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Measuring forecast skill: is it real skill or is it the varying climatology?
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SUMMARY

It is common practice to summarize the skill of weather forecasts from an accumulation of samples
spanning many locations and dates. In calculating many of these scores, there is an implicit assumption that
the climatological frequency of event occurrence is approximately invariant over all samples. If the event
frequency actually varies among the samples, the metrics may report a skill that is different from that expected.
Many common deterministic verification metrics, such as threat scores, are prone to mis-reporting skill, and
probabilistic forecast metrics such as the Brier skill score and relative operating characteristic skill score can also
be affected.

Three examples are provided that demonstrate unexpected skill, two from synthetic data and one with actual
forecast data. In the first example, positive skill was reported in a situation where metrics were calculated from
a composite of forecasts that were comprised of random draws from the climatology of two distinct locations.
As the difference in climatological event frequency between the two locations was increased, the reported skill
also increased. A second example demonstrates that when the climatological event frequency varies among
samples, the metrics may excessively weight samples with the greatest observational uncertainty. A final example
demonstrates unexpectedly large skill in the equitable threat score of deterministic precipitation forecasts.

Guidelines are suggested for how to adjust skill computations to minimize these effects.
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1. INTRODUCTION

This article will demonstrate that many commonly used systems of measurement
(‘metrics’) in weather forecast verification are capable of reporting positive forecast skill
in situations where the meteorologist would assume none truly exists, or the metrics may
report different skill from that expected. Depending on the metric and the situation, this
effect can be large or small. The unexpected skill is a consequence of inappropriately
pooling data over subsets with different climatological event frequencies.

Our interest in this topic resulted from using conventional verification metrics and
diagnosing unexpectedly large skill. For example, the first author used a common proba-
bilistic metric, the relative operating characteristic, in a comparison of ensemble forecast
methods (Hamill et al. 2000, Fig. 13). The author reported a relative operating charac-
teristic curve for wind speed forecasts at five days lead that indicated a highly skilful
forecast, different from what experience would suggest for this lead time. Juras (2000)
discussed an unexpectedly large forecast skill, in a comment on an article by Buizza
et al. (1999). It was indicated that chosen metrics might report unexpectedly large
skill if climatological event frequencies varied within the verification area. This issue
was also raised by Mason (1989) and less directly by other authors, including Buizza
(2001, p. 2335), Stefanova and Krishnamurti (2002, p. 543), Atger (2003), Glahn (2004,
p. 770), and Göber et al. (2004). Still, there are many authors who have applied common
verification metrics, incorrectly assuming that the conventional method of calculation
would result in zero skill for the reference, which is commonly assumed to be a random
draw from the observed climatological distribution.

Here, section 2 will provide a brief review of the three chosen metrics that may be
subject to ‘mis-estimating’ skill, the Brier skill score (Wilks 2006), the relative operating
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characteristic (Swets 1973; Harvey et al. 1992) skill score, and the equitable threat score
(Schaefer 1990). Many other metrics, such as the ranked probability skill score (Epstein
1969; Murphy 1971; Wilks 2006, p. 302), economic value diagrams (Richardson 2000;
Palmer et al. 2000; Richardson 2001b; Zhu et al. 2002 and Buizza et al. 2003) and
other contingency-table based threat scores, will not be discussed but can be assumed
to be subject to the same effect. In addition to describing the conventional method
of calculation of these metrics, section 2 will describe possible improved methods of
calculation. Section 3 follows with two simple examples of how unexpected skill can
be diagnosed from synthetic weather data when using the conventional methods of
calculation. Section 4 demonstrates how large the mis-estimation effect can be for a
common real-weather verification problem, the threat scores of short-range precipitation
forecasts. Section 5 concludes with a discussion of the implications and how to adapt
verification strategies to minimize or avoid this effect.

2. REVIEW OF THREE COMMON VERIFICATION METRICS

Below, three general verification metrics are reviewed, the Brier skill score, relative
operating characteristic (ROC) skill score, and the equitable threat score.

The long-used Brier score (Brier 1950) is a measure of the mean-square error
of probability forecasts for a dichotomous (two-category) event, such as the occurrence/
non-occurrence of precipitation. Wilks (2006, p. 284) has provided a review, and
references to provide further background. The Brier score is often converted to a skill
score, its value normalized by the Brier score of a reference forecast such as climatology
(ibid). A Brier skill score (BSS) of 1.0 indicates a perfect probability forecast, while a
BSS of 0.0 should indicate the skill of the reference forecast (see Mason (2004) for
further discussion of whether a BSS of 0.0 indicates no skill).

