field defined by the satellite analysis.
This method, the blended analysis, adjusts any large-
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scale satellite biases and gradients relative to the
boundary conditions defined by the in situ analysis.

The blended technique is used before the OI analysis
to separately correct the daytime and nighttime re-
trievals. In this method three preliminary analyses are
computed weekly on a 4° grid: an in situ, a daytime
satellite, and a nighttime satellite. The median
smoothing used in these analyses results in a spatial
resolution of about 12°. Two blended analyses are pro-
duced: ®p, produced by forcing with the Laplacian of
the daytime satellite data, V2.S,; and ®,, produced by
forcing with the Laplacian of the nighttime satellite
data, V2Sy. The smoothed daytime and nighttime cor-
rection fields are defined by &, — S, and &y — Sy,
respectively. Both &, — S, and ®y — Sy are then spa-
tially interpolated to the location of the daytime and
nighttime data, as appropriate, and added to the data
to provide the correction. Two versions of the weekly
Ol are computed: a version with in situ and corrected
satellite data, and a version with in situ and uncorrected
satellite data.

During 1991-92, two important biases occurred in
the satellite data. The first bias was caused by the Mt.
Pinatubo aerosols that affected the tropical satellite
biases from July 1991 through April 1992. The second
bias occurred south of 20°S between October 1991 and
March 1992. This bias was primarily due to a nighttime
satellite calibration error. This error (C. Walton 1992,
personal communication ) depends on the geometry of
the satellite and the solar declination. It only occurs at
middle and high southern latitudes during local sum-
mer. The error was made worse by the operational
nighttime satellite algorithm adjustments that were
used to correct the retrievals for the effect of the Mt.
Pinatubo aerosols. In addition there were biases in both
the daytime and nighttime retrievals caused by the ad-
ditional stratospheric aerosols from the August 1991
eruptions of Mt. Hudson in Chile at 45°S. Reynolds
(1993) discusses these biases in more detail.

To examine the effect of the aerosols on the retrieved
SSTs, all weekly in situ, daytime, and nighttime satellite
observations were separately averaged onto a 1° grid.
These gridded values and the weekly OI analysis with
and without the satellite bias corrections were con-
verted into anomalies by subtracting the climatology
given in Reynolds (1988).

The impact of the Mt. Pinatubo aerosols can be seen
in the zonally averaged anomalies between 10°S and
10°N, which are shown in Fig. 17. The three data
curves and the two analyses were within 0.5°C of each
other from May through the end of June 1991. After
this period, the in situ anomaly remained relatively
constant while the day and night satellite anomalies
became more negative. The nighttime anomalies
reached a minimum during September. The daytime
retrievals reached a minimum during August. The
number of daytime observations was much sparser than
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normal from August through October 1991, however.
Thus, some change in the daytime satellite anomalies
is due to undersampling of regions with high aerosol
concentrations. The difference between the in situ and
satellite anomalies shows that the satellite retrievals had
average negative biases with magnitudes greater than
1°C in the tropics in August and September 1991. The
change in the nighttime retrievals at the beginning of
October was due to an adjustment of the retrieval al-
gorithm to minimize the effects of the aerosols. The
correction method is described in Walton (1985).

Figure 17 also shows that the OI without the bias
correction (labeled OI) closely follows the nighttime
retrieval anomaly except for a small offset during Au-
gust and September. The offset is due to the small in-
fluence of the in situ data that eliminates roughly 0.2°C
of the negative nighttime bias. The daytime retrievals
had little influence because the number of observations
was much lower than normal (see Figs. 3 and 4). The
OI with the bias correction (labeled OI/Corrected) is
within 0.2°C of the in situ curve everywhere with an
average difference of less than 0.1°C.

The time series for the second area, which lies be-
tween 50°S and 30°S, is shown in Fig. 18. There the
in situ anomalies remain relatively constant while the
daytime and nighttime retrieval anomalies become
more negative from August through October. The day-
time retrievals reached a minimum in October and
tended to move closer to the in situ curve with time.
The daytime retrievals were not affected by the satellite
calibration. Thus, any bias in the retrievals can be as-
sumed to be from the Mt. Hudson aerosols. The night-
time retrieval anomalies reached a minimum in De-
cember. The difference between the nighttime satellite
and in situ anomalies gradually diminished from De-
cember through April.

