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Executive Summary 
 
The National Research Council recently prepared a report strongly recommending that 
NOAA redouble their efforts to produce and disseminate high-quality probabilistic 
forecasts.  They stated, “Uncertainty is a fundamental characteristic of weather, seasonal 
climate, and hydrological prediction, and no forecast is complete without a description of 
its uncertainty.”  
 
Currently, most probabilistic forecast information is based on ensemble forecasts, a suite 
of model simulations integrated forward in time from different initial conditions, and 
sometimes utilizing different models.  Unfortunately, the probabilistic forecasts directly 
estimated from these ensembles are neither as skillful nor as reliable as they could be. 
Hence, probabilistic information provided to forecasters should be calibrated, corrected 
using the errors that have been determined from prior forecasts and observations.   
 
For many of the forecast problems that NOAA cares most about such as precipitation 
forecasts, an effective calibration is much more difficult without a long time series of past 
forecasts from the same model that is being run operationally.  Accordingly, the NRC 
recommended that “NOAA should include reforecast data sets to facilitate post-
processing.”  These reforecast data sets are old forecasts run from the same model that is 
used operationally.  Recent work at NOAA/OAR/ESRL has demonstrated that calibration 
based on reforecasts can improve probabilistic forecast skill by an amount equivalent to a 
decade of numerical weather prediction development. 
 
We propose that many of the new probabilistic forecast products proposed by the NRC 
should be produced using ensemble forecasts accompanied by reforecasts for calibration.  
However, NOAA is not prepared to regularly produce and utilize reforecast-based 
products.  Currently NCEP concentrates on disseminating the highest quality numerical 
forecast, and the suite of forecast models is updated as rapidly as possible with improved 
numerical methods and higher-resolution models.  Hence we recommend cooperation 
across NOAA organizations to produce these new probabilistic products.  NCEP, as 
NOAA’s center of expertise for numerical weather prediction, will continue produce the 
real-time numerical ensemble forecasts. Perhaps in collaboration with OAR and/or 
JCSDA, NCEP will also regularly produce reanalysis and reforecast data sets.  OAR, 
with its track record in developing reforecast-based products, will develop the advanced 
calibration techniques necessary to calibrate the current model forecast, collaborating as 
necessary with MDL. And finally, MDL will statistically adjust the forecasts and 
disseminate the corrected statistical forecasts through the National Digital Gridded 
Database (NDGD).    
 
The result will be state-of the art, calibrated, skillful probabilistic forecasts.  This project 
will require (1) a modest supplement of funding to support personnel to develop and 
disseminate the probabilistic forecasts, (2) extra computer resources for the regular, 
dedicated production and archival of reanalyses and reforecasts, and (3) a willingness for 
NOAA personnel and managers to work collaboratively across organizations, using the 
talents unique to each – a “one NOAA” approach.
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1. Introduction: National Research Council Recommendations 
 

In July, 2006 the National Research Council delivered to NOAA a report entitled, 
“Completing the Forecast:  Characterizing and Communicating Uncertainty for Better 
Decisions Using Weather and Climate Forecasts” (National Research Council, 2006). 
The report noted that 
 

“Uncertainty is a fundamental characteristic of weather, seasonal climate, and 
hydrological prediction, and no forecast is complete without a description of its 
uncertainty.”1   

 
The report noted that forecast users have become conditioned to using deterministic 
forecast products produced by the NWS and others, such as the temperature forecast from 
the National Digital Forecast Database, shown in Fig. 1 below. Such products are 
deceiving, for they imply that the temperature can be determined very specifically.  Of 
course, weather forecasts are in error by an amount that will vary from day to day, so a 
deterministic forecast is incomplete.  Many users could benefit if the NWS provided 
probabilistic forecasts.  For example, a one percent chance of a temperature above a 100-
degree threshold may be an acceptable risk to a company pouring a high-temperature 
sensitive concrete, but a 10 percent chance means an expensive, ruined job one time in 
ten, which may bankrupt the company over time.  A deterministic map does not provide 
them with the information they need to weigh the relative costs of idling their workers 
until cooler weather vs. pouring concrete and having it ruined by the high temperatures. 
 

 
 
Figure 1:  Sample of a 1-day temperature forecast from the NWS’s National Digital Forecast Database. 
 

                                                
1 From the opening paragraph of the summary. 
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Accordingly, the NRC recommended that the weather “Enterprise” (i.e., the collective 
efforts of public and private forecasters) needed to move toward conveying forecast 
information probabilistically.  The panel noted the difficulty of the task and asked NOAA 
to take the lead:  
 

“Hydrometeorological services in the United States are an Enterprise effort.  Therefore, 
effective incorporation of uncertainty information will require a fundamental and 
coordinated shift by all sectors of the Enterprise.  Furthermore, it will take time and 
perseverance to successfully make this shift.  As the Nation’s public weather service, 
NWS has the responsibility to take a leading role in the transition to widespread, effective 
incorporation of uncertainty information into hydrometeorological prediction.”2 

 
The NRC report produced many other recommendations, but the overall tenor of the 
report was that NOAA must lead the US effort to produce useful probabilistic forecasts. 
 