The relative operating characteristic (ROC) has gained widespread acceptance in
the past few years as a tool for probabilistic weather forecast verification. The ROC
has been used for decades in engineering, biomedical, and psychological applications.
The ROC measures the hit rate of a forecast against its false-alarm rate as the decision
threshold (perhaps a quantile of a probabilistic forecast) is varied. It also can be
understood as a graph of the tradeoff of Type I vs. Type II statistical errors in a
hypothesis test (Swets 1973). The ROC’s application in meteorology was proposed
by Mason (1982), Stanski et al. (1989), and Harvey et al. (1992). The ROC was
recently made part of the World Meteorological Organization’s verification standard
(WMO 1992). Characteristics of the ROC have been discussed by Buizza et al. (1998),
Mason and Graham (1999, 2002), Juras (2000), Wilson (2000), Buizza et al. (2000a,b),
Wilks (2001), Kheshgi and White (2001), Kharin and Zwiers (2003), Mason (2003), and
Marzban (2004). The technique has been used to diagnose ensemble forecast accuracy,
for example by Buizza and Palmer (1998), Buizza et al. (1999), Hamill et al. (2000),
Palmer et al. (2000), Richardson (2000, 2001a,b), Wandishin et al. (2001), Ebert (2001),
Mullen and Buizza (2001, 2002), Bright and Mullen (2002), Yang and Arritt (2002),
Legg and Mylne (2004), Zhu et al. (2002), Toth et al. (2003), and Gallus and Segal
(2004). Harvey et al. (1992) provided a thorough review of the concepts underlying the
ROC. In subsequent discussion, we will discuss the skill score ‘ROCSS’ derived from
the ROC.

The equitable threat score (ETS) provides one of many ways of summarizing the
ability of a deterministic prediction to forecast a dichotomous (two-category) event
correctly. The ETS will produce a score of 1.0 for a perfect forecast, and random
forecasts should be assigned a value of 0.0. The ETS is commonly used to evaluate
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the skill of forecasts, especially precipitation. See, for example, Rogers et al. (1995,
1996), Hamill (1999), Bayler et al. (2000), Stensrud et al. (2000), Xu et al. (2001),
Ebert (2001), Gallus and Segal (2001), Chien et al. (2002), and Accadia et al. (2003).

The methods for computing these metrics are now discussed, starting with the
probabilistic metrics. The BSS and ROC will be generated from ensemble forecasts,
though they can be generated from any probabilistic forecast.

Start by defining a dichotomous event of interest, such as occurrence/non-
occurrence of precipitation, or temperature above or below a threshold. Let Xe(j) =
[X1(j), . . . , Xn(j)] be an n-member ensemble forecast of the relevant scalar variable
(again, precipitation or temperature) for the j th of m samples (taken over many case
days and/or locations). The ensemble at that day and location is first sorted from lowest
to highest. This sorted ensemble is then converted into an n-member binary forecast
Ie(j) = [I1(j), . . . , In(j)] indicating whether the event was forecast (= 1) or not fore-
cast (= 0) by each member. The observed weather is also converted to binary, denoted
by Io(j).

(a) Brier skill scores
Assuming that each member forecast is equally likely, a forecast probability pf(j)

for the j th sample is calculated from the binary ensemble forecasts:

pf(j) = 1

n

n∑
i=1

Ii(j). (1)

The Brier score of the forecast BSf is calculated as

BSf = 1

m

m∑
j=1

{pf(j) − Io(j)}2. (2)

A Brier skill score (BSS) is commonly calculated as

BSS = 1 − BSf

BSc
, (3)

where BSc is the Brier score of the reference probability forecast, commonly the
probability of event occurrence from climatology.

Ideally, the climatological probabilities would be determined from independent
data, but commonly they are calculated from the sample observed data. In the con-
ventional method of calculation, an average climatology pc is used:

pc = 1

m

m∑
j=1

Io(j), (4)

in which case the reference Brier score of climatology used in Eq. (3) is

BSc = 1

m

m∑
j=1

{pc − Io(j)}2. (5)

The conventional method of calculation of the BSS in Eqs. (1)–(5) may report a
score that differs from what the meteorologist may expect if the climatological event
frequency is known to vary among the m samples (section 3). Consequently, we propose
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some alternative methods of formulation of the scores and shall discuss the change in
skill that was reported under the new calculations.

Suppose the samples could be split up into nc subsets, each with a distinct
climatological event frequency. Let pc(k) be the climatological event frequency in
the kth of the nc subsets. Also, let there be ns(k) samples in this subset, and let
rk = [r(1), . . . , r(ns(k))] be the associated set of sample indices from the m samples.
Then suppose the Brier score of climatology is calculated separately for each subset
with a different climatology:

B̂Sc(k) = 1

ns(k)

n(k)∑
j=1

[pc(k) − Io{r(j)}]2. (6)

A possible alternative calculation of the Brier score of climatology would then be
to calculate a sample weighted average:

B̂Sc =
nc∑

k=1

ns(k)

m
B̂Sc(k). (7)

The BSS would then calculated following Eq. (3), replacing BSc with B̂Sc.
A third possible alternative for calculating the BSS would be to calculate the Brier

Score of the forecasts separately for the different subsets with climatological event
frequencies, just as was done with the climatological forecast in Eq. (6):

B̂Sf(k) = 1

ns(k)

ns(k)∑
j=1

[pf{r(j)} − Io{r(j)}]2. (8)

Then the BSS would be computed as a sample-weighted average of the skill scores for
each distinct climatological regime:

BSS =
nc∑

k=1

ns(k)

m

{
1 − B̂Sf(k)

B̂Sc(k)

}
. (9)

This may better conform with forecaster intuition, e.g., if two locations with equal
numbers of samples have BSSs of 0.0 and 1.0, a skill of 0.5 will be reported.