Figure 18 also shows that the OI anomalies without
the bias correction closely follow the nighttime retrieval
anomalies. This was because the number of daytime
retrievals was roughly half the number of nighttime
retrievals. In this example, the OI with the bias cor-
rection removed only half the difference between the
in situ and nighttime anomalies. The bias correction
here is not as effective as it was in the tropics because
the in situ observations are more sparse (see Figs. 1
and 2). The sparsity of in situ observations is also sug-
gested in the greater noise in the in situ curve compared
to the in situ curve in Fig. 17.

6. Operational OI analysis

The daily version of the OI has been tested since
August 1990. This version also uses 7 days of data with
the same quality control and analysis technique as is
used in the weekly version. The first guess is the analysis
from the preceding day. Because the data from any
one day would enter the analysis seven times during
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F1G. 17. Zonally averaged SST anomalies for the band from 10°S to 10°N. The curves show the in situ, the daytime and nighttime
satellite data anomalies, and the Ol anomalies with and without the satellite bias correction. The OI with the satellite bias correction is

labeled “Ol/Corrected.”

one week, the data to guess error ratios, ¢, were in-
creased by the square root of 7. This effectively gives
the data the same weight in the daily and weekly ver-
sions because ¢ is squared in (3), which is the equation
that defines the OI weights. Time series of the two ver-
sions indicate that the analyses are almost identical on
weekly time scales. This agreement does not imply that
there is no variability on daily scales. These scales have
been filtered out by the use of 7 days of data.

The OI was operationally implemented at NMC on
20 February 1991. Because of operational restrictions,
there has been only one version of the operational
analysis. The daily Ol was initially done without the
satellite bias correction discussed in the preceding sec-
tion. However, the volcanic aerosols had such a strong
impact on the satellite data and, in turn, on the analysis

that the bias correction was urgently needed. This cor-
rection was added to the analysis on 29 July 1991. The
statistics discussed in section 4 were implemented into
the operational OI on 27 May 1992. The results were
equivalent to the change in the weekly OI (compare
Figs. 5 and 16) and resulted in a slightly smoother
daily product.

When the OI was operationally implemented, the
analysis provided the SST boundary condition for the
NMC Medium Range Forecast (MRF) model. The
operational MRF model was tested for an 11-day pe-
riod using both the OI and a daily version of the
blended analysis. The MRF showed some small im-
provement in the 5-day forecast temperatures (i.e., a
few tenths of a °C) in the tropical troposphere when
the SSTs were determined by the Ol. Elsewhere the
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FIG. 18. Zonally averaged SST anomalies for the band from 50°S to 30°S. Otherwise as in Fig. 17.

difference between the two SST fields showed no sig-
nificant change in the forecast temperature, humidity,
or wind fields.

The current daily OI analysis is available on the GTS
on a 2° grid. This 2° version is presently used as the
SST boundary condition for forecast models at the Eu-
ropean Centre for Medium-Range Weather Forecasts.
The Japanese and Australian weather services have also
expressed interest in the product. However, the daily
product has not been available at either location be-
cause of hardware problems at the GTS node in Tokyo.

7. Discussion

The OI with the satellite bias correction is superior
to the blended analysis because of its higher spatial and
temporal resolution. The difference between the anal-

yses also is evident over large regions. The Nifio 3 re-
gion in the eastern tropical Pacific (5°S-5°N; 150°W-
90°W) has been used by modelers (e.g., Zebiak and
Cane 1987) to verify ENSO forecasts. However, there
are systematic differences between the two analyses in
this region as shown in Fig. 19. Here, the monthly
blended fields have been interpolated to the weekly
resolution of the OI. The OI and blended curves are
usually within 0.2°C of each other. Differences can
reach 0.4°C, however. The figure shows that the OI
tends to have more negative local minima and more
positive local maxima than the blend. These differences
tend to be larger during the local minima because the
OFI’s higher resolution can better resolve equatorial up-
welling.

To quantify the differences between the two curves
in Fig. 19, we plan to use independent data. Preliminary
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F1G. 19. Average SST anomalies from the blend and the OI with the satellite bias correction
for the Nifio 3 area: 5°S~5°N, 150°W-90°W.

results already show that the OI with the bias correction
is superior to the blend in regions of high gradients
(e.g., the eastern equatorial Pacific). These two analyses
are almost identical in regions with almost no gradients
(e.g., the western equatorial Pacific), however.

As mentioned at the end of section 4, the OI estimate
of the tropical analysis error (using the new statistics)
was less than 0.1°C. This analysis error is not exact
because the satellite bias correction is not included in
the normalized error estimate. However, the analysis
error estimate would be statistically correct when the
Ol is used with uncorrected satellite data. In this case,
the actual rms errors would also be much larger than
0.1°C because of the large biases in the satellite data
(see Fig. 17). Although it will be difficult to determine
if the Ol is as good as the value suggested by the sta-
tistics, the use of independent data can help establish
upper limits to these errors.