 This white paper is designed to outline a program to address some of the crucial 
recommendations in the NRC report.  How can NOAA produce and disseminate skillful 
probabilistic predictions?  Below, section 2 will review the current state of the art of 
probabilistic prediction in the NWS.  This process is based on ensemble forecasts, but 
these forecasts have deficiencies, and probabilistic information is not yet effectively 
conveyed to weather forecast offices (WFOs) and the public.  Section 2 will also review 
some of the underlying causes for the deficiencies in probabilistic forecasts from 
ensembles.  Section 3 then provides background on recent research in NOAA 
demonstrating how the major deficiencies in probabilistic forecasts can be addressed 
through the statistical correction using a database of reforecasts (i.e., hindcasts) and 
observations.  Section 4 sketches out a rough vision of how the major NRC 
recommendations can be addressed.  We envision a forecast process whereby the current 
ensemble forecast is statistically adjusted using reforecasts.  This program will require 
that NOAA personnel and computer resources be reallocated, and this program envisions 
a closer cooperation between NOAA/NCEP, NOAA/MDL, and NOAA/OAR, a “one 
NOAA” approach that must be embraced by scientists and program managers to be 
successful.  
  

In the subsequent discussion, we will often refer to results from a pilot reforecast 
data set using a reduced-resolution, 1998 version of the NCEP Global Forecast System 
(Hamill et al. 2006).  
 
 

                                                
2 From finding 1 of the summary. 
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2. Probabilistic forecasting in NOAA, circa 2006: ensemble forecasting and its 
deficiencies 
 
a.  Ensemble forecasting basics 
 
 NOAA has, of course, already begun using ensemble forecasting as a tool for 
providing probabilistic information.  A collection of different forecasts is generated from 
different initial conditions and/or different models.  The rapid growth of errors due to 
chaos and model uncertainty will result in a spread of possible forecast states. Ideally, 
ensemble forecasts may provide an early warning of possible severe weather.  A single 
integration of the forecast model may not indicate that a storm will develop.  With an 
ensemble, perhaps a very small change in the initial condition will be enough to trigger 
the development of a storm.  An ensemble forecast thus may provide value-added 
information, providing the forecaster with a heads-up of a possible unusual event that was 
not available when only one forecast was produced.  A particularly successful example of 
this is provided for the December 1999 “Lothar” storm in Europe using the ECMWF 
ensemble (Fig. 2, from Palmer 2006). 
 

 
 
Figure 2:  An example of deterministic and ensemble forecasts for a deadly storm in Europe, December 
1999 (the map is centered on France, with southern England in the upper left).  The deterministic forecast 
of sea-level pressure (contours, with low values shaded) in the upper left produced no storm over Europe, 
when in fact a very strong storm developed over northern France.  When a 50-member ensemble was run, 
many of the members produced intense storms, warning forecasters of the possibility of a severe storm.  
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More quantitatively, we design the ensemble forecast system with the intent that 
the probability of an event, severe or otherwise, can be determined directly from the 
ensemble. If we wished to estimate the probability of more than 1 cm of rainfall 
tomorrow in Washington, D.C., ideally we would count up the number of members 
forecasting more than 1 cm (say, 3 members) and then divide this by the total number of 
members (say, 15 members), producing a 20 percent chance of 1 cm or greater rainfall.  
This forecast should be as sharp as possible while still remaining reliable.  A sharp 
forecast is one that will frequently deviate from the long-term climatological 
probabilities, issuing mostly definitive yes (probability=1.0) or no (probability = 0.0) 
forecasts rather than waffling.  A reliable forecast issues probabilities that match the 
long-term event frequency, so that, for example, over all the times when a 10 percent 
chance of rain was issued, it actually rained 10 percent of the time.  The more sharp a 
forecast is while remaining reliable, the more skill it possesses. 
 
 Unfortunately, while ensemble forecasts are computed at NCEP, there are two 
major problems: 
 

(1) The regular dissemination of a wide suite of probabilistic products is not yet 
part of the NOAA concept of operations. Ideally, such products would be 
distributed through the National Digital Guidance Database (NDGD), and 
worded National Weather Service zone forecasts would convey forecast 
information probabilistically.  

 
(2) Even if the ensemble-based probabilities were disseminated through the 

NDGD, the current forecasts are neither particularly skillful nor reliable.   
 
b.  The root causes of deficiencies in ensemble forecasts 
 

Ensemble forecast deficiencies have at least four basic causes. The first cause can 
be traced to deficiencies in the forecast model(s) that are used to generate the member 
forecasts.   An ensemble forecast system inherits the deficiencies of the model(s) used to 
integrate each member.  For example, if the model consistently produces a forecast that is 
too cool or too dry, one can expect that an ensemble forecast also will be biased toward 
high probability of cool and dry events. As the forecast model is improved, the ensemble 
forecasts should become more skillful. 

