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1.  Introduction. 

 
Wilson et al. (2006, hereafter W06) recently described the application of the 

Bayesian model averaging (BMA, Raftery et al. 2005, hereafter R05) calibration 

technique to surface temperature forecasts using the Canadian ensemble prediction 

system.  The BMA technique as applied in W06 produced an adjusted probabilistic 

forecast from an ensemble through a two-step procedure.  The first step was the 

correction of biases of individual members through regression analyses.  The second step 

was the fitting of a Gaussian kernel around each bias-corrected member of the ensemble.  

The amount of weight applied to each member’s kernel and the width of the kernel(s) 

were set through an Estimation-Maximization (EM) algorithm (Dempster et al. 1997).  

The final probability density function (pdf) was a sum of the weighted kernels. 

W06 reported (their Fig. 2) that at any given instant, a majority of the ensemble 

members were typically assigned zero weight, while a few select members received the 

majority of the weight.  Which members received large weights varied from one day to 

the next. These results were counter-intuitive; why effectively discard the information 

from so many ensemble members?  Why should one member have positive weight one 

day and none the next? 

 This comment to W06 will show that BMA where the EM is permitted to adjust 

the weights individually for each member is not an appropriate application of the 

technique when sample size is small1; specifically, the radically unequal weights of W06 

exemplify an “overfitting” (Wilks 2006a, p. 207) to the training data. A symptom of 

overfitting is an improved fitted relationship to the training data but a worsened 

                                                
1 This is not meant to imply that BMA and the EM method are inappropriate, merely that 
the methods can be inappropriately applied. 



 3 

relationship with independent data. This may happen when the statistician attempts to fit 

a large number of parameters using a relatively small training sample.  In W06, the EM 

algorithm was required to set the weights of 16 individual ensemble members and a 

kernel standard deviation with between 25 and 80 days of data.    

 To illustrate the problem of overfitting in W06’s methodology, a reforecast data 

set was used. This was comprised of more than two decades of daily ensemble forecasts 

with perturbed initial conditions, all from a single forecast model.  This large data set 

permitted a comparison of BMA properties based on small and large training samples.  

This reforecast data set used a T62, circa-1998 version of the National Centers for 

Environmental Prediction (NCEP) Global Forecast System (GFS).  A 15-member 

forecast, consisting of a control and 7 bred pairs (Toth and Kalnay 1997) was integrated 

to 15 days lead for every day from 1979 to current.   For more details on this reforecast 

data set, please see Hamill et al. (2006). The verification data was the NCEP/NCAR 

reanalysis (Kalnay et al. 1996). 

 
 
2.  Overfitting with the BMA-EM algorithm. 

 
 EM is an iterative algorithm that adjusts the BMA model parameters through a 

two-step procedure of parameter estimation and maximization. R05 (eqs. 5-6, and 

accompanying text) provides more detail.  The algorithm iterates to convergence, 

stopping when the change in log-likelihood function from one iteration to the next is less 

than a cutoff δ. The magnitude of δ may be chosen by the user, but it can be assumed δ  

<< 1.0 .  
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To illustrate the tendency for the BMA EM to over-fit when trained with small 

sample sizes, consider 4-day 850 hPa temperature ensemble forecasts for a grid point 

near Montreal, Canada. Forecasts were produced and validated for the 23 years × 365 

days – 40 days = 8355 cases.  Because we would like to assume in this example a priori 

that the member weights should be equal, the 15-member ensemble was thinned, 

eliminating the slightly more accurate control member.  The remaining 14 bred members 

can be assumed to have identically distributed (but not independent; see Wang and 

Bishop 2004) errors and hence should have been assigned equal weights.  The BMA 

algorithm was then trained using the remaining 14 identically distributed bred members 

and only the prior 40 days’ forecasts and analyses, posited in W06 to be an acceptably 

long training period.  We shall refer to this as the “40-day training” data set.  In addition, 

the BMA algorithm was also trained with a very long training data set in a cross-

validated manner using 22 years × 91 days of data, with the 91 days centered on the 

Julian day of the forecast. This will be referred to as the “22-year training data set.” 

