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ABSTRACT

Recently, the European Centre for Medium-Range Weather Forecasts (ECMWF) produced a reforecast
dataset for a 2005 version of their ensemble forecast system. The dataset consisted of 15-member reforecasts
conducted for the 20-yr period 1982-2001, with reforecasts computed once weekly from 1 September to 1
December. This dataset was less robust than the daily reforecast dataset produced for the National Centers
for Environmental Prediction (NCEP) Global Forecast System (GFS), but it utilized a much higher-resolu-
tion, more recent model. This manuscript considers the calibration of 2-m temperature forecasts using these
reforecast datasets as well as samples of the last 30 days of training data. Nonhomogeneous Gaussian
regression was used to calibrate forecasts at stations distributed across much of North America. Significant
observations included the following: (i) although the “raw” GFS forecasts (probabilities estimated from
ensemble relative frequency) were commonly unskillful as measured in continuous ranked probability skill
score (CRPSS), after calibration with a 20-yr set of weekly reforecasts their skill exceeded that of the raw
ECMWEF forecasts; (ii) statistical calibration using the 20-yr weekly ECMWEF reforecast dataset produced
a large improvement relative to the raw ECMWEF forecasts, such that the ~4-5-day calibrated reforecast-
based product had a CRPSS as large as a 1-day raw forecast; (iii) a calibrated multimodel GFS/ECMWF
forecast trained on 20-yr weekly reforecasts was slightly more skillful than either the individual calibrated
GFS or ECMWEF reforecast products; (iv) approximately 60%-80% of the improvement from calibration
resulted from the simple correction of time-averaged bias; (v) improvements were generally larger at
locations where the forecast skill was originally lower, and these locations were commonly found in regions
of complex terrain; (vi) the past 30 days of forecasts were adequate as a training dataset for short-lead
forecasts, but longer-lead forecasts benefited from more training data; and (vii) a small but consistent
improvement was produced by calibrating GFS forecasts using the full 25-yr, daily reforecast training
dataset versus the subsampled, 20-yr weekly training dataset.

1. Introduction

A series of recent articles have introduced the use of
reforecasts for the calibration of a variety of probabi-
listic weather—climate forecast problems, from week-2
forecasts (Hamill et al. 2004; Whitaker et al. 2006) to
short-range precipitation forecast calibration (Hamill et
al. 2006; Hamill and Whitaker 2006) to forecasts of ap-
proximately normally distributed fields such as geopo-
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tential and temperature (Wilks and Hamill 2007,
Hamill and Whitaker 2007) to streamflow predictions
(Clark and Hay 2004). The reforecast dataset used was
a reduced-resolution, T62, 28-level, circa-1998 version
of the Global Forecast System (GFS) from the National
Centers for Environmental Prediction (NCEP). Fif-
teen-member forecasts were available to 15-day leads
for every day from 1979 to the present. With a stable
data assimilation and forecast system, the systematic
errors of the forecast could be readily diagnosed and
corrected. Calibrations using reforecasts were able to
adjust the forecasts to achieve substantial improve-
ments in their skill and reliability, commonly to levels
competitive with or exceeding those achieved by cur-
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rent-generation ensemble forecast systems without cali-
bration.

The GFS model version used in these reforecast stud-
ies is now ~10 yr out of date, and the reforecasts and
real-time forecasts from it are run at a resolution far
less than that used currently at operational weather
prediction centers. Arguably, the dramatic improve-
ment from the use of reforecasts may be due in large
part to the substantial deficiencies of this forecast mod-
eling system. Would the calibration of a modern-
generation ensemble forecast system similarly benefit
from the use of reforecasts?

Recently, the European Centre for Medium-Range
Weather Forecasts (ECMWF) produced a more limited
reforecast dataset with a model version that was opera-
tional in the last half of 2005. They produced a 15-
member reforecast once weekly from 1 September to 1
December, over a 20-yr period from 1982 to 2001. Each
forecast was run to a 10-day lead using a T255, 40-level
version of the ECMWF global forecast model. During
the past decade, ECMWF global ensemble forecasts
have consistently been the most skillful of those pro-
duced at any national center (e.g., Buizza et al. 2005), so
calibration experiments with this model may be repre-
sentative of the results that other centers may obtain
with reforecasts over the next 5 yr or so.

This dataset allows us to ask and answer questions
about reforecasts that were not possible with only the
GFS dataset. Some relevant questions include: (i) How
does an old GFS model forecast that has been statisti-
cally adjusted with reforecasts compare with a proba-
bilistic forecast estimated directly from the state-of-the-
art ECMWF ensemble forecast system? (ii) If this state-
of-the-art system could also be calibrated using its own
reforecast, would there still be substantial benefits from
the calibration, or would they be much diminished rela-
tive to the improvement obtained with the older GFS
forecast model? (iii) Is a calibrated, multimodel com-
bination more skillful than that provided solely by the
ECMWEF system? (iv) How much of the benefit of cali-
bration in a state-of-the-art model can be obtained us-
ing only a short time series of past forecasts and obser-
vations?