 
A second, more subtle problem is that ensemble forecast systems typically 

produce forecasts with too little spread (spread is defined as the standard deviation of the 
ensemble members about their mean), and the spread of the ensemble is not indicative of 
the expected error in the forecast, as it should be (Whitaker and Loughe 1998).  Even 
after a sophisticated correction of bias, too often the observed weather lies outside of the 
span of the ensemble, leading to unreliability of the forecasts (Fig. 3). This spread 
deficiency could be due to many problems with the ensemble forecast system.  The initial 
perturbations may not realistically sample the distribution of plausible initial states, as 
they should.  The growth of differences among forecasts may be constrained by the use of 
lower-resolution models; the larger the grid spacing, the less errors can grow at the 
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smallest scales and then interact with the larger scales.  And the forecast model may be 
coded to assume that certain sub-gridscale processes such as convection and turbulent 
mixing operate deterministically, when in fact they operate more stochastically, thereby 
limiting the growth of spread (Palmer 2001). 
 

 
Figure 3:  Rank histograms of Day-4 850 hPa temperature ensemble forecasts (a) before, and (b) after a 
regression-based bias correction to the ensemble mean.  The rank histogram tallies the rank of the observed 
data relative to a sorted ensemble over many locations and cases.  The high population in the uppermost bin 
of panel (a) indicates that the observation was often warmer than all the ensemble members, indicating a 
cold bias in the forecasts (a flat rank histogram is desirable).  Panel (b) shows that a bias correction evens 
out the percentage of too-cold and too-warm cases, but still too often the forecasts lie outside the range of 
the ensemble, indicating a general lack of spread.  The forecast model is a circa 1998 version of the NCEP 
Global Forecast System (Hamill et al. 2006), but the general properties shown here are fairly common 
among ensemble forecast systems.  For more information on the interpretation of rank histograms, see 
Hamill (2001). 
 

A third source of error in probabilistic forecasts is caused by the limited size of 
the ensemble. Ideally, the ensembles are randomly sampling from the distribution of 
possible weather states, and all things being equal, the probabilities will be estimated 
much more accurately with many members than with few members.3  A final problem is 
that the ensemble forecast system is producing a gridded, area-average representation of 
the weather rather, and in many situations the user requires a forecast for a specific 
location.   
 
c.  Approaches to deal with deficiencies of ensemble forecast systems. 
 
 There are three general approaches one might take to address these problems, and 
these approaches are not mutually exclusive.  They are:  (1) develop more accurate 
models.  (2) Rely upon our operational forecasters to adjust the forecasts before 
dissemination to the public, and (3) develop an objective system for correcting the errors 
before they are disseminated. 
 

                                                
3 In actuality, the tradeoff is more complex, for given a fixed amount of computer resources, running a 
larger ensemble will require computing that ensemble at a coarser resolution, with more concomitant error 
in each member. 
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 If we rely upon the first option, disseminating information directly from the 
ensemble and working to improve that ensemble, the history of numerical weather 
prediction development suggests that we will have to wait a very long time for dramatic 
improvements.  The biases in the many of the forecast parameters we care about most, 
such as surface temperature, wind speed, and precipitation, are all dependent on 
accurately modeling some of the most minute aspects of the weather prediction system 
that we still know very little about, such as the way the size distribution of cloud droplets 
or the way that wind will interact with a variety of vegetation types.  Hence, while model 
deficiencies are reduced with each passing year, the improvements are incremental, and 
they presuppose a continued investment in new observational platforms, basic science, 
larger computers, and a dedicated staff of talented scientists to improve the computer 
models.  Extrapolating from past experience, it is unrealistic to expect that model 
deficiencies will be eliminated in 10 or even 50 years; the remaining scientific challenges 
are too great.  
 
 Can we do something practical to increase skill while we work toward a bias-free 
model?  There are many independent efforts going on worldwide to produce weather 
forecasts, and one approach that has been suggested is to collaborate, to combine the 
forecasts from multiple centers.   The hope is that each model will have a distinctly 
different model bias, and hence the model uncertainty is accounted for and forecast biases 
are reduced through averaging.  With this in mind, the US and Canada have entered into a 
partnership called “NAEFS,” the North American Ensemble Forecast System4.  It is 
expected that the United Kingdom Met Office and the US Navy will add their forecasts in 
the next few years.  This approach is exciting, but it is still somewhat untested.5  Will the 
forecast models truly have independent biases, or since numerical techniques are shared 
internationally, will the forecasts still tend to resemble each other?  Multi-model systems 
will continue to be developed, but it is risky for NOAA to assume that a multi-model 
system alone will provide the high-quality probabilistic forecasts that are desired. 
 
 The second possible approach is to rely on our human forecasters to correct for 
errors in any probabilistic information that is to be disseminated publicly.  There are 
several disadvantages of this approach.  First, typically the forecaster is very busy, and 
modifying a probabilistic forecast is a substantially more complicated task than 
modifying a deterministic forecast.  Second, it’s not clear that many forecasters will have 
the necessary information and experience to correct errors in the probabilistic forecasts.  
In the NDFD we already have problems with the subjective modification of gridded 
forecasts (note, for example, the discontinuities of South Dakota temperature forecasts in 
Fig. 1, produced by different forecast offices making different subjective forecasts).  
Modifying probabilistic forecasts presupposes that the forecaster will be monitoring not 
only forecast bias, but also other problems like spread deficiencies.  This is an unrealistic 
assumption. 
 
