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Motivation

“Hydrometeorological services in the United States
are an Enterprise effort. Therefore, effective
incorporation of uncertainty information will require a
fundamental and coordinated shift by all sectors of
the Enterprise. Furthermore, it will take time and
perseverance to successfully make this shift. As the
Nation’s public weather service, NWS has the
responsibility to take a leading role in the transition
to widespread, effective incorporation of uncertainty
information into hydrometeorological prediction.”

— From finding 1 of NRC report “Completing the Forecast” 5
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The problem with using raw
ensemble forecasts
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Probabilistic forecasts
from raw ensembles
are not very reliable,
due to deficiencies in
forecast model,
ensemble methods.

Users want “sharp”
and “reliable” forecasts.
Statistical adjustment
necessary.
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Outline

Addressing some of the concerns NCEP has
about reforecast calibration efficacy.

Configuration of real-time reforecasts: the
compromises between ideal and practical.

Moving toward operational implementation.
— Archiving and accessing reforecasts

— What can we do to hit the ground running?

— What can various organizations contribute?

Will emphasize results that | don’t think we've already showed
many times before.



Questions based on differences in
NCEP / ESRL calibration results

* |s a short time series of most recent
forecasts really the best for short-range
forecast calibration?

* |s the bulk of the benefit from correction
of model bias, or other deficiencies in
the ensemble system?



Concerns/issues: Are short training data
sets better for short-lead forecasts?
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T2M skill at Day 1 was so small that |
repeated the experiment myself...

* Procedure:

— Determine ensemble-mean forecast deviation from
climatology, observed dev. from climatology.

— Regress to predict observed deviation.
— Form Gaussian pdf from regression.

Station Locations
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Daily Maximum Temperature Forecast Skill (CRPSS)
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A discrepancy...

* Prior NCEP results: better skill for short-lead
forecasts using just the most recent forecasts
as training data.

 ESRL results: short training data set provide
far less benefit than long ones at all leads.

* Hypothesis: NCEP results may have used
different analysis system for verification than
for reforecasts. Strong biases between them.

11



G= 995, TMP 0.995
difference
in climatology,

Operational
(—>T62) - CDAS,
January 2004

180

Very large differences, due to land-
surface treatment and terrain
differences in models with different
resolutions. Both will be effects that
will have to be dealt with if CDAS
reanalyses are used with newer
version of NCEP GFS.

This may explain NCEP’s test
results showing better performance
using short training data set (since

your short training data set used
same analysis system as
operational)
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How does precipitation forecast skKill
change with training sample size?

(a) BSS of 2.5 mm forecasts (b) BSS of 25 mm forecasts
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Here, 2-step analog approach used; colors of dots indicate which size analog ensemble
provided the largest amount of skill. 13



Does the impact of calibration
depend upon the variable?

* Decided we wanted to look systematically at
the differences in calibration between Z500,
1850, T2M, all with long training data sets.
Was Z500 “easier” ?

 How much from bias correction vs. full pdf
calibration”?

» Since NCEP did their calc’s over N.
Hemisphere, we'd repeat using that area.

14
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Another piece of evidence
why T2M is so much harder
to calibrate than Z500.

T2M bias is large relative to
the intrinsic climatological
variability.
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Calibration techniques

 Uncalibrated : PDF from raw ensemble

« Gross Bias Correction:
— (1) Calculate MeanB=F - O
— (2) Corrected ens =raw ens + B

* Analog method

— Similar to method for precipitation, but now find forecast
analogs using only the current grid point’s data. 50
members.

— Wilks and Hamill (2006, MWR, to appear) found that many
other calibration methods (e.g. logistic regression, non-
homogeneous Gaussian regression) were similar in
performance.

17



Verification of Z.,,, Tgsg, Tomy

* Northern Hemisphere (Z5,, Tg50); 00Z North
American surface obs with > 97% complete record

from 1979 - 2004 (T,,,)

* Use continuous ranked probability skill score
(CRPSS; 0=no skill, 1=perfect); use method of
calculation in Hamill and Juras (2006, Oct. QURMS)
to avoid overestimating skill when climatology varies.

18
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Ranked Probability Skill Score
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Configuration for reforecasts:
between ideal and practical

 Reanalyses: why redoing them is an important part
of reforecast process.

— Forecast skill improving partly due to better initial conditions.
Reforecasts will leverage that.

— Different biases in different analysis systems, especially
near the surface. Reforecasts with old reanalysis initial
conditions thus start with biased initial conditions relative to
real-time forecasts.

— Reforecasts may be the way of highlighting reanalysis
importance - doing reanls improves sKill

 Large ensemble of reforecasts necessary? ”o



Forecasts based on new Vvs.
old analysis systems

NH 120-h Height Anomaly Correlation
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Biases In reanalyses

» Especially near the surface, reanalyses can
have substantial bias, reflecting bias of
forecast model.

— — Analysis systems don’t use much near-surface
data, so much information from 1st guess.

— — Near-surface temperatures reflect specific
choice of boundary-layer, land-surface
parameterizations.

— — Should expect that near-surface temperature
forecasts from reanalyses will differ from those
from current analysis, especially for short-lead
forecasts, before equilibration.

24



G= 995, TMP 0.995
difference
in climatology,

Operational
(—>T62) - CDAS,
January 2004

180

Very large differences, due to land-
surface treatment and terrain
differences in models with different
resolutions. Both will be effects that
will have to be dealt with if CDAS
reanalyses are used with newer
version of NCEP GFS.