This article will consider the problem of the calibra-
tion of probabilistic calibration of 2-m temperature
forecasts. A companion article (Hamill et al. 2008) will
discuss the calibration of 12-hourly accumulated pre-
cipitation forecasts. The calibration problems for each
are unique; as will be shown, temperature forecasts
tend to have more Gaussian errors and substantial im-
provements can be obtained with relatively short train-
ing datasets. Calibration of nonnormally distributed
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precipitation is more difficult, and larger samples tend
to be needed to calibrate the more rare events.
Section 2 reviews the datasets used in this experi-
ment, section 3 describes the calibration methodology
and the methods for evaluating forecast skill, section 4
provides results, and section 5 presents conclusions.

2. Forecast and observational datasets used

a. ECMWEF forecast data

The ECMWF reforecast dataset consists of a 15-
member ensemble reforecast computed once weekly
from 0000 UTC initial conditions for the initial dates of
1 September to 1 December. The years covered in the
reforecast dataset were from 1982 to 2001. The model
cycle 2912 was used, which was a spectral model with
triangular truncation at wavenumber 255 (T255) and 40
vertical levels using a sigma-coordinate system. Each
forecast was run to a 10-day lead. The 15 forecasts con-
sisted of a 40-yr ECMWF Re-Analysis (ERA-40) initial
condition (Uppala et al. 2005) plus 14 perturbed fore-
casts generated using the singular-vector methodology
(Molteni et al. 1996, Barkmeijer et al. 1998, 1999). Al-
though data are available to cover the entire globe, for
this study the model forecasts were extracted on a 1°
grid from 15° to 75°N and 45° to 135°W, covering the
conterminous United States and most of Canada. From
this 1° grid, forecasts were bilinearly interpolated to the
observation locations, described below.

In addition, the ECMWF 0000 UTC forecasts in the
year 2005 were extracted for every day from 1 July to
1 December. These additional data permit experi-
ments comparing short training datasets with the re-
forecasts. The 2005 forecasts were initialized with the
operational four-dimensional variational data assimila-
tion (4DVAR) system (Mahfouf and Rabier 2000),
rather than the three-dimensional variational data as-
similation (3DVAR) analysis of ERA-40.

b. GFS forecast data

The GFS reforecast dataset, more completely de-
scribed in Hamill et al. (2006), was utilized here. It
utilizes a T62, 28-sigma-level, circa-1998 version of the
GFS. Fifteen-member forecasts are available to 15-day
leads for every day from 1979 to the present. Forecasts
were started from 0000 UTC initial conditions, and
forecast information was archived on a 2.5° global grid.
GFS forecast data were also bilinearly interpolated to
surface observation locations. For most of the experi-
ments described here, the GFS reforecasts were sub-
sampled to the dates of the ECMWF reforecast dataset
to permit ease of comparison. However, some experi-



2610

MONTHLY WEATHER REVIEW

VOLUME 136

Fi1G. 1. Station locations where probabilistic 2-m temperature forecasts are evaluated.

ments utilized 25-yr (1979-2003) daily samples of re-
forecast training data.

c¢. Two-meter temperature observations

The 0000 and 1200 UTC 2-m temperature observa-
tions were extracted from the National Center for
Atmospheric Research (NCAR) dataset DS472.0.
Only observations that were within the domain of the
ECMWEF reforecast dataset as described above were
used. Additionally, only the stations that had 96% or
more of the observations present over the 20-yr period
were utilized. A plot of these 439 station locations is
provided in Fig. 1.

3. Calibration and validation methodologies

a. Calibration with nonhomogeneous Gaussian
regression

Many methods may be used for the calibration of 2-m
temperature forecasts; among those in the recent litera-
ture are rank histogram techniques (Hamill and Colucci
1998; Eckel and Walters 1998), ensemble dressing
(Roulston and Smith 2003; Wang and Bishop 2005),
Bayesian model averaging (Raftery et al. 2005), logistic
regression (Hamill et al. 2006), analog techniques
(Hamill and Whitaker 2007), and nonhomogeneous
Gaussian regression (Gneiting et al. 2005). Wilks and

Hamill (2007) provide an intercomparison of several of
these techniques. In the intercomparison, nonhomoge-
neous Gaussian regression was determined to be more
skillful than or nearly as skillful as the other candidate
techniques. Accordingly, we shall use it as the calibra-
tion technique of choice here.