                                                
4 Presentation from the most recent NAEFS workshop can be viewed at  
http://www.cmc.ec.gc.ca/~cmcdev/naefs/, (username “naefs”, password “cmc”). 
5 See also THORPEX research on a related project called TIGGE, 
http://www.wmo.ch/thorpex/pdf/tigge_summary.pdf 
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The third approach is to produce an objective, computer-based calibration of the 
probabilistic forecasts, adjusting the probabilities based on the discrepancies between 
time series of past forecasts and observations.  This calibration would improve the 
probabilistic forecast skill and reliability.  Ideally, only a short record of past forecasts 
would be needed, for current and past forecasts should come from the same model, and 
that model may be updated several times a year.  However, practical experience has 
shown that for some of the tougher forecast problems such as long-lead forecasts or 
forecasts of precipitation, a short set of forecasts is simply not adequate to achieve an 
effective calibration (we shall return to demonstrate this in section 3).  Hence, many years 
or decades of prior forecasts would be useful, forecasts from the exact same model that is 
run operationally.  We call these “reforecasts,” noting the similarity with the concept of 
reanalysis (Kalnay et al. 1996).  With a large reforecast database, there is a greater 
likelihood of finding past forecast events similar to today’s forecast event, even if that 
event is relatively rare, a necessary pre-requisite to effective calibration.  A series of 
articles have shown that reforecasts are highly beneficial for improving the skill of 
medium range probabilistic forecasts (Hamill et al. 2004, Whitaker et al. 2006) and short-
range probabilistic precipitation forecasts (Hamill et al. 2006, Hamill and Whitaker 
2006). The NRC was convinced of the importance of reforecast data sets and issued some 
specific recommendations to NOAA advocating their computation.  For example, they 
state that  
 

“an easily accessible observation and forecast archive is a crucial part of all post-
processing or verification of forecasts”  

 
and they recommend that  
 

“NOAA should include reforecast data sets to facilitate post-processing.”6 
 

The disadvantage of the reforecast-based approach is that it is computationally 
expensive to produce, and once the data set is produced, there is less impetus to change 
the forecast model given the expense of recomputing the reforecasts.  Also, to fully get 
the benefit of reforecasts, companion reanalysis data sets must also be produced.  These 
tasks could slow down the numerical weather prediction development process. 
Nonetheless, the initial tests with reforecasts have demonstrated that dramatic 
improvement in the skill of forecasts are possible, skill improvements equivalent to ~10 
years of model development and computer upgrades (Hamill et al. 2004, 2006).  Also, 
there may be ways to minimize the impact on the NWP development process, which we 
shall return to in section 3d.   

 
The next section outlines the rationale for reforecasting. 

 
 

                                                
6 Recommendation 3.4 of the NRC report, from section 3.1.4.   
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3.  A rationale for institutionalizing reforecasts in NOAA 
 
a. Problems with short training data sets and compositing over different locations 
 

A simple example, shown below in Fig. 4, demonstrates why short training data 
sets are often inadequate and a large reforecast data set is needed.   Suppose we have a 
month and a half of prior forecasts and observations for a location in the desert of the 
western US.  Today’s ensemble forecasts a significant rain event, while no similar rain 
event was forecast during the training period.  How then can past forecasts provide any 
pertinent information for correcting possible errors in the current forecast?  
 

 
Figure 4.  A time series of forecasts and observations for a dry location.  The forecast-observation 
differences for past month and a half are probably useless for determining a bias correction for the latest 
forecast, which is far wetter than any of the prior forecasts. 
 

Many proposed calibration methods attempt to enlarge the sample size by 
compositing forecast/observed samples over different locations.  However, such methods 
have not been demonstrated to be highly successful in correcting bias and improving 
forecast skill.  One reason is that nearby locations, especially those in mountainous 
regions, may have very different errors.  Two locations on opposite sides of a mountain 
range may have different errors due to the forecast model’s simplified representation of 
wind flow around and over that range. An example of this is provided in Fig. 5.  A 
technique from NCEP uses the difference between cumulative distribution functions 
(CDFs) of the forecast and observed to make bias corrections (for a critical review of this 
technique, see Hamill and Whitaker 2006).  Panel (a) shows the CDFs for a location 
along the California coast, just north of San Francisco. The CDF indicates the collective 
probability that the precipitation will be less than or equal to the specified amount.  The 
90th percentile of the observed CDF is approximately 4 mm, while the 90th percentile of 
the forecast CDF is approximately 7 mm.  This suggests that at this threshold the forecast 
may have a moist bias that should be corrected to 4 mm.  The NCEP technique re-maps 
members’ forecast amount based on the differences in CDFs, and the bias correction is 
shown in panel (c). The CDF for Sacramento are shown in panel (b), and its bias 
correction is also shown in panel (c).  Note that two locations that are separated by a 
relatively small distance have very different implied bias corrections, illustrating the 
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potential downside of a technique that attempts to make a generalized bias correction 
using data across many locations. 