This may explain NCEP’s test
results showing better performance
using short training data set (since

your short training data set used
same analysis system as
operational)
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Would reanalyses be that difficult”

 NASA'’s doing MERRA, presumably saving QC’ed
obs, which is a large part of the effort. Can NCEP

use MERRA QC’ed obs for quick reanalysis?

-ﬂ http://gmao.gsfc.nasa.gov/research/merra/intro.php

Location

: [C|Google (€ Comeast 47 NOAA Locator (Public) [T] Boulder Laboratories Lib 43 PSDTechwiki

NASA Goddard Space Flight Center ) - i
Global Modeling and Assimilation Office earch

Google

O www @ Gmao

ABOUT GMAO

Owverview
Strategic Plans
GMAD Organization

GMAO LINKS

Personnel Directory
Job Opportunities
Current Events
Collaborations
Ancillary Data
Contact Us

Site Map

Intranet

Introduction to MERRA

Modern Era Retrospective-analysis for Research and Applications

The project time period will cover the modern era of remotely sensed data, from 1979 through
the present, and the special focus of the atmospheric assimilation will be the hydrological cycle.
Recent research has shown that assimilating remotely sensed rain rates improves not only
precipitation predictions, but also the outgoing long wave radiation of the planetary energy
budget, This yields improved short-term forecasts, including hurricane tracks and threat scores,
Previous long-term reanlyses of the Earth's climate had unacceptable levels of uncertainty in
precipitation and inter-annual wariahility. The improved diagnostics of the water cycle developed
by MAaSA's Global Modeling and Assimilation Office (GMAD), combined with the ever-advancing
art of large-scale computation, will enable MERR A& to produce data products which directly
address the variability and predictability of the hydrological cycle,

[ #]]
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Our strong recommendation

* Do reanalyses as companion to
reforecasts right from the start.

» Cannot assume that a reforecast
system without reanalysis will give you
large calibration benefits

— strongly encourage your own testing
(current GFS w. CDAS reanalyses) before

committing to specific plan.

27



Issue: How many members
are needed In reforecast?

|deally, reforecast ensemble is as large
as the real-time ensemble. But can we
develop calibration techniques that are
effective with fewer members?

28



Analog high-resolution precipitation forecast calibration technique

2—day forecast Analog 1
13 Sep 1988 IC Observed Precipitation

N\

Analog
P(Precip > 25 mm)

2—day forecast Analog 2
3 Oct 1984 IC Observed Precipitation

2—day forecast
27 Oct 2000 IC

Ana|o1g
P(Precip > 70 mm) Verifying Precipitation

\ . .
) g a,Teoy
o7
-» 2—day forecast Analog 3 -»>. 9, 2]
30 Sep 1998 IC Observed Precipitation K & L
nm ? ~
Analo

P(Precip >% mm)

K Ee=Co

G50

2—day forecast Analog 4 ->
20 Sep 1997 IC Observed Precipitation

(actually run with 10 to 75 analogs)




Precipitation forecasts:
how many members are needed?

Tiled Rank Analog Using Control

(a) 2.5 mm

0.6
Analog reforecast process
0.5F

5 repeated, as in prior cartoon.
04t But now rather than matching
0.3f ensemble-mean pattern, match
ozf\\/- today’s control forecast to past

Skill Score

Brier

control forecast.

Grey area measures degradation
relative to baseline using ensemble
mean.

Not much degradation in sKill, esp.
at short leads! (and you don’t even
have to run an ensemble to get a
probabilistic forecast).

er Skill Score

Bri
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CRPSS
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Statistical
correction of
control forecast
using control
reforecast is
nearly as skillful
at short leads,
less skillful at
longer leads.

(May not have fully
exploited value

of control reforecast,
however.)
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Moving toward operational
implementation at NCEP: issues

« Companion reanalysis possible? (we’ll keep harping on this...)

* |s NCDC ready for reforecast storage? Does NOMADS have
bandwidth to receive/transmit reforecasts?

« Will reforecast access from ESRL, MDL be simple and
convenient?

« Are all reforecasts, all levels guaranteed to be saved, or just
selected subsets? What subsets?

« Would NCEP like any ESRL library routines, e.g., for analog
calibration?

32



The bigger picture

 NOAA needs coordinated probabilistic
forecast program. What is the role of
reforecast-based ensemble products?

— Bias correction of NAEFS ensemble products?
[simple, NCEP can handle]

— Suite of multiple, statistically adjusted probabilistic
products pumped out to WFOs via NDGD?
[complex, cross-NOAA, need coordinated plan
involving NWS/OST, NCEP, MDL, ESRL, etc.].
Canada?

33



Conclusions

» Reforecasts will dramatically help NWS meet
NRC guidelines for calibrated, skillful
probabilistic forecast products.

* Reanalyses -- a necessary part of reforecast
procedure.

* And end-to-end procedure for widely
disseminating probabilistic products is a big
endeavor, and all parts of NOAA should
participate in a coordinated plan.
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Bias correction using forecast
and observed CDFs?

SJCI) Forecast/Observed (b) Forecast/Observed
recip CDF, CA coast Precip CDF, Sacramento (c) Implied Bias Correction
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T,n CRPSS, |

low and high

climatological
spread
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Note the spread is often
larger than the bias,
especially for long leads.
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Skill Score (CRPSS)

Continuous Ranked Probabilit

Effects of short/long training, T850

CRPSS for 850 hPa Temperature
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This was a quick-and-dirty study using T850 data over
CONUS, NCEP-NCAR reanal. for verification. Not as much
benefit from many years of data as seen with Tsfc.