(b) ROC diagrams and the ROC skill score
For ensembles, the ROC is a curve that indicates the relationship between hit rate

and false alarm rate as different sorted ensemble members are used as decision thresh-
olds. The area under the ROC curve can be used in the calculation of a probabilistic
skill score. The conventional method of calculation of the ROC from ensembles typi-
cally starts with the population of 2 × 2 contingency tables, with separate contingency
tables tallied for each sorted ensemble member. The contingency table (Table 1) has four
elements: �i = [ai, bi, ci, di]. These elements indicate the proportion of hits, false
alarms, misses and correct rejections, respectively, when the value of the ith sorted
member is used as the forecast. The contingency table is populated using data over
all m samples.

The hit rate (HR) for the ith sorted member forecast is defined as

HRi = ai

ai + ci

. (10)
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TABLE 1. CONTINGENCY TABLE FOR THE iTH
OF n SORTED MEMBERS AT THE j TH LOCATION

Event observed?

YES NO

Event forecasted YES ai bi

by the ith member? NO ci di

Entries in the four cells of the table denote the
proportions of trials which result in hits (ai ), false
alarms (bi ), misses (ci ), and correct rejections (di ).

Similarly, the false alarm rate is defined as

FARi = bi

bi + di

. (11)

This prototypical ROC is a plot of HRi (ordinate) vs. FARi (abscissa), i = 1, . . . , n.
A ROC curve that lies along the diagonal HR = FAR line is commonly believed to
indicate no skill; a curve that sweeps out maximal area, as far toward the upper
left corner as possible, is believed to indicate maximal skill. The ROC is commonly
summarized through the integrated area under the ROC curve, or AUC. A perfect
forecast AUCperf = 1.0, and forecasts that are random draws from climatology are
presumed to provide an AUCclim = 0.5. In order to calculate the forecast area AUCf, for
the n-member ensemble let us assume the existence of fictitious zeroth and (n + 1)th
ensemble members to provide boundary conditions HR0 = 0.0, FAR0 = 0.0, HRn+1 =
1.0, and FARn+1 = 1.0. Then an approximate integral AUCf can be calculated as

AUCf =
n+1∑
i=1

(FARi − FARi−1)(HRi + HRi−1)

2
(12)

(there are other valid methods of calculation). Commonly, a skill score ROCSS is
calculated from AUCf (Wilks 2006, p. 295):

ROCSS = AUCf − AUCclim

AUCperf − AUCclim
= AUCf − 0.5

1.0 − 0.5
= 2 AUCf − 1. (13)

As will be demonstrated in section 3, the conventional method of calculation of
the ROC and ROCSS can result in an estimation of skill where none was expected if
the climatological event frequency varies among samples. Hence, we outline a possible
alternative method of calculation of ROC area and skill. Assume, as with the BSS,
that we can divide up the samples into nc subsets with distinct climatological event
frequencies. Then an alternative method for calculation of the ROC area would be to
calculate it separately for each subgroup and produce a weighted-average ROC area,
which we shall call AUCf. Using the ns(k) samples in the kth subset, the hit rates and
false alarm rates for the kth climatology are

ĤRi (k) = ai(k)

ai(k) + ci(k)
(14)

and

F̂ARi (k) = bi(k)

bi(k) + di(k)
. (15)
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From this, the area under the ROC curve for the kth subset can be calculated in a manner
analogous to Eq. (12), providing ÂUCf(k). Then, as was done with the BSS, a sample-
weighted AUCf is calculated according to

AUCf =
nc∑

k=1

ns(k)

m
ÂUCf(k), (16)

and a skill score is calculated using Eq. (13), substituting AUCf for AUCf.

(c) Equitable threat score
Assume now that we are evaluating deterministic forecasts rather than ensembles.

