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Outline
• Review of ensemble-based data

assimilation
• Conventional-data experiments in T62-

version of NCEP Global Forecast System
(GFS); Jeff Whitaker, lead.

• Perfect-model test of a hybrid Ensemble
Transform Kalman Filter / 3D-Var;
Xuguang Wang, lead.



Ensemble-based data assimilation
• Parallel forecast and analysis cycles
• Ensemble of forecasts is used to estimate forecast-

error statistics during the data assimilation



Advantages of ensemble-based
data assimilation

• Potentially very accurate: equivalent to
optimal Kalman-filter solution under
special assumptions (infinite ensemble,
Gaussian, perfect model, known R, linear
growth of errors).

• Automatic initialization of ensemble
forecasts; provides a distribution of
analyses.

• Easy to code: algorithmically simple
compared to 4D-Var.



Disadvantages of ensemble-
based data assimilation

• Computationally expensive, probably on par with 4D-
Var. In conventional filters, costs scale with:
– Number of observations
– Dimension of model state
– Size of ensemble

• Use of “covariance localization” (usually necessary to
avoid filter divergence) may introduce imbalances to
initial conditions.

• Relative improvements over 3D-Var largest when
data sparse (not situation in modern NWP).

(note: will discuss possible algorithmic variants to address cost, imbalance)



Full NCEP-NCAR
Reanalysis (3D-Var)
(200,000+ obs)

Ensemble Filter
(214 surface
pressure obs)

Climatological
covariances
(214 surface
pressure obs)

Black dots show
pressure ob
locations

RMS = 39.8 m

RMS = 82.4 m
(3D-Var is worse!)

Example: Sparse Network (Ps  obs only)
Whitaker et al. 2004,
MWR, p.1190



Air Weather Service
analysis valid 0400 GMT500 hPa

geopotential height,
 27 December 1947,
record New York City

snowfall

Ensemble Filter
analysis better 
than NCEP 
3D-VAR

5500 m (18000 ft)
contour is thickened

Ensemble Filter T62
analysis valid 0600 GMT

NCEP T254 3 hr forecast,
valid 0600 GMT



Motivation for GFS
real-data experiment

• How do ensemble-based data assimilation
algorithms compare with existing NCEP 3D-Var
with full current observational data set?

• Problem: At NCEP’s current operational (T254)
resolution, too expensive for us to assimilate
radiances while running on research computers.

• Compromise: compare against 3D-Var in
reduced-resolution (T62) model with all
observations except satellite radiances.



Experiment design
• Model:  NCEP GFS, T62 L28, March 2004 physics.   100 members.
• Observations: Almost all non-radiance data; raobs, ACARS,

profilers, cloud-drift winds, surface observations.
– 200K observations @ 1200 UTC, 100K@ 1800 UTC
– Surface pressure observations adjusted to model’s orography
– No non-surface pressure observations below σ = 0.9
– Same observation error statistics as NCEP 3D-Var
– Assimilate every 6 h, time-interpolate background to obs time if

asynoptic
• Period of test:  January 2004; throw out the first week as spin-up.
• Compare against:

– T62 3D-Var with March 2004 GFS code, data specified above.
– Operational T254 3D-Var analysis with all data



Observation
locations



Ensemble Square-Root Filter
(EnSRF)

background-error covariances
estimated from ensemble, 
with “localization”

Mean state updated, correcting 
background to new observations, 
weighted by K, the Kalman gain

“reduced” Kalman gain 
calculated to update 
perturbations around mean

Forecast forward to the next time when
data is available.  Add noise in some fashion
to simulate model error.



EnSRF details
• Covariance localization

– Horizontal: Blackman window function, tapers to zero at 2800 km
– Vertical: Tapers to zero at 3 scale heights for surface pressure, 2 scale

heights otherwise.
– Lynch filter to control gravity-wave noise (3h forecast Gaussian-weighted

average of 0-6 h forecast)

• Influence check:  assimilate observation only if F-test shows that it will
significantly reduce variance (>1 percent reduction from prior)

• Model Error:
– Covariance inflation,  30% NH,  24% SH, taper in between.  Inflation

amount tapers in vertical to 0.0 at 6 scale heights (problem with top
boundary).