Nonhomogeneous Gaussian regression (NGR) is an
extension to conventional linear regression. It was as-
sumed that there may be information about the forecast
uncertainty provided by the ensemble sample variance
(Whitaker and Loughe 1998). However, because of the
limited number of members and system errors, the en-
semble sample variance by itself may not properly es-
timate the forecast uncertainty. Accordingly, the re-
gression variance was allowed to be nonhomogeneous
(not the same for all values of the predictor), unlike
linear regression. In this implementation of NGR, the
mean forecast temperature and sample variance inter-
polated to the station location were predictors, and the
observed 2-m temperatures at station locations were
the predictands. We assumed that stations had particu-
lar regional forecast biases sometimes distinct from
those at nearby stations. Hence, the training did not
composite the data; that is, the fitted parameters at
Atlanta were determined only from Atlanta forecasts
and not from a broader sample of locations around and
including Atlanta.

To describe NGR more formally, let ~N(a, B) de-
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note that a random variable has a Gaussian distribution
with mean « and variance B. Let X, denote the inter-
polated ensemble mean and s2,, denote the ensemble
sample variance. Then NGR estimates regression coef-
ficients a, b, ¢, and d to fit N(a + bX.,, ¢ + ds=,;). When
d = 0, there is no spread—error relationship in the en-
semble, and the resulting distribution resembles the
form of linear regression, with its constant-variance as-
sumption. Following Gneiting et al. (2005), the four
coefficients are fit iteratively to minimize the continu-
ous ranked probability score (CRPS; e.g., Wilks 2006).

In all experiments using the weekly reforecast data,
cross validation was utilized in the regression analysis.
The year being forecast was excluded from the training
data; for example, 1983 forecasts were trained with
1982 and 1984-2001 data. Also, because biases can
change with the seasons, the full set of September-De-
cember data was not used as training data. Rather, only
the 5 weeks centered on the date of interest were used;
thus, when training for 15 September, the training data
comprised the 1, 8, 15, 22, and 29 September forecasts.
For dates at the beginning and end of the reforecast, a
noncentered training dataset was used; for example, the
training dates for 1 September were 1, 8, and 15 Sep-
tember. Unless otherwise noted, the GFS reforecast
data were subsampled to the same weekly dates of the
ECMWEF training dataset. However, some later experi-
ments include a comparison with forecasts trained using
daily GFS reforecast data from 1979-2003.

A slightly more complicated version of NGR was
used for production of a calibrated multimodel
ECMWEF/GFS forecast. The first step was to perform a
linear regression analysis of each model’s ensemble-
mean forecast against the observations separately for
each forecast lead time. The result was an equation to
predict the lowest root-mean-square error (rmse) fore-
cast from each system’s raw ensemble-mean forecast.
Denote this corrected mean forecast as Xpc(k, [) from
the ECMWF model for the kth of K training samples
and /th of L locations, and similarly X5pg(k, [) for the
GFS. Denote the deviation of the ith of m ECMWF
members from its mean as xLc'(k, [), and similarly
xk5ps'(k, 1) for the GFS. Let D% denote the average
squared difference between the regression-corrected
ECMWF ensemble-mean forecast and observations;
thus,

1 K
Dic(l) =% 2 [Xeck. 1) = ok, DT, (1)
k=1

where o(k, [) is the observation. The squared difference
for the GFS, D¥s(1), is similarly defined.
We now seek to determine a multimodel weighted
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mean forecast and sample variance, providing larger
weights to the forecasts with the smaller squared dif-
ferences.

The weight to apply to the ECMWEF forecasts [Daley
1991, his Eq. (2.2.3)] is defined as

D (D)
Dgrs(l) — DE(l)’

and Wggpg = 1.0 — Wy A weighted multimodel en-
semble mean was calculated as

Xvm(k, 1) = Wi xpc(k, 1) + Wops (D Xgrs (K, 1),
3)

and a weighted multimodel ensemble variance was cal-
culated as

WEC(I) =

@)

2 e/ (kP

5 i=1
sym = Wee() m—1

> s (k, D]

+ Wars(l) = )

m—1
These multimodel means and sample variances are then
input into the NGR to produce the regression coeffi-
cients a, b, ¢, and d. A given forecast day’s ensemble
forecasts were processed using the same procedure as
the training data [Egs. (2)—(4)] to produce a multimo-
del mean and sample variance, and the regression co-
efficients were applied to determine the parameters of
the fitted NGR distribution.

b. Validation procedures

1) RANK HISTOGRAMS

Reliability characteristics of the probabilistic fore-
casts were diagnosed with rank histograms (Hamill
2001). When generating rank histograms for the “raw”
unmodified forecasts, random normally distributed
noise with a magnitude of 1.5°C was added to each
member to account for observation and representative-
ness errors (Hamill 2001, his section 3c). The choice of
1.5°C was somewhat arbitrary but was generally con-
sistent with the observation errors assigned to surface
data in data assimilation schemes (Parrish and Derber
1992). Probably somewhat less random error should be
added to the ECMWEF forecasts than to the GFS fore-
casts because the ECMWEF grid spacing is smaller, less-
ening the representativeness error; nonetheless, the
random error was set the same for both forecasts.

