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General problem

 Ensemble forecast skill degraded by
deficiencies in initialization method,
model error; generally can’t estimate
pdf directly from ensemble very well.

 Calibration: want pdf for observed |
forecast.

* General strategy: Use past (f,0) pairs to
train how to adjust current forecast.



Bayes Rule

“posterior” “Iikelirlood” “prlor”
J-f(x‘w)g(w) dw

x iIs forecast, w is observed.

Would like to leverage large information content
in g(w) that commonly will be available, even if
few (w,x) pairs available for training.
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ABSTRACT

The Bayesian processor of forecast (BPF) is developed for a continuous predictand. Its purpose is to
process a deterministic forecast (a point estimate of the predictand) into a probabilistic forecast (a distri-
bution function, a density function, and a quantile function). The quantification of uncertainty is accom-
plished via Bayes theorem by extracting and fusing two kinds of information from two different sources: (i)
a long sample of the predictand from the National Climatic Data Center, and (ii) a short sample of the
official National Weather Service forecast from the National Digital Forecast Database. The official fore-
cast is deterministic and hence deficient: it contains no information about uncertainty. The BPF remedies
this deficiency by outputting the complete and well-calibrated characterization of uncertainty needed by
decision makers and information providers. The BPF comes furnished with (i) the meta-Gaussian model,
which fits meteorological data well as it allows all forms of marginal distribution functions, and nonlinear
and heteroscedastic dependence structures, and (ii) the statistical procedures for estimation of parameters
from asymmetric samples and for coping with nonstationarities in the predictand and the forecast due to the
annual cycle and the lead time. A comprehensive illustration of the BPF is reported for forecasts of the daily
maximum temperature issued with lead times of 1, 4, and 7 days for three stations in two seasons (cool and
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warm).

1. Introduction

a. The uncertainty quantification problem

The National Digital Forecast Database (NDFD)
was designed by the National Weather Service (NWS)
to store the official forecasts of the sensible weather
elements produced by the NWS field offices throughout
the United States (Glahn and Ruth 2003). The official
forecasts are subjective in that they are made judgmen-
tally by human forecasters with the support of software
systems and are based on information from multiple
sources, including output from numerical weather pre-
diction models and guidance from the national centers.
With the exception of the occurrence of precipitation,
which is forecasted in terms of probability, all other
weather elements are forecasted deterministically.
Hence the deficiency of the NDFD: it contains no in-
formation about forecast uncertainty (Ryan 2003).

To remedy this deficiency, the Meteorological De-

velopment Laboratory of the NWS began developing
statistical techniques for assessing the uncertainty in
forecasts disseminated through the NDFD (Peroutka et
al. 2005). This article presents a solution to the same
problem, but via a different technique and in a different
format.

b. Bayesian processor of forecast

The Bayesian processor of forecast (BPF) for the
NDFD is a specialized application of the Bayesian
theory of probabilistic forecasting formulated and
tested in various settings over the past two decades
(e.g., Krzysztofowicz 1983; Alexandridis and Krzyszto-
fowicz 1985; Krzysztofowicz and Watada 1986; Krzysz-
tofowicz and Reese 1991; Krzysztofowicz 1999; Krzysz-
tofowicz and Kelly 2000b).

The BPF developed and illustrated herein quantifies
the uncertainty in a deterministic forecast of the daily
maximum temperature—one of the predictands se-

Recent WAF Apr. 2008
paper proposing a new
calibration method,
“‘BPF,” or “Bayesian
Processor of Forecasts.”
Hypothesis is that it may
be appealing for
calibration because it may
leverage long-term
climatological information,
lessening the need for
long training data sets.

Actively being tested
at NCEP/EMC and
ESRL/PSD, focus on
precipitation.



Starting from basics

« Working front to back through Krzysztofowicz
& Evans WAF article, it's pretty dense and
tough at first to see the forest for the trees.
Lots of transformation of variables.

 After careful reading, the essence of the
technique, once data is transformed to be
Gaussian, is thankfully rather simple. Let's
review this first.



Key simplifying assumption 1:
products of prior & likelihood functions are easy
to evaluate when distributions are Gaussian

+ Let f(x|w)~N(u,.0),andlet g(w)~nN(u,.0;) .
Then :
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Somewhat more realistic assumptions

» Let f(x|w) ~ N(axw+bx,aﬁ) (i.e., regress sample x on w).
Let g(w)~N(u,.0.). Then

WX )= f(X|W)g(W) ayes nute
¢( | ) jf(x|w)g(w)dw (Bayes Rule)

(b(w|x) = N(Ax + B, Si) where

2 2 2 .2
A — axGw B u x a bx S2 _ O-xGw
2+ 2 27 2+ 2 ? X +
0. +a.o. 0. +a.0, o.+ao’

This from Krzysztofowicz 1987 JASA, employs theory of conjugate family of distributions
(see also Degroot 1970 therein). These equations are basically eq (24) from K.&Evans,
MWR, 2008, but there g(w) is standard normal with mean 0.0 and variance 1.0. 7



Probability Density
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Probability Density
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Probability Density
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Probability Density
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Probability Density
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Probability Density
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Prior, Likelihood, & Posterior

Observed Temperature

Forecast Temperature

posterior obtained
by application of
Bayes’ rule;
product
multiplication and
normalization of
prior & likelihood,
or equivalently,
application of
equations on
slide ©.
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Essence of how it works in
Krzysztofowicz & Evans

Determine a parametric best fit distribution (Weibull) to
climatology, and a mapping from Weibull to standard normal
distribution.
Get smaller training data set of obs & forecast (w,x).