The conventional method of calculating the ETS assumes Table 1 is populated with all
the samples available (here we drop the i subscript in Table1 denoting the ensemble
member number). The equation for the ETS is

ETS = a − ar

a + b + c − ar
, (17)

where ar is the expected fraction of hits for a random forecast

ar = (a + c)(a + b)

a + b + c + d
. (18)

As with the other scores, we shall show in sections 3 and 4 that this conventional
method of calculation will produce an unexpectedly high estimate in situations where
the climatology varies. An alternative method of calculation of the ETS respects the
possibility of different regions with different climates. Again, assume we have nc
contingency tables, each associated with samples with a distinct climatological event
frequency. For the kth distinct climatology we thus construct a separate contingency
table and calculate the threat score ÊTS(k). An alternative, sample-weighted ETS is
then calculated as

ETS =
nc∑

k=1

ns(k)

m
ÊTS(k). (19)

3. EXAMPLE OF SKILL OVERESTIMATION: SYNTHETIC DATA AT TWO INDEPENDENT
LOCATIONS

Using synthetic data, we now illustrate two general problems with verification
metrics calculated in the conventional manner. Firstly, they may report skill even when
the forecasts are samples from climatology. This may occur when the overall sample
is comprised of subsamples that are drawn from different climatological distributions.
Secondly, when the climatological uncertainty of event occurrence varies among
samples, the skill scores may reflect an uneven weighting of the sample data.

(a) Positive skill diagnosed from reference climatological forecasts
Let us suppose that a hypothetical planet is covered by a global ocean interrupted

only by two small, isolated islands, and that island weather forecasting is utterly
impossible on this planet; the best one can do is to forecast the (stationary) climato-
logical probability distribution appropriate to each island. Given that the weather
appears random to residents on each island, one would expect a skill score to report
zero skill, a desired attribute that is part of the property known as ‘equitability’ (Gandin
and Murphy 1992; Wilks 2006, p. 274).
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Figure 1. Three conventional verification metrics as functions of the parameter α: relative operating character-
istic skill score (ROCSS), Brier skill score (BSS) and equitable threat score (ETS). The parameter α describes the

mean observed climatological value (say of temperature) at island 1, while island 2 has a mean value of −α.

To simulate this scenario, assume that at island 1, on each day the observed
daily maximum temperature was a draw from a normal distribution with a mean of
α and a standard deviation of 1.0 (the specific units of temperature are unimportant in
this thought experiment). We denote this normal distribution by ∼N(+α, 1). We also
generated a 100-member ensemble each day to calculate the BSS and ROCSS and a
single-member deterministic forecast to calculate the ETS. In each instance the forecasts
were also ∼N(+α, 1) and were uncorrelated with each other and with the observation.
On island 2, each day’s observed daily maximum value ∼N(−α, 1), and again a
100-member ensemble and deterministic forecast were drawn from ∼N(−α, 1), with
uncorrelated forecasts and observations. We will consider the event that the temperature
was greater than zero. Forty-thousand days of forecasts and observations were generated
for island and each value of α, and we examine the skill scores as α increases from zero,
that is, as the two islands’ climatologies grow increasingly different.

Figure 1 synthesizes the overestimate of the scores by each metric as a function of α
when the BSS was calculated by computing the pooled samples by Eqs. (4) and (5), the
ROCSS was calculated using Eqs. (10)–(13), and the ETS was calculated using Eqs. (17)
and (18). Hereafter, these will be called ‘the conventional methods’ of calculation.
The expected skill should be zero regardless of the value of α, for forecasts were always
drawn from the reference climatological distribution appropriate to that island. However,
as α was increased, the diagnosed forecast skill also increased.

What was the source of the skill estimates being larger than expected? On island 1,
the climatological probability of the observed being greater than zero increased with α,
while on island 2 it decreased. The probabilities estimated from the ensemble behaved
similarly, increasing with α on island 1 and decreasing on island 2. However, each of
the conventional methods of calculating the scores implicitly assumed that the reference
climatological event probability for all forecasts at all α was a fixed 0.5, a consequence
of pooling the data from both islands together. Hence as α increased, the randomly
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drawn forecasts became increasingly sharp and accurate relative to this nonspecific
composite climatology. The random forecasts from each island were awarded higher and
higher scores based merely on the increasing differences in the two islands’ mean values,
not through any intrinsic improvement in forecast skill. This illustrates that these scores
may report unexpectedly large skill in situations where the climatologies differ among
the samples used to populate the contingency tables; they credit a forecast with having
skill when the climatologies of the individual samples are different from the climatology
of the combined samples. In this example, the more the climatologies differed, the larger
the diagnosed skill.

Though not shown here, an overestimation of skill would still have occurred even
if forecasts on each island were positively correlated with the observed value and thus
skilful. In such a situation, the actual skill would have been inflated by an additional
amount due to the compositing of the two islands’ climatology. This inflation of skill
also makes it more difficult to evaluate potential forecast improvements. When α
was very large, a forecast was scored as nearly perfect regardless of whether or not
the forecast actually was nearly perfect. The difference between good and mediocre
forecasts is thus shrunk, complicating the task of evaluating whether one model was
better than another.