Rank histograms assess the rank of the observed
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relative to ensemble member forecasts; that is, the ob-
served rank is relative to discrete samples from a prob-
ability density function (PDF) rather than the PDF it-
self. How then can the rank histogram be used to assess
the reliability of a fitted PDF? We used the following
approach, motivated by the probability integral trans-
form (Casella and Berger 1990, p. 52). The original
ensembles were comprised of m = 15 members, so we
constructed 15 sample members where the value of the
ith fitted member was defined as x(i) = Gy n+1), the
i/(m + 1)th quantile of the fitted distribution. The m-
constructed ensemble members defined the boundaries
between m + 1 equally probable bins under the null
hypothesis that the observed value was a random draw
from the same underlying distribution as the ensemble.

Then xg,({) was remapped from the i/(m + 1)th quan-
tile qf)’(mﬂ) of a standard normal distribution. Specifi-
cally, given the coefficients a, b, ¢, and d that define the
fitted forecast for this sample, then

xﬁl(i) = querl)(c + dsins) + (a + bxens) (5)

[Wilks 2006, his Eq. (4.25)]. The rank of the observed
value relative to xg,(1), . . ., x5 (m) was computed, and
the process was repeated for all forecast samples to
generate the rank histogram. Because the underlying
fitted distribution was determined by training against
real, imperfect observations, there was no need to per-
turb the ensemble members with observation noise, as
was done with the raw ensemble.

2) SPREAD, ERROR, AND FRACTIONAL BIAS

Ideally, an ensemble forecast system ought to have a
similar magnitude of its spread and rmse (e.g., Whi-
taker and Loughe 1998). Plots of averages of these
quantities are shown later, where the ECMWEF’s model
spread at a given lead time og( is defined as

1 L K ' 12
Tec == 2 2 ¥k, D) + sk, D ¢, (6)
KLEH &S

where e(k, [) ~ N[0, (1.5)?]. That is, the spread calcu-
lated here is calculated from ensemble perturbations
from the ensemble mean plus a random realization of
noise, sampled from a normal distribution with zero
mean and a standard deviation of 1.5°C. This is pre-
sumed to represent the observation error, as done pre-
viously with the rank histograms. The rmse, RMSgg, is
defined as

1 L K 172
RMS,. = {E > 2 [Fec (k. 1) = olk, l)]z} :

=1 k=1

)
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The fractional bias BF is used to diagnose how much
of the ensemble-mean forecast error can be attributed
to bias, as opposed to random error. It is defined as

™M=
M= M=

[¥ec(k,I) — o(k,1)]

1

BFgc = 8

M| ¢

[IXec(k, I) — ok, D)]]

=

[y

k=1

The spread (oggs), error (RMSggs), and fractional bias
(BFGps) of the GFS forecasts are similarly defined.

3) CONTINUOUS RANKED PROBABILITY SKILL
SCORE

Calculation of a revised version of the continuous
ranked probability skill score (CRPSS) followed the
method described in Hamill and Whitaker (2007). As
noted in Hamill and Juras (2006), the conventional
method of calculating many verification metrics, includ-
ing the CRPSS, can provide a misleadingly optimistic
assessment of the skill if the climatological uncertainty
varies among the samples. The verification metric may
diagnose positive skill that can be attributed to a dif-
ference in the climatologies among samples rather than
to any inherent forecast skill. Here we followed the
specific method outlined in Hamill and Whitaker
(2007) to ameliorate this problem. The idea was simple:
divide the overall forecast sample into subgroups where
the climatological uncertainty was approximately ho-
mogeneous, determine the CRPSS for each subgroup,
and then determine the final CRPSS as a weighted
average of the subgroups’ CRPSS. Here, there were
NC = 8 subgroups, with a more narrow range of
climatological uncertainty in each subgroup, and equal
numbers of samples assigned to each subgroup. Let
CRPS’ (s) denote the average forecast CRPS (Wilks
2006) for the sth subgroup, and CRPS(s) denote the
average CRPS of the climatological reference fore-
cast for this subgroup. Then the overall CRPSS is cal-
culated as

1 NS CRPSf(s):|
CRPSS = — 1——— (9)
NC 21 [ CRPS (s)

The climatological mean and standard deviation were
calculated using 5 weeks of centered data. For more
details on the calculation of the alternative formulation
of the CRPSS, please see Hamill and Whitaker (2007).