  The BMA algorithm was coded generally following the algorithm used in the R05 

and W06 articles.   Two adjustments were used, however.   First, no refinement of the 

fitted standard deviation was performed in order to maximize the continuous ranked 

probability score (CRPS; Hersbach 2000), as suggested in R05.  Performing the 

refinement increased the computational expense but had minimal impact on forecast skill.  

Second, W06’s proposed regression correction was here applied only to the ensemble 

mean, while the original deviation of each member about the mean was preserved.  More 

concretely, given an ensemble member 

� 

xi
f , an ensemble mean

� 

x
f

, and a regression-

corrected ensemble-mean forecast

� 

a + bx
f( ), the member forecast was replaced with a 
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forecast that was the sum of the initial perturbation from the ensemble mean and the 

corrected forecast: 

 
 

� 

xi
f
! xi

f
" x

f( ) + a + bx
f( )  ,      (1) 

 
where  ← denotes the replacement operation. This modified regression correction was 

used because when every member was regressed separately, as forecast lead increased 

and skill decreased, all the members were increasingly regressed toward the training 

sample mean of the observed.  Consequently, the ensemble spread of adjusted members 

shrank (Fig. 1; see also Wilks 2006b) and co-linearity of errors among members was 

accentuated (Fig. 2).  These were clearly undesirable properties; the spread should 

asymptotically approach the climatological spread of the ensemble forecast, and ideally, 

member forecasts should have independent errors.  Had the regression correction of each 

member been applied, there may have been some confusion as to whether the subsequent 

highly non-uniform weights produced by the BMA were a generic property of a short 

training data set or whether they were artificially induced from the increased co-linearity 

induced by the regression analyses.  

 We now consider the properties of the EM algorithm for this application.  The 

initial guess for all member weights was 1/14.  Keeping track of the ratio of maximum to 

minimum BMA member weights after EM convergence for each of the 8355 cases, these 

ratios were sorted, and the median ratio was plotted as the EM convergence criterion δ 

was varied.  For the 40-day training period, when δ = 0.01, the largest and smallest 

weights were much more similar compared to when δ  << 0.01 (Fig. 3a).  With the 22- 

years training data, the weights stayed much more equal as δ was decreased (Fig. 3b).   
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 Could the unequal weightings with the 40-day training set and tight δ actually be 

appropriate?   As mentioned in R05, as the EM iterates, the log-likelihood of the fit to the 

training data is guaranteed to increase.  However, we can also track the fit to the 

validation data.  Figures 4 a-b show the average training and validation log likelihoods 

(per forecast day) for the small and large training data sizes.  Notice that for the small 

sample size, the validation data log likelihood decreased as the convergence criterion was 

tightened, a sign that the unequal weights were not realistic.  The same effect was hardly 

noticed with the large training data set, where the weights remained nearly equal as the 

convergence criterion was tightened.2  This demonstrates that the highly variable weights 

with the 40-day training were most likely an artifact of overfitting.  Perhaps this wasn’t 

surprising, given that the E-M algorithm was expected to fit 15 parameters here (14 

weights plus a standard deviation) with the 40 samples.  Further, the effective sample size 

(Wilks 2006a, p. 144) may actually have been smaller than 40; perhaps the assumption of 

independence of forecast errors in space and time (R05, p. 1159) was badly violated with 

these ensemble forecasts.  Also, we agree with W06 proposition that the radical 

differences in weights may also be in part a consequence of the co-linearity of members’ 

errors in the training data.  What is clear here is that this co-linearity was not properly 

estimated from small samples, which led to the inappropriate de-weighting and exclusion 

of information from some members. 