 

 
 
Figure 5:  Illustration of a bias correction technique used at NCEP and designed to work with small 
training data sets aggregating forecasts/observations at different locations. Panels (a) and (b) provide the 
cumulative density function (CDF) of 1-day forecasts of precipitation for 1 January (CDFs determined 
from reforecast data and observations in Dec-Jan).  Panel (a) is for a location on the CA coast, just north of 
San Francisco, and panel (b) is for Sacramento, CA. Panel (c) provides the implied function for a bias 
correction from the forecast amount to a presumed observed amount.  Note the very different corrections 
implied at two nearby locations. 
 

Sample size could be increased through the use of more than the past month’s 
forecast and observations.  However, if some of the older forecasts were computed with a 
different model version, that model may have different forecast-error characteristics than 
is used for the current forecast.  That is, the current forecast would then be partly 
correcting for the bias in a previous model version, limiting its accuracy. 
 

Synthesizing these general results, we conclude that to extent that model errors 
are consistent from one day to the next or consistent across many diverse locations, they 
can be corrected with relatively short training data sets.  If they vary quite a bit from one 
day to the next and one location to the next, they will require a larger sample of past 
forecasts to find enough similar forecast events in the past to attempt a calibration.  
 
b.  When larger training data sets are helpful:  Example 1, week-2 forecasts. 
 
 We can see the particularly beneficial effect of reforecasts when calibrating week-
2 forecasts. Here, we found that model errors were so large that corrections a bias 
correction of the raw ensemble using a short training data set was simply not able to 
produce a forecast with appreciable positive skill (Fig. 6).  A bias correction with a 
longer (22-year cross validated) training data set improved the skill, but the forecasts 
remained somewhat unreliable.  Only when a full calibration of bias and spread 
deficiencies was applied using the reforecasts did they become both appreciably skillful 
and reliable. 
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Figure 6. Reliability diagrams for week-2 forecasts.  In each panel the lines plot the observed event 
frequency as a function of the forecast probability.  Lines along the 45-diagonal are preferred (perfect 
reliability).  The dotted line is a forecast for below-normal temperature probabilities (the “lower” tercile), 
and the solid line is for above-normal temperature probabilities (the “upper” tercile).  The inset histograms 
provide information on how often a given forecast probability is issued, a measure of forecast sharpness.  
The overall skill is summarized by the reported ranked probability skill score (RPSS), where 1.0 is the skill 
of a perfect probabilistic forecast and 0.0 is the skill of a climatological forecast.  (a) Reliability diagram of 
probability forecasts derived from the raw ensemble relative frequency.  (b) Diagram of probability 
forecasts derived from the ensemble relative frequency after a bias correction based on the previous 45 
days of observations and forecasts. (c) Diagram of probability forecasts derived from the ensemble relative 
frequency after a bias correction based on the previous 22 years of observations and forecasts. (d) Diagram 
of probability forecasts based on a logistic regression using 22 years of training data from the reforecast 
data set, which produces a forecast with both a bias and spread correction. 
 
c.  When larger training data sets are helpful:  Example 2, short-range PQPFs. 
 

Long training data sets are also extremely valuable for the calibration of short-
term probabilistic quantitative precipitation forecasts (PQPFs).  Here, the imperfections 
in the probabilistic forecast are likely to be very dependent on the specific synoptic 
situation that day, which may be quite different from the synoptic situation the day 
before.   

 
NOAA/OAR/Earth System Research Lab’s (ESRL’s) recent work has 

demonstrated that it is possible to statistically downscale a coarse-resolution forecast 
using the reforecasts, producing skillful, very high-resolution predictions with detail that 
matches the local climatology.  These calibrated forecasts are improved both in skill and 
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reliability.  Figures 7 and 8 demonstrate how much improvement is possible.  Figure 7 
shows the probabilistic forecast skill from raw ensemble forecasts, while Fig. 8 shows the 
skill after correction using an analog-based technique. The raw forecasts have very little 
forecast skill relative to the skill of a climatological forecast, and often the forecasts are 
less skillful than climatology, especially in the warm season.  The corrected forecasts are 
very skillful (Fig. 8) and very reliable (not shown, but see Hamill and Whitaker 2006). 

 

 
Figure 7: Brier Skill Score (Wilks 2006) of precipitation forecasts generated directly from ensemble 
forecast output. (a) Skill of 2.5 mm forecasts.  (b) Skill of 25 mm forecasts. Note the dashed line denoting 
zero skill.  Forecasts are verified with 32-km North American Regional Reanalysis precipitation analyses 
(Mesinger 2006). 

 

 
 

Figure 8:  As in Fig. 7, but for calibrated precipitation forecasts using a smoothed rank analog technique 
described in Hamill and Whitaker (2006). 
 