Confidence intervals for assessing the statistical sig-
nificance of differences between forecasts were com-
puted following the block bootstrap procedure outlined
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F1G. 2. Rank histograms for 2-m temperatures from (top) ECWMEF and (bottom) GFS
ensembles at (left) 1-, (middle) 4-, and (right) 7-day leads. Histograms denote the raw en-
semble and solid lines the calibrated ensembles.

in Hamill (1999); in this case, 4000 iterations of a re-
sampling procedure were used, shuffling the data in
blocks of case days. The CRPSS was computed using
Eq. (8) for the two resampled sets, and the difference in
CRPSS was used to build up the distribution for the
null hypothesis. Confidence interval data are not plot-
ted here; for the 20-yr ECMWF reforecast experiments,
the 95% confidence intervals for calibrated versus raw
ensembles were small, from *=0.033 at the half-day lead
to =0.02 at the 10-day lead.

4. Results

a. Twenty-year weekly training data

Figure 2 provides rank histograms for the ECMWF
and GFS reforecasts. For the raw forecasts, the com-
mon U shape was more pronounced at the short leads
and slightly more pronounced for GFS forecasts than
for ECMWEF forecasts. After calibration with NGR, the
rank histograms were much flatter, although there still
was some slight excess of population of the lowest rank.
Probably the assumption of Gaussianity underlying the
NGR was not strictly appropriate; although forecast
PDFs may have somewhat more Gaussian distributions
than climatology, notably 416 of the 439 stations exhib-
ited a negative skew of their observed 2-m temperature
distributions.

The general similarity of the rank histogram shapes
from the ECWMF and GFS ensembles may be some-
what misleading as to the characteristics of these en-

sembles. Figure 3 provides a plot of average spreads
[the standard deviations of the ensemble perturbations
about their means plus observation noise with variance
R; Eq. (6)] and the rmses [Eq. (7)] from the raw en-
sembles. In a perfect ensemble forecast where en-
semble spread is due solely to chaotic growth of initial
condition errors, these two curves should lie on top of
each other. Neither the ECMWF nor the GFS en-
sembles had a spread nearly as large as the rmse, indi-
cating that model biases were large. However, the rmse
of the ECMWF ensemble was substantially smaller
than that of the GFS, indicating that its forecasts should
have higher skill.

We now consider the overall CRPSS of the calibrated
and uncalibrated forecasts in Fig. 4. Several main points
can be made. First, as suggested by Fig. 3, the raw
ECMWEF forecasts were indeed more skillful than the
GFS forecasts. Second, although the raw GFS forecasts
had zero or negative skill relative to climatology, after
statistical correction with NGR they exceeded the
CRPSS of the raw ECMWF forecasts, demonstrating
the large skill improvement that was possible with cali-
bration. Third, even though the ECMWF model started
with substantially greater skill than the GFS, it too ben-
efitted greatly from the statistical correction. Although
improvements were not as large as with the GFS, a
statistically modified 4-5-day ECMWEF forecast had ap-
proximately the same CRPSS as did the raw 1-day fore-
cast. Fourth, the multimodel NGR forecast consistently
outperformed the calibrated ECMWF forecast by a
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Fi1G. 3. Average ensemble spread (with members additionally perturbed with random
sample of observation error drawn from R) and rmse of 2-m temperature forecasts from the

(a) ECMWF and (b) GFS ensembles.

small amount, indicating that there was some inde-
pendent information provided by the older, less
sophisticated GFS. This is consistent with many previ-
ous results from the combination of information from
multiple models using smaller training datasets (e.g.,
Vislocky and Fritsch 1995, 1997; Krishnamurti et al.
1999). Fifth, the forecast skills have a slight stair-step
appearance—primarily because the reference climato-
logical CRPS are larger for the 0000 UTC forecasts
(days 1, 2, etc.) than for the 1200 UTC forecasts (days
0.5, 1.5, etc.)—which, following Eq. (9), will result in
higher skills, assuming a smaller (or no) diurnal varia-
tion in the forecast CRPS. Finally, note that even at day
10 there is still some skill in the calibrated ECMWF and
multimodel forecasts. If one considers averages over
several days, such as an 8-10-day average, the skill in-
creases above that of the averages of the skills at days
8, 9, and 10 (not shown). This is because some of the
loss of skill is due to small errors in the timing of events.