– Relaxation to prior: Snyder and Zhang (MWR, 2003), relax analysis
ensemble back toward prior (15% analysis, 85% prior). x’a = cx’a + (1-c)x’b

– Additive errors, random 6-h model tendencies scaled by 33 %.  Samples
from NCEP-NCAR reanalysis, ‘71-’00, for similar time of the year.



Covariance
Localization

A way of
dealing with

inappropriate
covariance

estimates due to
small ensemble size.

Increases
dimensionality of
background-error

covariance.



Ordinary EnSRF cycle
(serial processing)

Loop over analysis times:
   • run 6-h forecast for each ensemble member from the

previous analysis
   Loop over observations:

• Do we need this ob? (will it significantly reduce
ensemble uncertainty estimate?) If not continue to
Next observation

• Update the ensemble mean and the ensemble
perturbations using the KF update equations.

    End loop over observations
    • Add variance to account for errors outside span of
      ensemble

End loop over analysis times



Revised “Local” LEnSRF cycle
(more parallelized processing)

Loop over analysis times (every 6 h):
• Run 9-h forecast for each ensemble member from the previous analysis
• Compute                       at every observation location between 3 and 9 h
(linear interpolation of background in time).
• Divide up state vector elements, randomly shuffled among processors
Loop over each state vector element on each processor

 Loop over observations within localization radius of this grid point.
• • • Do we need this ob? (will it significantly reduce ensemble uncertainty 
      estimate?) If not continue to Next observation
• • • Update the ensemble mean, perturbations, as well as
      using the KF update equations.

    End loop over observations
End loop over state vector elements
• Add variance to account for errors outside span of ensemble.

End loop over analysis times

� 

H x
b

, H x
b( )
'

� 

H x
b

, H x
b( )
'



Comparison of model-error
parameterizations, T62 GFS (500 hPa Z)

(Note: T255 analysis truncated to T62 for verification)

12-24 h
improvement



6-h forecast fit 
to observations

6-h forecast
spread



Fit to observations,
48-h forecast



Fits to aircraft data and marine
surface-pressure observations

More noticeable difference in fit between EDA and 
benchmark here; more data-sparse area.



Where are the differences largest?
(benchmark - EDA/addinf)

Note: T12 Gaussian smoother used



Example of Southern Hemisphere
analysis differences



Comparison to University of MD’s Local
Ensemble Transform Kalman Filter

(very preliminary, very optimistic since their algorithm faster)



Conclusions on GFS
real-data experiments

• Experimental EnSRF similar to (data dense areas) or outperforms
(data-sparse areas) operational 3D-Var run at same resolution with
same subset of observations.  The sparser the network, the bigger
the advantage for EnSRF (SH, historical reanalysis).

• Additive model error parameterization works slightly better than
alternatives.

• Next:
– More exploration of U. Maryland’s Local ETKF
– Assimilate radiances
– Techniques for ‘super-obbing’
– Model error : include bias correction (never done!)
– Parallel testing on NCEP machine?



member 1
forecast

member 2
forecast

member 3
forecast

perturbation 1

perturbation 2

perturbation 3

ensemble mean ETKF-3DVAR
update mean

ETKF update
perturbations

 updated mean

 updated
perturbation 3

 updated
perturbation 2

 updated
perturbation 1

member 1
analysis

member 2
analysis

member 3
analysis

member 1
forecast

member 2
forecast

member 3
forecast

data assimilation forecast

Hybrid ETKF-3DVAR (Xuguang Wang)



Hybrid ETKF / 3D-Var : Why?
• Hybrid method is less expensive than EnSRF, while still

benefitting from ensemble-estimated error statistics.
– Costs don’t necessarily scale linearly with number of

observations
– No parallel data assimilation cycles, just update of mean and

computationally efficient rotation/rescaling of perturbations with
ETKF.

• The hybrid may be more robust for small ensemble size,
since can adjust the amount of 3D-Var vs. ensemble
covariance used.

• The hybrid can be conveniently adapted to the existing
variational framework.



Hybrid ETKF/ 3D-Var
update of mean

  

 Background error covariance is approximated by a linear
combination of the sample covariance matrix of the ETKF
forecast ensemble and the static covariance matrix.