Consequently, the preferred course of action when the underlying climatology
varies among samples is to analyse the data separately for each distinct climatological
regime. A similar and more general conclusion was arrived at in the classic paper on
‘Simpson’s Paradox’ (Simpson 1951; see comment 7 on second-order interactions∗).
Cochran (1954) also is unambiguous with regards to inferences from contingency tables:

‘One method that is sometimes used is to combine all the data into a single
2 × 2 table . . . this procedure is legitimate only if the probability p of an
occurrence (on the null hypothesis) can be assumed to be the same in all the
individual 2 × 2 tables. Consequently, if p obviously varies from table to
table, or we suspect that it may vary, this procedure should not be used.’

Cochran also proposed a statistical test to determine if contingency table data can
be added; Mantel and Haenszel (1959) proposed a related test, and Agresti (2002,
p. 231) provided a summary. Unfortunately, the Cochran and Mantel–Haenszel tests
may be difficult to apply in meteorological verification, for one of the underlying
assumptions is that the samples used to populate the contingency tables are independent.
In meteorological verification, two samples may come from adjacent grid points that will
in fact have correlated errors.

The meteorological statistician may sometimes still desire a single-number
summary of the skill of the forecast, especially if the sample size of the forecasts is
limited in each region with a different climatological event frequency. To preserve the
desirable property of ensuring that random draws from the no-skill reference are evalu-
ated as having null skill, the method of calculating the skill scores could be reformulated
or the problem could be transformed to eliminate the effect of the varying climatology.
For example, had the BSS been calculated with Eqs. (3), (6), and (7) or Eqs. (6), (8),
and (9), had the ROCSS been calculated with Eqs. (13)–(16), and had the ETS been
calculated separately at each island and then averaged using Eq. (19), the reported
scores would have been zero within sampling error. Another way to report the expected

∗ Simpson actually asserts something even more rigorous: contingency-table data can be added only when there
are no ‘second-order interactions’ in the contingency tables. These interactions may occur due to differences
in climatological event frequency, but they also may occur in situations where the forecast skills were different
between the subsets.
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zero skill would be to change the test threshold to one where the climatological event
frequencies were identical among sub-samples. For example, change the test thresh-
old for temperature from ‘greater than zero’ to ‘exceeding the 50th percentile of each
individual island’s climatological distribution’. Of course, reformulating the verification
problem in this manner may not address the underlying question asked by the researcher.

(b) Skill contributions weighted toward samples with larger observed uncertainty

This experimental setup will illuminate how samples with different underlying
climatological uncertainty∗ can be unequally weighted, affecting the computation of
skill. Our two-island scenario is now altered; consider the event that the daily maxi-
mum temperature was greater than 2.0. Island 1’s observed maximum temperature was
randomly drawn from a ∼N(0, 1) distribution, the forecasts were also ∼N(0, 1), and
forecast and observations were uncorrelated. On island 2, the observed and forecasted
temperatures were drawn from N(0, β) distributions, and these two values of tempera-
ture were correlated at 0.9. The value of β varied between 1 and 3. Other aspects such
as the ensemble size and number of days were the same as in the previous experiment.

As β increased, at island 2 the forecasted and observed event frequency increased
(Fig. 2). Ideally, the reported composite skills using the conventional methods would
not change much as β changed, for the forecasted–observed correlation never changed
even though island 2’s spread changed.

Figures 3 (a, b and c) show that on island 1, skills remained near zero in each
of the three metrics when using the conventional methods. On island 2, skill was near
1.0, and increased (BSS and ETS) or decreased (ROCSS) slightly with increasing β.
When combined over both islands, the overall skill increased as β increased, as did the
climatological event frequency and the uncertainty. Hence, the conventional methods
apparently more heavily weighted the contribution from island 2 as β increased.

An examination of contingency tables for deterministic forecasts illuminates
why the overall ETS was more heavily weighted toward island 2’s contribution
(Tables 2–4). Table 2 reports island 1’s contingency table, Table 3 reports island 2’s
when β = 1, and Table 4 reports island 2’s when β = 3. The ETS for island 1 alone
was −0.0022, the ETS for island 2 and β = 1 was 0.4195; the combined ETS when
β = 1 was 0.193 which gives nearly equal weight to the contribution of each island.
Note that when β = 1 the climatological event frequencies were very similar: 0.0232 at
island 1 and 0.0288 at island 2. However, for β = 3, the climatological event frequency
at island 2 was 0.26, and its ETS was 0.532. The combined ETS for β = 3 was 0.499
and so much closer to that of island 2 than 1. The unequal weighting is illuminated
by considering the sums of the contingency tables. Note for example that the ‘hits’
in the combined table for β = 3 (combining Tables 2 and 4) were determined almost
exclusively by the hits from island 2, which contributed more than 98%.