Figure 5 demonstrates that a substantial fraction of
the forecast improvement in each system can be attrib-
uted to a simple correction of model bias. The bias-
corrected ensemble forecasts were generated by sub-
tracting the mean bias (forecast minus observed) from
each ensemble member in the training sample. Be-
tween 60% and 80% of the improvement in skill in the
ECMWEF forecasts can be attributed to this simple bias
correction; the NGR added the remaining 20%—-40%
through its regression-based correction, spread correc-
tion, and fitting of a smooth parametric distribution.
Slightly less of the improvement was attributable to
bias for the GFS ensemble.

Figures 6a—c show the geographic distributions of day
2 skill for the raw, NGR, and bias-corrected forecasts,
respectively. The raw forecasts were commonly defi-
cient in skill in the complex terrain of the western
United States and Canada, presumably because the

simplified terrain heights of the forecast model differed
from that of the actual stations, with concomitant errors
in the estimation of surface temperatures. It appeared
that a simple bias correction achieved most of the im-
pact for the stations with particularly unskillful raw
forecasts. This is demonstrated in Fig. 6d. Here, the
fractional improvement of the bias correction is plotted
as a function of the raw and calibrated forecasts. Let-
ting Craw,> Cngrs and Cge denote the CRPSS of the
raw, calibrated, and bias-corrected forecasts, respec-
tively, the fractional improvement Fr is computed as
(Cgc — Craw)/(Cngr — Craw)- Figure 6d shows sev-
eral interesting characteristics. First, note that the effect
of the NGR calibration was primarily to improve fore-
casts that started off as particularly unskillful by ho-
mogenizing the resultant skill relative to the highly
varying skills seen in the raw forecasts. Second, in gen-
eral the locations that had relatively large improve-
ments through the NGR calibration achieved a greater
fraction of this from the bias correction than did the
locations that had smaller improvements. Overall, the
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F1G. 4. CRPSS of surface temperature forecasts with and
without calibration.
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FI1G. 5. CRPSS including bias-corrected ensemble forecasts for (a) ECMWF and (b) GFS
forecasts.

large improvements from bias corrections may indicate
that additional resolution may be helpful, leading to
smaller mismatches between model terrain height and
station elevation (see also Buizza et al. 2007).

b. Differences between 20-yr weekly and 30-day
daily training datasets

To facilitate a comparison of long and short training
datasets, the ECMWF and GFS ensemble forecasts
were also extracted every day for the period 1 July-1
December 2005. This permitted us to examine the
efficacy of a smaller training dataset. Recent results
(Stensrud and Yussouf 2005; Cui et al. 2006) have sug-
gested that temperature forecast calibration may be
able to be performed well even with a small number of
recent forecasts. This may be because the ensemble
forecast bias is relatively consistent and can be esti-
mated with a small sample. Another possibility is that
recent samples are more relevant for the statistical cor-
rection, with their more similar circulation regimes and
land surface states than data from other years.

Accordingly, we compared the calibration of fore-
casts using the prior 30 days as training data to calibra-
tion using the full reforecast training dataset. Forecasts
were compared for the period of 1 September—1 De-
cember 2005. Nonhomogeneous Gaussian regression
was again used for the calibration. Figure 7 shows that
at short forecast leads, the 30-day training dataset pro-
vided approximately equal skill improvements relative
to the 20-yr training dataset for the ECMWF model,
and marginally less for the GFS. However, as the fore-
cast lead increased, then the benefit of the longer train-
ing dataset became apparent.

Why were more samples particularly helpful for the
longer leads? We suggest that there were at least three
contributing factors. First, the prior 30-day training
dataset was 9 days older for a 10-day forecast (training
days —39 to —10) than for a 1-day forecast (training

days —30 to —1). If errors were synoptically dependent
and a regime change took place in the intervening 9
days, the training set at 1-day lead will have had
samples from the new regime but the training set at
10-days lead will not. Second, determining the bias to a
prespecified tolerance will require more samples at
long leads than at short leads. At these long leads, the
proportion of the error attributable to bias shrinks be-
cause of the rapid increase of errors due to chaotic
error growth. This is shown in Fig. 8; for the ECMWF
model, this decreased from ~0.54 at the half-day lead
to ~0.28 at the 10-day lead. Consequently, because the
overall error grows as the forecast lead increases and a
larger proportion of it is attributable to random errors,
determining the bias to a prespecified tolerance re-
quires more samples. The third reason was that the
short-lead forecast training datasets were composed of
samples that tended to have more independent errors
than the longer-lead training datasets. The ECMWF
1-day lagged correlation of forecast minus observed
values averaged over all stations (not shown) increased
from around 0.2 at the early leads to 0.5 at the longer
leads. Using the definition of an effective sample size n'
(Wilks 2006, p. 144),

, 1-p
n =n 1+—Pl 5 (10)
with n = 30, this indicates that the effective sample size
was approximately 20 at the short leads and 10 at the
longer leads. The once weekly, 20-yr reforecast dataset
should, in comparison, be composed of samples that are
truly independent of each other.