— Transform w with previously determined Weibull for climatology

— Determine a new, separate parametric best fit distribution for x;
map x to standard normal.

— Perform regression analysis to predict x|w in standard normal
space.

Given today’s forecast x, determine likelihood function,
(conditional distribution of standard normalized x|w) and apply
Bayes rule to predict posterior distribution in standard normal
space.

Remap this distribution back to its original coordinates.
14



In equations

Z 1s random variable representing transformed forecast X.
V' 1s random variable representing transformed obs .
Vv 1s specific quantity of V.

E(Z\V = v) =av+b regression of transformed
. X to determine a, b, 62
Var(Z|V =v)= o " | ?

a
- a’ + o2 maps cumulative probability to

_ab standard normal deviate

B —
a’+o’ _
) maps forecast value x to cumulative

T? = o probability of non-exceedance using

a’+o° distribution fitted from training data .

o(w)=0( X0 (60)- 40" (K(x) 5]

maps observed w to cumulative probability of non exceedance using
distribution fitted from long-term climatological training data .

maps standard normal deviate to cumulative probability. 15



Before testing with real data...

 Let's verify that it works well for
synthetic data

— Everything is already standard normal, so
we strip the remapping of distributions from
the problem.

— Can test against known standard, like
linear regression algorithm used in MOS.

16



Test case setup:
~N(0,1), no autocorrelation

Climatology estimated from 10,000 Jid
samples drawn from ~N(0,1)

Forecast, observed drawn from ~N(0,1);
autocorrelation=0.0; Test correlations of
forecast and observed from 0.25 to 0.99.
Test sample sizes of 5,10, 30, 60, 120, 240,
480, and 960.

Replicate process 40,000 times, calculate
Continuous Ranked Probability Skill Score
(CRPSYS) in standard manner.

17



Correlation (F&O)

Results: ~N(0,1), no autocorrelation

CRPSS

(a) Bayesian Processmg of Forecasts
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(c) BPF — Linear Regression
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Only for small samples sizes (<30) and low forecast skill

(measured in correlation of forecast and observed) is there
much difference in skKill.

Then BPF the winner.
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Test case setup:
~N(0,1), 0.5 lag-1 autocorrelation

» Climatology estimated from 10,000 iid samples drawn
from ~N(0,1), autocorrelation = 0.5 (typical of surface
temperature data)’

xt+1 B :u = O.S(Xt o ‘U)-l' gt+l’ 8t+1 ~ N(O’l)

» Forecast, observed drawn from ~N(0,1);
autocorrelation = 0.5; Test correlations of forecast
and observed from 0.25 to 0.99. Test sample sizes
of 5,10, 30, 60, 120, 240.

* Replicate process 40,000 times, calculate CRPSS in
standard manner.

19



Results: ~N(0,1), 0.5 autocorrelation

CRPSS CRPSS CRPSS

(a) BPF, Autocorrelation=0.5 (b) Linear Regression (c) BPF — Linear Regression
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smaller skill
here than previously
Qualitatively, not much difference relative to 0.0 autocorrelation,
though skill at smallest sample size and lowest correlations
is somewhat smaller, as expected. BPF still outperforms linear
regression at low (F,O) correlation, small sample size. Sample 20

size of ~60 adequate, little improvement from more samples.



BPF CRPSS, finite-infinite
sample size

* Here, the skill of (¢) BPF — BPF(e Training Sample)
L - 10T =g T T
a finite sample is BN !
subtracted from VWY
. 8+ ) .
the skill of an g
effectively infinite = [0
sample. Sosp 0 -
e Lo 83
By ~50 samples, s [i8) &
most of the Toar A ‘
benefit of infinite \\ | ‘\|\ \ \\ \\ _
sample achieved. " S oo

Sample Size
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Comments / questions / issues

« BPF technique may not be as easily extended to multiple predictors
as linear regression. Has conjugate family math been worked out for
multiple predictors as with single predictor?

¢(w|x1,x2) = f(xl,xz |w)g(w) (Bayes Rule)

- Jf(xl,xz |w)g(w)dw
qb(w|x1 ,xz) = N(Alx1 + A)x, + B, Si) where

A=? A=? B=? s =2

X

— If multiple linear regression better than linear regression, relative
improvement of BPF over regression techniques may be exaggerated.

« Similarly, what about BPF using ensembles of forecasts?

« Experimental setup did not include state-dependent bias, which is
common. Such bias may increase required sample size.