This second example showed another undesirable property of the conventional
method of calculating verification scores, namely that the weighting of samples is
related to the observed event uncertainty. This may distort the calculation skill of
important variables like heavy precipitation (see the example in the appendix of the
paper by Hamill and Whitaker (2006)). In locations where heavy precipitation is quite
rare (observational uncertainty small), the climatological reference produces a low-error

∗ Uncertainty here refers to a measure of the intrinsic variability of the observations, as in the Brier score
decomposition (Wilks 2006, p. 286). Given a climatological event probability pc, the uncertainty is pc(1 − pc),
which is maximized when pc = 0.5 and minimized when pc = 1.0 or 0.0.
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Figure 2. Illustration of experimental design (see subsection 3(b) of the text). Forecasts of temperature are
simulated at two hypothetical islands. The first island has forecasts and observations which are uncorrelated; the
second island has forecasts and observations correlated at 0.90. On both islands, the observed and forecasted
values are both normally distributed about the mean, which is taken as zero. The standard deviation β for
forecasts and observations is fixed at 1.0 in panel (a) for both islands. In panel (b), β is fixed at 1.0 for island 1
and 3.0 for island 2. Dotted lines indicate the event threshold of the forecasted or observed temperature being

greater than 2.0.

forecast in most circumstances, and so a modest absolute forecast error can be evaluated
as having negative skill relative to the climatology. Conversely, if heavy precipitation
is more common (observational uncertainty larger), that same modest absolute forecast
error may translate to a forecast with skill relative to the climatology, which is longer
producing a low-error forecast in most circumstances. Hence the locations diagnosed
as having more skill are commonly the ones with greater observational uncertainty;
consequently, they may end up being more highly weighted in the calculation of the
skill score, resulting in a skill larger than the average of skills at the constituent grid-
points.
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Figure 3. Scores for three verification metrics when applied separately to forecasts at islands 1 and 2, and when
combined using the conventional methods of calculation: (a) Brier skill score (BSS); (b) equitable threat score
(ETS) and (c) the ROC Skill Score (ROCSS). Scores are shown for a range of standard deviations β at island 2.

See Figure 2 and subsection 3(b) for more on the experimental design.
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TABLE 2. CONTINGENCY TABLE FOR ISLAND 1

Event observed?

YES NO

Event forecasted? YES 0.004 0.0223
NO 0.0228 0.954
Total 0.0232 0.9763

See subsection 3(b). The observed event frequency =
0.0232 and the equitable threat score (ETS) =
−0.0022.

TABLE 3. CONTINGENCY TABLE FOR
HYPOTHETICAL ISLAND 2 WHEN β = 1.0

Event observed?

YES NO

Event forecasted? YES 0.0171 0.0108
NO 0.0117 0.9603
Total 0.0288 0.9711

See subsection 3(b). The observed values of
temperature have a standard deviation β = 1.0; the
observed event frequency = 0.0288 and the equitable
threat score (ETS) = +0.4195.

TABLE 4. CONTINGENCY TABLE FOR ISLAND 2
WHEN β = 3.0

Event observed?

YES NO

Event forecasted? YES 0.2022 0.0597
NO 0.0578 0.6802
Total 0.2600 0.7399

See subsection 3(b). The observed values of tempera-
ture have a standard deviation β = 3.0; the observed
event frequency = 0.2600 and the equitable threat
score (ETS) = +0.5327.

It is conceptually possible that conventional methods could also underestimate
skill. This would have happened, for example, had we repeated this experiment, but
with forecasts and observations highly correlated at island 1 rather than at island 2.
Practically, though, our experience suggests that skill tends to be more commonly
overestimated (Hamill and Whitaker 2006).

The solutions proposed in the previous example may be useful here as well, with
one exception. In this example, the calculation of the BSS cannot be fixed by defining
BSc using Eq. (7); it will yield a similar result to when Eq. (5) is used. Equation (7)
will still effectively weight the samples with greater climatological uncertainty higher
than samples with less climatological uncertainty. If Eq. (9) were used, the reported
BSS would be a simple arithmetic average of the skill at the two islands. Similarly, the
reported ROCSS will be an arithmetic average if calculated with Eqs. (13)–(16), as will
be the ETS if calculated separately at each island and then averaged using Eq. (19).
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4. EXAMPLE OF SKILL OVERESTIMATION: EQUITABLE THREAT SCORES FOR NUMERICAL
PRECIPITATION FORECASTS

Here we demonstrate that the ETS for real precipitation forecasts is subject to the
same overestimation problem as with the synthetic data. The ETS is commonly used by
the US National Weather Service to evaluate the skill of their deterministic precipitation
forecasts. Typically, the ETS is estimated at fixed precipitation thresholds from a single
contingency table populated over many days or months and over a wide geographic
region such as the conterminous USA (CONUS).

To demonstrate the tendency to report a larger-than-expected ETS, a very large set
of numerical forecasts was used. These forecasts were generated using the analogue
forecast technique discussed by Hamill et al. (2006). The details of the forecast method-
ology can be found there but are not particularly important here. What is relevant is
that a 25-year time series of gridded deterministic precipitation forecasts was produced,
all using the same model and forecast technique. These forecasts have characteristics
roughly similar to those of current operational forecasts. For the present demonstra-
tion, we limit ourselves to considering the ETS of the mean of a 5-member ensemble
of analogue forecasts over the CONUS for January and February from 1979 to 2003.
Both the forecast and the verification data (from the North American Regional
Reanalysis, Mesinger et al. (2006)) are on a ∼32 km grid. We consider the 5 mm
precipitation threshold.