Considering again the puzzling result of similar skill
at short leads, we hypothesize that the two factors here
may have contributed to underestimating the poten-
tial skill that can be obtained with a properly con-
structed long training dataset. First, one limitation of
the ECMWEF datasets was that for the 2005 data,
all forecasts were initialized with 4DVAR, but the
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F1G. 6. CRPSS of raw 2-day forecasts from (a) the ECMWF model, (b) as in (a), but for calibrated NGR
forecasts, and (c) as in (a), but for bias-corrected forecasts. (d) Fractional improvement Fr gained from bias
correction as a function of the CRPSS from raw and NGR forecasts.

1982-2001 reforecast data were initialized with 3DVAR.
It is thus possible that the ECMWF short-term refor-
ecasts may have subtly different biases than the 2005
real-time forecasts, differences that may diminish with
the forecast lead. This would affect the calibration of
the short-term forecasts. Notice that Fig. 7b shows a
somewhat larger benefit from long training datasets
with the GFS, where a consistent data assimilation sys-
tem was used. Second, the calibration with the full re-
forecast training dataset here used only the model fore-
cast temperature as a predictor. Perhaps the short train-
ing dataset benefits from having samples with a more
similar set of land surface conditions. If this is the case,
then perhaps a multipredictor regression analysis in-
cluding, say, soil moisture content as an additional pre-
dictor would improve the reforecast calibrations.

c¢. Differences between 20-yr weekly and 25-yr daily
training datasets in the GFS

Figure 9 shows the CRPSS of GFS forecasts from the
raw ensemble after a calibration with the 20-yr weekly
training dataset and with the full 25-yr daily training
dataset. When training with the 25-yr daily data, the
training data were used in a window of *15 days
around the date being forecast; for example, forecasts
for 16 September used 1 September—1 October refore-
casts for training data. Data for the year being forecast
were excluded (cross validation), and all days between
1 September and 1 December were validated, as op-
posed to the weekly samples used in Fig. 4. As Fig. 9
shows, the 25-yr, daily training dataset provided a small
but consistent improvement over the 20-yr, weekly
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F1G. 7. Comparison of CRPSS using 30-day and 20-yr training datasets for the period 1
Oct-1 Dec 2005: (a) ECMWEF and (b) GFS data.

training dataset. Why was the improvement not larger?
First, of course, the baseline for the comparison used 20
yr of weekly forecasts X 5 weeks of centered data = 100
samples, a respectably large number for the estimation
of the four NGR parameters. Further, as noted in
Hamill et al. (2004), forecast errors may be correlated
from one day to the next, so using daily versus weekly
samples does not necessarily mean that the effective
sample size (Wilks 2006, p. 144) will be 7 times larger
with daily samples.

5. Conclusions

A prior series of articles (Hamill et al. 2004, 2006;
Hamill and Whitaker 2006, 2007; Whitaker et al. 2006;
Wilks and Hamill 2007) have discussed the benefit of
calibrating probabilistic forecasts using the large train-
ing datasets from an ensemble reforecast dataset from a
1998 version of the NCEP GFS. This dataset is now 10
yr old, and it is not clear whether the large positive
benefits from the large training dataset would still occur
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Fi1G. 8. Fractional bias, the fraction of the total rmse that can be
attributed to systematic error, as a function of forecast lead.

with a newer, higher-resolution model with its reduced
systematic errors. Recently, ECMWF developed a lim-
ited reforecast dataset consisting of a once weekly, 15-
member reforecast for the period 1 September-1 De-
cember 1982-2001. These forecasts were conducted us-
ing the model version operational in the second half of
2005, a T255-resolution version of the forecast model.
Although the once weekly reforecasts were sparser
than the daily reforecasts from the GFS, the ECMWF
reforecast dataset still spanned 2 decades of diverse
climatological regimes. Accordingly, we performed an
analysis of the skill that can be gained from calibration
of surface temperatures using these training datasets.