 Can be conveniently adapted into the operational 3D-Var
through augmentation of control variables.
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ETKF update of perturbations
• ETKF transforms forecast perturbations Xb into analysis perturbations Xa by

where T is chosen by trying to solve the Kalman filter error covariance
update equation, with forecast error covariance approximated by ensemble
covariance.

• Latest formula for T (Wang et al. 2004;2005, MWR)

C and Γ contain eigenvectors and eigenvalues of the nxn (ens. size) matrix

ρ is the estimated fraction of forecast error variance projected onto
ensemble subspace

• Computationally inexpensive for ensemble size of o(100), because
tranformation fully in subspace of perturbations.
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Update of mean (OI) and formation of B

In this experiment, the hybrid updates the mean like OI, using

This is equivalent to the variational solution under our
experiment design,which will assume normality of errors.

The static error covariance model is constructed iteratively from
a large sample of 24h fcst. errors.

First estimate BHT and
HBHT is constructed
from 250 24h fcst.
errors with covariance
localization (iteratively)

Run a huge number of
DA cycles (7000 >
number of model
dimension) with BHT

and HBHT

Construct BHT and
HBHT with this
huge sample of
24h forecast errors
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Experiment design

• Observations
362 Interface and surface Exner functions
taken at equally spaced locations

Observation values are T31 truth plus random
noise drawn from normal distribution; RMS error
equivalent to approximately 1K, 1 hPa.

Assimilated every 24 h

• Numerical model
Dry 2-layer spectral PE model run at T31;

Model state consists of vorticity, divergence
and layer thickness of Exner function

Error doubling time is 3.78 days at T31

Perfect model assumption

(Hamill and Whitaker MWR, 2005)



RMS analysis errors, 50 members

• Improved accuracy of
EnSRF over 3D-Var can
be mostly achieved by
the hybrid.

• Covariance
localization applied on
the ETKF ensemble
when updating the
mean (but not applied
when updating the
perturbations) improved
the analyses of the
hybrid.



RMS analysis errors, 20 members

• Both 20-member
hybrid and EnSRF
worse than 50-
member, but still
better than 3D-Var

• Hybrid nearly as
accurate (KE, Δπ2
norms) or even better
(surface π norm)
compared to EnSRF



RMS analysis errors, 5 members

• EnSRF experienced
filter divergence for all
localization scales
tried.

• Hybrid was still more
accurate than the 3D-
Var.

• Hybrid is more robust
in the presence of
small ensemble size.

EnSRF filter
divergence



Comparison of flow-dependent
background-error covariance models

(Hybrid 50 mem. result) (EnSRF 50 mem. result)



Initial-condition balance

(50-member result)

• Analysis is more imbalanced
with more severe localization.

• Analyses of the hybrid with the
smallest rms error are as
balanced or more balanced than
those of the EnSRF, especially
for small ensemble size (not
shown).



Maximal perturbation growth
in subspace of ensemble

• Find linear combination coefficients
b to maximize

• Maximal growth in the ETKF
ensemble perturbation subspace is
faster than that in the EnSRF
ensemble perturbation subspace;
initially unbalanced EnSRF
perturbations grow slower?
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Spread-skill relationships

(20-member result)

• Overall average of the
spread is approximately equal
to overall average of rms error
for both EnSRF and hybrid.

• Abilities to distinguish
analyses of different error
variances are similar for
EnSRF and hybrid.



Summary of ETKF/3D-Var hybrid

• The hybrid analyses achieved similar improved accuracy of the
EnSRF over 3D-Var.

• The hybrid was more robust when ensemble size was small.

• The hybrid analyses were more balanced than the EnSRF analyses.

• The ETKF ensemble maximal growth was faster than the EnSRF.

• The ETKF ensemble variance was as skillful as the EnSRF.

• The hybrid can be conveniently adapted into the existing operational
3D-Var framework.

• The hybrid is expected to be less expensive than the EnSRF.



Upcoming work (we hope)

• Build WRF and GFS hybrids
– Test WRF in tropical cyclones (data sparse, unusual

background-error covariances)

• Extend the idea of the hybrid ETKF-3DVAR to
the 4D-Var framework.



48-h error relative to own analysis



48-h error verifying against
random analysis



Bottom Line - T126 EnSRF without radiances close
to T254 Operational  3D-Var with radiances in

Northern Hemisphere
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