The error statistics determined in section 4 (see
Table 2) tend to minimize the influence of the in
situ data relative to the satellite. The major impact
of the in situ data occurs in the bias correction of
the satellite data before they are used in the OI. The
spatial scales of the satellite and analysis errors
shown in Figs. 14 and 15 indicate the scales of the
correlated satellite error. Because our period of re-
cord in determining these statistics was only 1 year,
the actual correlated scales are only approximated.
Our results suggest that the satellite error scales are
roughly 850 km in the zonal direction and 615 km
in the meridional direction (see Table 3), however.
It would be useful to be able to correct the satellite
bias errors on these scales rather than the 12° scales
used in the bias adjustments. We are actively work-
ing to develop new methods to use spatially varying
correction scales.
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In an earlier draft of this paper, J. Thiébaux (1992,
personal communication ) was concerned that the data
increments used in the statistics were seasonally de-
trended while the data increments used in the OI were
not. The change in the climatology during 1 week can
exceed 1°C in middle and high latitudes. Thus, this
difference could be important.

To examine this effect, the Ol guess was corrected
for the weekly change in climatology. Assume there
has been an SST analysis, S,_;, at time, 7 — 1, and an
analysis, S;, is needed at time 7. The uncorrected guess,
G*, used for the analysis of S, would be given by

G =S,
Between times ¢ and ¢ — 1, the SST climatology, C,
would change by (C; — C,~). Thus the climatologicalty
corrected guess, G, would be given by

Gi=S8_,+ (C,— Ciy).

The OI was run with both the corrected and un-
corrected guesses. The differences were very small
(less than 0.25°C) over 95% of the ocean. However,
the climatologically corrected guess could be very
important if no new data were available for a long
period. If there were no data, the use of the uncor-
rected guess is equivalent to assuming the mean SST
persists; the use of the climatologically corrected
guess is equivalent to assuming the anomaly SST
persists. The persistence of the anomaly is physically
more reasonable. Thus, the use of the climatologi-
cally corrected guess was added to the weekly analysis
in August 1992 and was added to the operational
analysis in October 1992.

As discussed throughout this manuscript, the OI has
been evolving since it was first started in March 1990.
To improve and extend these fields, the weekly OI has
been computed or recomputed for the period January
1985 through December 1992 to present using the sta-
tistics derived in section 4 with the climatology cor-
rection. By the middle of 1994, the dataset will be ex-
tended back to November 1981. This is the practical
limit because the AVHRR instrument first became op-
erational in November 1981. Although the analyses
will undoubtedly have to be processed several times to
finalize the analysis procedure, a final product will be
generated that uses consistent procedures throughout
the entire period.

The OI analysis with the bias correction is still
evolving. Once the OI has been analyzed from Decem-
ber 1981 to present, it is planned to recompute the
statistics using the entire dataset. This will allow the
refinement of the spatial resolution of the analysis and
may allow the determination of the seasonal depen-
dence. We believe that the OI with the bias correction
is a significant improvement over the blended analysis
Substituting (A5) into (A3) gives
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and over any other analysis that uses uncorrected sat-
ellite data.
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APPENDIX
Fitting Procedure

For each area, we require a least-squares fit of (6)
or (7) to our binned correlations. If there are » cor-
relations, F;, computed at separation distances, d;, be-
tween the data values, then a function E? can be defined
by

E? = i (F; — F;)2.

i=1

(A1)

Here F; are the model correlations given by (6) or (7)
and written here in terms of d; as

F; = A exp(—d?/\Y). (A2)

The parameters 4 and A are determined by substituting
(A2)into (A1) and requiring that

9E7 9E*
a4 o\

This reduces to two equations

0.

2 F;d} exp(—d}/\?)

i=1
—A Y d? exp(—2d?/2\?) =0 (A3)
=1
and

2 Fiexp(—di/Z*) — A4 Y exp(—2d?/2\?) = 0.

i=1 i=1

(A4)
From (A4), A can be obtained in terms of A by
2 F;exp(—di/\?)
A=5 (A5)
Y exp(—2d?/\?)

1



948

JOURNAL OF CLIMATE

2 Fid} exp(—d}/\*) T exp(—2d}/N*) — 3 d? exp(~2d?/\?) 3 F; exp(—d?/\2) = 0.

i=1 i=1

The value of A is found by numerically solviﬁg (A6)
by trial and error using different A’s at 5-km intervals.
Once A is found, A4 is given by (AS).
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