Both the ECMWF and GFS raw ensemble surface
temperature forecasts were found to be biased and/or
underdispersive, noted from the excess populations of
the extreme ranks in their rank histograms. This ten-
dency was more pronounced at the short forecast leads.
However, after calibration with nonhomogeneous
Gaussian regression (NGR), the rank histograms were
flatter, although the lowest rank was still populated
slightly more than was appropriate with a perfectly cali-
brated ensemble.
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F1G. 9. CRPSS of GFS forecasts from raw ensemble, with 20-yr
weekly training dataset and 28-yr daily training dataset.
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The skill of these forecasts was measured with a
modified version of the continuous ranked probability
skill score (CRPSS), with the computation adjusted to
remove the tendency to award fictitious skill due to
variations in the forecast climatology (Hamill and Juras
2006). Climatology provided the no-skill reference. Us-
ing this skill measure, the raw GFS ensemble forecasts
had near zero to negative skill at all leads due to the
presence of large forecast biases. The ECMWF raw
forecasts retained positive skill to approximately 8
days.

After calibration with NGR, the postprocessed
GFS forecasts exceeded the skill of the uncalibrated
ECMWEF forecasts at all leads. Here, the GFS training
data were subsampled to the same weekly, 20-yr set of
dates as in the ECMWEF reforecast. However, the re-
forecast-based, calibrated ECMWF forecasts were
much more skillful than both the GFS calibrated fore-
casts and the ECMWF uncalibrated forecasts, although
the absolute amount of skill increase from calibration
was smaller for ECMWEF than for the GFS. Nonethe-
less, the ECMWF skill improvement was substantial;
for example, the skill of a calibrated, 4-5-day ECMWF
forecast was comparable to the skill of an uncalibrated
1-day forecast. Approximately 70% of the improve-
ment of the ECMWF could be attributed to a simple
correction of mean bias in the forecasts, with a slightly
smaller percentage in the GFS. The ECMWEF raw fore-
casts were observed to have particularly low skill at
stations in the intermountain western United States,
perhaps due to larger discrepancies between the model
terrain and the station locations. Calibration was par-
ticularly successful in increasing the skill at these sta-
tions. Finally, a multimodel calibrated forecast was
more skillful than either individual calibrated forecast.

The computation of an extensive reforecast dataset is
expensive, and a new reforecast dataset may be needed
each time a model change affects its systematic error
characteristics. If the same benefit could be achieved
with a much smaller set of recent forecasts, this would
make operational calibration much easier. Accordingly,
using 2005 data, we compared the calibration using the
1982-2001 reforecasts to calibration using the most re-
cent 30 samples of forecasts from 2005. For the shorter
forecast leads, the skill after calibration using this
shorter training dataset was very similar to that
achieved with large reforecast dataset. We hypothesize
that this benefit may be attributable to the more recent
samples being more similar in their error characteristics
than those from the reforecast dataset, which samples
other years of data. However, at longer leads, the re-
forecast dataset produced more skillful calibrated fore-
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casts than the 30-day training dataset. This was likely
due to at least three reasons: first, 30 days of training
data for the longer-lead forecasts were more separated
from the actual forecast day of interest (e.g., when cali-
brating a 10-day forecast, the most recent training
sample is 10 days old because verification is not yet
available for the more recent forecasts). Second, the
number of samples necessary to estimate the bias to a
prespecified tolerance generally increased with increas-
ing forecast lead. And third, for forecasts at the longer
leads, the samples on adjacent days tended to have cor-
related forecast errors, thereby reducing the effective
sample size.

Although a daily reforecast dataset was yet not avail-
able for the ECMWF model, the impact of daily versus
weekly samples could be evaluated with the GFS re-
forecast dataset. Using a 25-yr daily reforecast versus a
20-yr weekly forecast produced a small but noticeable
improvement.

It is also possible that the calibration could be im-
proved by including other predictors. Here we consid-
ered only 2-m temperature as a predictor. Perhaps the
reason the 30-day training dataset shows such good re-
sults is that the training samples are from a regime with
similar surface characteristics, such as soil moisture. If
so, then the performance of a multiyear reforecast
could be enhanced by including soil moisture as an ad-
ditional predictor. An examination of the potential
value of several other predictors may be useful before
any operational implementation of a temperature-
calibration scheme.

This article considered only the calibration of 2-m
temperature forecasts. Our experience with precipita-
tion calibration using the GFS reforecasts suggests that
the benefit from calibration using short training
datasets will be smaller than for temperature. The com-
panion article to this paper (Hamill et al. 2008) exam-
ines the calibration of ECMWF and GFS precipitation
forecasts in more depth and provides substantial fur-
ther evidence for the value of large training datasets,
even with a state-of-the-art model. Nonetheless, the
value of large training datasets for temperature calibra-
tion was confirmed here, even for a current, state-of-
the-art forecast model. Short training datasets were ad-
equate for the short-lead forecasts, but to achieve ben-
efits at all forecast leads, the longer training dataset
proved useful.

Combined with the evidence in our companion paper
and previous studies, there is now a growing body of
literature indicating the potential utility of reforecast
methodology for improving operational ensemble pre-
dictions.
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