Figure 4(a) illustrates the geographic dependence of the ETS on forecast location.
Contingency tables and ETS were calculated separately for each grid point. The ETSs
were much larger in the south-east USA and along the west coast than in the north-
western Great Plains. Figure 4(b) provides the (climatological event) frequency of
more than 5 mm rain falling during routine 24 h measuring periods. Note the strong
relationship between the ETS and the event frequency, a characteristic previously
described for a similar skill score by Mason (1989) and for the ETS by Göber et al.
(2004). Since observational uncertainty is thus typically larger at grid points with higher
ETS, we might expect to see the effect demonstrated in subsection 3(b), whereby an ETS
calculated from the sum of all contingency tables across the CONUS will unduly weight
the influence of the forecasts with the higher skill. Indeed, the ETS calculated from the
contingency table sum using Eq. (17) was approximately 0.415. However, from Fig. 4(a)
it is apparent that the large majority of grid points have ETS much below 0.415. When
calculated using Eq. (19) after binning the climate into six categories∗, the weighted-
average ETS was much smaller, viz. ∼0.28 (Fig. 5).

The ETS estimation technique of Eq. (19) has drawbacks. Notably, the climatologi-
cal event probability was defined by the sample event probability (a + c)/(a + b + c +
d). This assumption is reasonable in the present example of more than twenty years
of winter forecasts. If the verification period is very short, on the other hand, then this
sample event probability may be a poor estimate of the true long-term event probability.
Ideally, a climatology should be estimated from a long time series of independent data, if
available. If this is not possible, cross-validation techniques could be used to isolate the
data being verified from the data being used to define the climatological event frequency.
Nonetheless, these details should not obscure the main point: a substantially larger-than-
expected threat score is possible when contingency table values are summed across grid
points with different climatologies.

∗ Further subdivision into a greater number of categories did not increase the ETS appreciably.
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Figure 4. Equitable threat score (ETS) for 1–2 day (24–48 h) precipitation forecasts, using January and February
1979–2003 forecasted and analysed data, and (b) the climatological probability of precipitation greater than 5 mm

for January and February.
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Figure 5. Equitable threat scores (ETSs) of forecasts of precipitation exceeding 5 mm when divided into six
categories based on the climatological probability of the event occurring. Forecasted and analysed data are from
January and February 1979–2003 over the conterminous USA. Brackets contain the proportion of grid points
occurring in each category. The upper dashed line shows the ETS calculated using the conventional method

(Eq. (17)) and the lower dashed line the area-averaged (population-weighted) ETS (Eq. (19)).

5. CONCLUSIONS

The preceding examples have demonstrated that the Brier skill score, relative
operating characteristic, and the equitable threat score must be interpreted with care
when verifying weather forecasts. In situations where the climatological event frequency
differs between sample locations, these metrics may report skill which is different from
that expected. The more the event frequencies differ, the more the skill may be wrongly
estimated. By logical extension, skill may also be estimated wrongly if the verification
samples are composited when they span different seasons or even different times of the
day with different climatologies. Other scores, such as the ranked probability skill score
and other contingency-table based scores, can be assumed to be subject to the same
tendencies. These ‘mis-estimates’ can complicate the evaluation of model performance.
Are two models nearly equal in their high degree of skill because they both provide high-
quality forecasts? Or are they actually less skilful, and are differences in skill obscured
by fictitious added skill from the varying climatology?

One primary reason why skill scores have been calculated as sums over sets with
varying climatologies is that the sample sizes of the forecasts and observations are often
small, and skills for the subsets may have a large sampling variability. A weighted-
average skill over these subsets, as we have proposed, may not be resistant to outliers.
Also, if independent observational data are not available to define the climatological
event frequency for sub-samples, then this must be estimated from the same data used
for model verification, potentially causing several additional problems. Firstly, the small
sample size may result in large errors in estimating the climatological event frequency.
Secondly, unless the observational data used to define the climatology are separated
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from the observational data used for forecast verification to preserve independence
(cross validation), the forecast skill may be underestimated; the error of the climatology
will be diagnosed as smaller since it increasingly resembles the observed data as sample
size decreases.

Clearly, talents of the statistical meteorologist will be put to the test when data
are limited. While each situation may be different, one consideration should at least be
to design the verification method to minimize the reported increase in skill introduced
by varying climatologies, making at least relative inferences of skill (is model A more
skilful than model B?) more trustworthy.