Recently, ESRL started producing an experimental probabilistic quantitative 
precipitation forecast product based on the reforecasts, and downscaled to ~5 km grid 
spacing using a PRISM climatology (Daly 2002).  These forecasts are available in real 
time at www.cdc.noaa.gov/reforecast/narr, and they are being used and evaluated at the 
NCEP Hydrometeorological Prediction Center.  An example of these forecasts and 
observed data is shown in Figs. 9-10.  Notice that while the forecast model is relatively 
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low resolution, it is possible to downscale the actual forecasts to provide very high-
resolution forecasts; the key tool was a high-resolution data set of analyzed precipitation. 

 
Figure 9: 12-36 h forecast of the probability of greater than 25 mm precipitation for the period 1200 UTC  
27 February 2006 to 1200 UTC 28 February 2006, using a reforecast-based analog technique described in 
Hamill et al. (2005).   
 

 
Figure 10: Observed precipitation from 1200 UTC 28 February 2006. – 1200 UTC 1 March 2006. 
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d. Questions about reforecasts. 
 
 The idea of reforecasting being central to the production of NWP products is a 
relatively new idea.  Below, we attempt to answer some of the possible questions the 
skeptical reader may have about reforecasts. 
 
 (1) Will reforecast data sets still be as useful as our models are improved?   
 

Certainly, calibration of a more accurate model will then provide less of a 
beneficial effect, for there will be less error to correct.  But how much less benefit?  Few 
other organizations have produced extensive reforecasts, so it is difficult to evaluate this.  
However, ECMWF recently produced a small reforecast data set with a 2004 version of 
their forecast model, with more than double the resolution of the 1998 NOAA GFS 
reforecast data set discussed above.   Given ECMWF’s substantial lead in forecast skill, 
this model represents about 10 or more years of improvement in numerical weather 
prediction technology.  ECMWF’s forecasts spanned only 12 years of dates in January-
February-March. Only 5-member ensembles were computed, and only one forecast 
ensemble was produced every two weeks, for a total of 84 forecast/observed samples at 
each location. GFS reforecast data was sub-sampled to the same ensemble size and 
limited set of dates.  Figure 11 below shows the reliability and skill of forecasts from the 
raw ensemble, and Fig. 12 provides the same after calibration.  The improvement from 
calibration of ECMWF’s week-2 forecasts (11.2 percent) was nearly as large as it was 
with the GFS model (14 percent).  For more details, please see Whitaker et al. (2006).   
 

 
 
Figure 11:  Reliability diagram for probabilistic forecasts of week forecasts of above and below normal 
temperatures (here, data from upper and lower tercile forecasts are combined).  Data taken from 12 years of 
January(a) NCEP raw 5-member ensemble, and (b) ECMWF 5-member raw ensemble. 
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Figure 12.  As in Figure 11, but after forecasts were calibrated with a logistic regression technique trained 
on reforecast data. 
 
 (2) Can a shorter reforecast data set be crafted to effectively substitute for a longer 
one? 
 
 Figures 11-12  may lead the reader to question whether long reforecast data sets 
are really necessary, for a somewhat effective calibration of the forecasts was there 
shown to be possible with a much smaller reforecast data set, with only 84 
forecast/observed samples at each location.  Unfortunately, had the 84 samples been 
drawn from the previous 84 days of forecasts, the calibration would not have been nearly 
as effective.  Week-2 forecast errors tend to be highly correlated from one day to the 
next, so 84 previous days of forecasts may provide an effective sample size of only 20 to 
30 forecasts spanning a much smaller range of weather scenarios.   
 

If a limited reforecast data set is all that can be computed, for week-2 calibration 
the reforecasts could safely skip days between forecast and thereby span more years.  The 
usefulness of such an approach is demonstrated in Fig. 13, taken from Hamill et al. 
(2004).  After producing probabilistic forecasts using 22 years of daily reforecasts (a 23-
year reforecast data set with one year subtracted for cross validation), we compared the 
accuracy that could be obtained if only four years of reforecast data were available.  
Those four years could be the prior four years with a reforecast computed every day, or 
they could span 8 years with a reforecast computed every second day, 12 years every 
third day, and so on.  Figure 13 shows that four years of reforecast data produce almost as 
skillful a calibration as the full 22 years if 5 days are skipped between sample forecasts, 
for then the samples will be nearly independent of each other and will have sampled the 
range of possible weather scenarios over a full two decades.  
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Compared with week-2 averages, which will not vary much from one day to the 

next, precipitation forecasts vary greatly.   What is important for calibration is simply 
having a large number of past forecast events that are similar to the current forecast 
event.  If the current forecast event under consideration is garden-variety weather, then a 
short training data set is more adequate, as shown in Fig. 14a, taken from Hamill et al. 
(2006).  However, for rarer events, there is a much more substantial benefit of a long 
training data set.  In Fig. 14(b), one can see that for the probability of greater than 25 mm 
rainfall, a 2-day probabilistic forecast based on a 24-year training data set is as accurate 
as a 1-day forecast from a 3-year training data set. 