 When the BMA weights were enforced to be equal and 40-day training was used, 

the resulting continuous ranked probability skill score (CRPSS, calculated in the manner 

suggested in Hamill and Juras, 2006 to avoid over-estimating skill; 0.0 = the skill of 

                                                
2 Fig. 4b does display one oddity, namely that the fit to the validation data is slightly 
closer than the fit to the training data.  We expect that this small difference can be 
attributed to sampling variability. 
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climatology, 1.0 = perfect forecast) was 0.38.  When the individual weights were allowed 

to be estimated by the EM and the convergence criterion was 0.00003, the resulting 

CRPSS was smaller, 0.35.   When the 22-year training data was used, the CRPSS was 

0.410, regardless of whether the weights were enforced to be equal or allowed to vary. 

 Is there a way of setting the BMA weights to avoid radically de-weighting some 

members with small samples?   If co-linearity of member errors in the training data were 

essentially zero, then the weights would resemble those set in a weighted least-squares 

process. Suppose the training data establishes that the estimated root-mean-square errors 

for the bias-corrected members were s1, … sn .   The weights that would have produced 

the minimum-variance estimate of the mean state (e.g., Daley, p. 36, eq. 2.2.3) under 

assumptions of normality of errors was  

 

 
 

w
i

=
1

s
i

2

1

s
j

2

j=1

n

!  .      (2) 

 
The advantage of this method for setting weights, also, was that if there truly was a 

strong co-linearity of member errors, the BMA pdf should not have been worse as a 

consequence of using the more equal weights of eq. (2) rather than the unequal weights 

from a highly iterated EM. This can be demonstrated simply by considering two member 

highly co-linear forecasts with similar errors and biases, so 
 
xi
f
! x j

f . Then the weighted 

sums are similar, regardless of the partitioning of the weights.  For example, 

 
1.0! xi

f
+ 0.0! x j

f
" 0.0! xi

f
+ 1.0! x j

f
" 0.5! xi

f
+ 0.5! x j

f . 

 



 8 

4.  Conclusions. 

 
 While the BMA technique is theoretically appealing, for ensemble forecast 

calibration, the BMA and the EM technique cannot be expected to set realistic weights 

for each member when using a short training data set.  Enforcing more similar weights 

among BMA members [eq. (2)] may work as well or better than allowing the EM method 

to estimate variable weights for each member.  
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FIGURE CAPTIONS 

Figure 1:  Spread of a regression-corrected ensemble of Day-4 forecasts of 850 hPa 

temperature at Montreal, CA (using a 40-day training data) vs. the spread of the raw 

ensemble forecasts. 

 

Figure 2:  Errors of Day-4 850 hPa temperature forecasts for members 2 and 4 of the 

ensemble (a) before a regression correction of the member errors using the prior 40 days 

for training, and (b) after the regression correction.  Correlation coefficient (r) noted in 

the upper-left corner.   

 

Figure 3: Log10 of the median sample’s maximum member weight divided by minimum 

member weight, as a function of the EM convergence criterion. The median represents 

the (23*365/2)th rank-ordered ratio among the 23*365 sample days. (a) 40-day training 

period, (b) 22-year cross-validated training period. 

 

Figure 4:  Log likelihood (per unit day) of training and validation data as a function of 

the convergence criterion. (a) 40-day training data, and (b) 22-year cross-validated 

training data. 
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Figure 1:  Spread of a regression-corrected ensemble of Day-4 forecasts of 850 hPa 
temperature at Montreal, CA (using a 40-day training data) vs. the spread of the raw 
ensemble forecasts.  
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Figure 2:  Errors of Day-4 850 hPa temperature forecasts for members 2 and 4 of the 
ensemble (a) before a regression correction of the member errors using the prior 40 days 
for training, and (b) after the regression correction.  Correlation coefficient (r) noted in 
the upper-left corner.   
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Figure 3: Log10 of the median sample’s maximum member weight divided by minimum 
member weight, as a function of the EM convergence criterion. The median represents 
the (23*365/2)th rank-ordered ratio among the 23*365 sample days. (a) 40-day training 
period, (b) 22-year cross-validated training period. 
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Figure 4:  Log likelihood (per unit day) of training and validation data as a function of 
the convergence criterion. (a) 40-day training data, and (b) 22-year cross-validated 
training data. 
 
  
 