We propose two changes that both address the tendency to mis-estimate skill. First,
if sample sizes are large enough, perform the calculations separately each for sub-sample
with similar climatological event frequencies, as demonstrated for the equitable threat
score in section 4. If the statistical meteorologist requires a single-number summary of
the skill, consider weighted-average calculations similar to those proposed in section 2.
Second, consider estimating skills for alternative events where the climatological event
frequencies are the same for all samples, such as exceeding a quantile of the local
climatological distribution (e.g., Zhu et al. (2002) or Fig. 5 of Buizza et al. (2003)).
Then, regardless of whether the climatological means and variances are large or small,
the fraction of events classified as ‘yes’ events is identical for different locations or times
of the year.

We have two final recommendations: the specific details regarding how verification
metrics are calculated should be fully described in journal articles and texts, since minor
changes in the methodology can dramatically change the reported scores, and, whatever
the chosen verification metric, it is prudent to verify that climatological forecasts report
the expected no-skill result before proceeding.
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Richardson, D. S.

2000 A probability and decision-model analysis of PROVOST seasonal
multi-model ensemble integrations. Q. J. R. Meteorol. Soc.,
126, 2013–2033

Richardson, D. S. 2000 Skill and relative economic value of the ECMWF ensemble
prediction system. Q. J. R. Meteorol. Soc., 126, 649–667

2001a Ensembles using multiple models and analyses. Q. J. R. Meteorol.
Soc., 127, 1847–1864

2001b Measures of skill and value of ensemble prediction systems, their
interrelationship and the effect of ensemble size. Q. J. R.
Meteorol. Soc., 127, 2473–2489

Rogers, E., Deaven, D. G. and
DiMego, G. J.

1995 The regional analysis system for the operational ‘early’ Eta
Model: original 80-km configuration and recent changes.
Weather Forecasting, 10, 810–825

Rogers, E., Black, T. L.,
Deaven, D. G., DiMego, G. J.,
Zhao, Q., Baldwin, M.,
Junker, N. W. and Lin, Y.

1996 Changes to the operational ‘early’ Eta analysis/forecast system at
the National Centers for Environmental Prediction. Weather
and Forecasting, 11, 391–413

Schaefer, J. T. 1990 The critical success index as an indicator of warning skill.
Weather and Forecasting, 5, 570–575

Simpson, E. H. 1951 The interpretation of interaction in contingency tables. J. R. Stat.
Soc., 13, 238–241

Stanski, H. R., Wilson, L. J. and
Burrows, W. R.

1989 ‘Survey of common verification methods in meteorology’.
Environment Canada Research Report 89-5. Available
from Atmospheric Environment Service, Forecast Research
Division, 4905 Dufferin St., Downsview, Ontario, M3H 5T4,
Canada



FORECAST SKILL OR VARYING CLIMATOLOGY? 2923

Stefanova, L. and
Krishnamurti, T. N.

2002 Interpretation of seasonal climate forecast using Brier skill score,
the Florida State University superensemble and the AMIP-I
dataset. J. Climate, 15, 537–544

Stensrud, D. J., Bao, J.-W. and
Warner, T. T.

2000 Using initial condition and model physics perturbations in
short-range ensemble simulations of mesoscale convective
systems. Mon. Weather Rev., 128, 2077–2107

Swets, J. A. 1973 The relative operating characteristic in psychology. Science, 182,
990–1000

Toth, Z., Talagrand, O., Candille, G.
and Zhu, Y.

2003 ‘Probability and ensemble forecasts’. Chapter 7 of Forecast Verifi-
cation: A Practitioner’s Guide in Atmospheric Science. John
Wiley and Sons, Hoboken, NJ, USA

Wandishin, M. S., Mullen, S. L.,
Stensrud, D. J. and
Brooks, H. E.

2001 Evaluation of a short-range multimodel ensemble system. Mon.
Weather Rev., 129, 729–747

Wilks, D. S. 2001 A skill score based on economic value for probability forecasts.
Meteorol. Appl., 8, 209–219

2006 Statistical Methods in the Atmospheric Sciences, 2nd edn.
Academic Press, St Louis, MO, USA

Wilson, L. J. 2000 Comments on ‘Probabilistic predictions of precipitation using the
ECMWF ensemble prediction system’. Weather and Fore-
casting, 15, 361–364

WMO 1992 Manual on the Global Data Processing System, section III,
Attachments II.7 and II.8 (revised in 2002). World Meteoro-
logical Organization, Geneva, Switzerland. Available from
http://www.wmo.int/web/www/DPS/Manual/WMO485.pdf

Xu, M., Stensrud, D. J., Bao, J.-W.
and Warner, T. T.

2001 Applications of the adjoint technique to short-range ensemble
forecasting of mesoscale convective systems. Mon. Weather
Rev., 129, 1395–1418

Yang, Z. and Arritt, R. W. 2002 Tests of a perturbed physics ensemble approach for regional
climate modeling. J. Climate, 15, 2881–2896

Zhu, Y., Toth, Z., Wobus, R.,
Richardson, D. and Mylne. K.

2002 The economic value of ensemble-based weather forecasts. Bull.
Am. Meteorol. Soc., 83, 73–83