 

 
 
Figure 14.  Brier skill scores of the analog reforecast technique for various lengths of the training dataset.  
Probabilistic forecasts were calculated for analog ensembles of size 10, 25, 50, and 75; the skill of the 
ensemble size that was most skillful is the only one plotted.  The color of the dot denotes the size of the 
most skillful analog ensemble. 

Figure 13: Ranked 
probability skill score 
(RPSS) when four years of 
training data were used, 
with 1, 2, 3, 4, and 5 days 
between successive 
samples in the training data 
set.  The lines labeled “full 
22” indicate the skill when 
the full 22 years of cross-
validated training data 
were used. 
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 In general, the more rare the event, the more useful a long reforecast data set will 
be for extreme-event calibration.  Since much of the value that people get from weather 
forecasts comes in situations where the weather is unusually adverse, large reforecast 
data sets will thus help the most with the calibration of problems that are of the greatest 
concern. 
 
 (3) How many reforecast members should be computed? 
 
 Our experience with reforecasts suggests that the most of the benefit of the 
reforecast data set can be obtained from a relatively small ensemble.  The calibration 
techniques that we have developed use the ensemble-mean state as a predictor and do not 
rely on the values of individual members.   Much of the benefit of improving the 
ensemble mean is obtained with relatively small ensembles, say 5-10 members; 25 or 50-
member reforecast ensembles are not necessary, nor is the operational production of a 50-
member ensemble forecast.  However, the reforecast data set that we work with uses the 
breeding method to generate initial perturbations (Toth and Kalnay 1997), and the 
reforecast model resolution is quite coarse, T62.  It is possible that future ensemble 
reforecast data sets constructed with more advanced perturbation techniques and models 
and will be able to extract more informational content out of large ensembles. 
  
 (4) Are companion reanalyses necessary each time we generate a new reforecast? 
 
 Producing new reanalyses along with the reforecasts will be highly beneficial.  In 
Fig. 15, we show the anomaly correlations (AC; 1.0 = perfect) of forecasts from a 2004 
version of the NCEP GFS system. The improvement in initial conditions through the use 
of a better data assimilation/forecast system have made current 120-h forecasts as good as 
or better than old 108-h forecasts, a 12-h increase in lead time.  This effect is even larger, 
approximately 24 h, in the Southern Hemisphere. From this we can conclude that if we 
generate a new reforecast data set from initial conditions from an old reanalysis, neither 
the raw forecasts nor calibrated ones from the reforecasts will be as skillful as they could 
be. 

 
Figure 15:  Anomaly correlations (ACs) of Northern-Hemisphere geopotential height forecasts.  Blue line: 
AC of Northern Hemisphere 120-h forecasts started from the NCEP-NCAR reanalysis, which uses a 1998 
version of the forecast model.  Solid red line: AC of 120-h forecasts from the current NCEP data 
assimilation system. Dashed red line: the AC of 108-h forecasts from the reanalysis. 
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 (5) Will reforecasting slow the process of implementing model improvements?   
 
 There are ways of implementing this where it does not appreciably slow the 
model development process.   One possible way would be to maintain parallel operational 
numerical models.  The first model would be high resolution and updated frequently, but 
not accompanied by reforecasts; we denote this model as “HR” for high-resolution.  The 
second set of numerical forecasts would be computed from a lower-resolution, 
infrequently updated model that is accompanied by reforecasts, the “RF” model. Real-
time forecasts from the RF model would be insignificant in cost relative to the cost of 
executing the HR model.  Perhaps every 3 or 4 years, a new reanalysis/reforecast data set 
would be generated using computers others than those comprising the NCEP production 
system.   Once the new reforecasts were computed, then the RF model would be updated.  
Under this scenario, the automated, calibrated probabilistic forecast products in the 
NDFD would be generated from the RF data, but forecasters would continue to have 
access to the HR data in order to get “synoptic intuition” about the weather. The 
disadvantage of this approach is that the reforecast data set would change relatively 
infrequently, thereby only sporadically leveraging improvements in the forecast model.  
Two different forecast model versions would also have to be maintained.  For more 
discussion of this approach, see the conclusion section of Hamill et al. (2006). 
 
 Another possible method, proposed by Renate Hagedorn at ECMWF and Zoltan 
Toth at NCEP, would be to dedicate computer resources to compute reforecasts directly 
for the model anticipated to be operational one month hence.  For example, on reforecasts 
for the date 1 February would be computed on the operational system on 1 January.  A 
month later, when the date was 1 February, the operational forecast on this date could be 
calibrated using reforecasts for 1 January – 1 March.  The advantage of this method is 
that reforecasts would be available for the current operational model, and this model 
could be frequently updated.   
 
 (6) How would the reforecasts be computed and stored? 
 

If NCEP’s production system were used, the computation of reforecasts could 
utilize computer resources that NCEP has already planned for other priorities such as 
increases in model resolution and the introduction of more computationally intensive 
physical parameterizations.  Hence, the use of non-production systems may be preferable. 
Fortunately, the computation of reforecasts is easily parallelizable, and it may be able to 
be performed on a cluster of personal computers at a relatively modest cost (order 
hundreds of thousands of dollars).  Alternatively, NOAA could allocate resources on 
existing systems such as the Climate Test Bed or ESRL’s high-performance 
supercomputer system.  Another modest allocation of resources (order several hundred 
K) would be necessary to archive the reforecasts. 
 
 (7) What forecast models should be used?  To what lead times should the 
forecasts extend?   
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 Following the current concept of operations at NCEP, we suggest reforecasts be 
performed with two models, a limited-area model for short-range forecasts and a global 
model for forecasts out to two weeks (or perhaps longer).  Since there is a recently 
produced reanalysis for the Eta model (Mesinger et al. 2006), a reforecast using this 
model would be relatively straightforward to produce.   
 
 Our initial reforecast data set was computed to 2 weeks lead.  In principle, the 
techniques used here may be helpful in correcting week-3 and week-4 forecasts, though 
these forecasts have very little skill relative to the climatology, and simpler statistical 
techniques may provide just as much skill (Newman et al. 2003). 
 
 
4.   A road map for NOAA cooperation in producing calibrated probabilistic 
forecasts 
 
 Achieving the NRC vision of expressing all forecast information probabilistically 
is an ambitious goal.  Per a NRC recommendation, we also suggest that an upper-level 
manager in NOAA should coordinate these activities, perhaps through the Operations and 
Service Improvement Process (OSIP) or the New or Enhanced Products and Services 
Process7.  This manager would organize the program and delegate tasks according to the 
unique abilities of NOAA’s constituent organizations. This manager would also 
coordinate the budget for personnel as well as computational and storage facilities.    
 
 What are some of the unique abilities of various NOAA organizations?  First,  
MDL is responsible for the production of statistically corrected forecasts, known as 
“Model Output Statistics,” or MOS.  MDL is also currently developing gridded MOS 
products for the NDFD.  With this expertise, MDL is the logical choice for the facility to 
actually produce, disseminate, and verify future reforecast-based probabilistic forecast 
products. 
 
 NCEP currently produces the real-time forecasts, and they would continue in this 
role, producing real-time forecasts, and perhaps computing the reforecasts as well, 
depending on the concept of operations.  
 

The regular production of reanalyses for the satellite era is necessary as a 
companion to the production of reforecasts.  Whether this should be done at NCEP, 
JCSDA, or elsewhere, NOAA should institute a program for repeating the reanalysis task 
periodically in service of the reforecasts, and of course many other users. Such a 
recommendation is consistent with that produced by CLIVAR. 8 
 
 OAR/ESRL demonstrated the first reforecast products and techniques, techniques 
that have provided quantum jumps in forecast skill.  ESRL in collaboration with MDL 
has the expertise to develop new reforecast-based techniques to make probabilistic 

                                                
7 See NWS Instruction 10-102, www.weather.gov/directives/sym/pd01001002curr.pdf 
8 See http://www.usclivar.org/Pubs/ReanalysisWorkshop_Rep.pdf 
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forecasts other parameters, such as wind speed and precipitation type.  ESRL also has 
developed the expertise to provide guidance on the structure of reforecast data sets, such 
as how many members are needed and what model parameters should be stored. 
 
 We foresee other organizations possibly leveraging the reforecast data sets, using 
it for their particular applications.  For example, perhaps the Storm Prediction Center 
(SPC) of NCEP will use reforecasts to develop products for the advanced warning of 
severe weather, and NCEP/HPC for specific probabilistic precipitation products.  OHD 
and the River Forecast Centers may use them for river forecasting applications.  NOAA’s 
Great Lakes Environmental Research Lab (GLERL) may use reforecasts to develop a tool 
to forecast changes in lake levels.  The military or EPA may use reforecasts for chemical 
dispersion modeling.  The reforecast data and the real-time model data, per the NRC 
recommendation, would also be publicly available for academics or private companies to 
use to develop tailored products to specific users.   
 
 Our hope and expectation is that these reforecast-based products will be accurate 
and internally consistent (e.g., no probability of snow forecast if there is little probability 
of below-freezing temperatures).  Forecasters in WFOs will thus not need to manually 
modify NDFD products, as they do now with the deterministic temperature forecasts.  
This may save a significant amount of labor in the WFOs, and hence cost to the NWS.  
However, the WFOs should monitor the accuracy of forecasts, and we expect that all 
participants will foster open communication in service of the goal of better forecasts.  
 
5.  Conclusions 
 

The National Research Council has forcefully recommended that NOAA provide 
probabilistic weather forecast products to the public.  Unfortunately, probabilistic 
forecasts produced directly by existing ensembles or using short training data sets are 
unlikely to produce forecasts of sufficient quality to meet user needs.   Reforecast-based 
statistical corrections of ensemble forecasts have been demonstrated to dramatically 
improve the skill and reliability of probabilistic forecasts generated from ensembles.  
Hence, we recommend that NOAA should consider a reforecast-based approach.  This 
approach should leverage the talents and capabilities extant at NCEP, MDL, and OAR.  
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