« Haven't included any of the mechanics of K/E paper for dealing with

non-normal distributions. -



On to real surface
temperature data...

* Recently published an article with Renate Hagedorn

on temp, precip reforecast skill with GFS/ECMWF
reforecast data sets.

* Conclusion: for 2-meter temperature, short training
data set adequate. Used “non-homogeneous
Gaussian regression.” (NGR)

* More skill yet to be obtained if BPF used instead of
NGR?

23



Observation locations
for temperature calibration

Station Locations

Produce probabilistic
forecasts at stations.

Use stations from
NCAR's DS472.0
database that have
more than 96%

of the yearly records
available, and overlap
with the domain that
ECMWEF sent us.

24



Forecast data used

« Fall 2005 GFS 2-meter ensemble forecast
temperature data from reforecast data set.

» Forecasts computed 1 Sep - 1 Dec.; examine
leads of 1/2 day to 10 days.

* Training data sets:
— Prior 30 days of (w,x); don’t evaluate if < 20
available.

— Reforecasts: 1982-2001 = 26 years*31
samples/year (+/- 15 days) of (w,x). Don’t
evaluate < 75% of reforecast (w,x) available

25



Calibration procedure 1: “NGR”

“Non-homogeneous Gaussian Regression”

* Reference: Gneiting et al., MWR, 133, p. 1098. Shown in Wilks and Hamill
(MWR, 135, p 2379) to be best of common calibration methods for surface
temperature using reforecasts.

* Predictors: ensemble mean and ensemble spread
* Output: mean, spread of calibrated normal distribution

" (X,0)~N(a+bx,c+do)

« Advantage: leverages possible spread/skill relationship appropriately. Large
spread/skill relationship, c= 0.0, d =1.0. Small, d = 0.0

« Disadvantage: iterative method, slow...no reason to bother (relative to using
simple linear regression) if there’s little or no spread-skill relationship.

 Another disadvantage: doesn’t leverage long-term climatology like BPF?

26



Calibration procedure 2:
“Bias correction”

» Calculate bias B from training data set;
for n days of samples, simply

B= li(fi _Wi)

n,_

* Subtract B from today’s ensemble
forecast

27



Problems with applying BPF
using fitted Weibull / GEV?

fitted prior has zero probability
beyond this value, while 1-2 % of
observed beyond this.

« BPF as proposed in K/E ‘08 paper fits a
Weibull distribution to the prior and
likelihood distributions, transforms them
to a Gaussian.

* Need good parametric models for priors,
likelihood. Weibull distribution (and
related GEV) have “bounded support”
and fits a distribution that has zero
probability in tails.

« If prior has zero probability for a given
temperature, posterior will have zero
probability as well. In other words, lousy
forecasts of extreme events likely.

*  Other choices besides Weibull?

Note: GEV distribution fit with L-moments software from IBM web site.

Cumulate Probability

v

Generalized Extreme Value Fitted Distribution, Sep
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Example: screwy posterior when
prior has bounded support

Example: Bayes with Bounded Support for Prior
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Instead of Welibull/GEV, how about fitting
distributions of power transformed
variables, like X, = X 4" ?

Power Transformation & Standardization

0.30pF — "~~~ "~ - T .
> 0.25 Sgi%inol =
= : ]
& 0.20 =
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= 0.15F E
'8 0.10 - Transformed and .
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ooob . . .~ . 7 . . .

-4 -2 0 2 4 6 8 10
Temperature (°C) & Transformed Temperature

slightly less heavy right tall
30

see Wilks text, section 3.4.1 for more on power transformations.



Power transformations have trouble
with negative data, e.g., (-1)0°

« Use new power transformation proposed by Yeo and

Johnson, 2000, Biometrika, 87, pp. 954-959. For
variable x and possible exponent A, the transformed

variable yis

Tt -1} /2 (x>0,1%0)
_<10g(x+1) (x>0,4=0)
w(A,x)= _{(l_x)z_z_l}/(z_,l) (x<0,A#2)
~log(x+1) (x<0.4=2)

31



Proposed method of using power
transformations to convert
distribution to standard normal

For a given sample of data (e.g., time series of observed temperature) :

(1)
(2)
(3)

Determine sample mean and standard deviation

Normalize data, subtracting mean and dividing by standard deviation

Loop over a set of possible exponents for power transformations

between 0.25 and 3.0

(a) Perform the power transformation of Yeo and Johnson (previous page)

(b) Determine sample mean and standard deviation

(c) Normalize data again, subtracting mean and dividing by standard
deviation

(d) Compare CDF of transformed against standard normal CDF, and keep
track of the fit for this exponent.

Choose and use the exponent of the power transformation that gave

a best fit. Note: (save 5 parameters: (1) original sample mean, (2)

original sample standard deviation, (2) exponent of power

transformation (4) transformed sample mean, and (5) transformed

sample standard deviation. With these 5 parameters, can map from

original coordinates to standard normal.
32



Results, 30-day training data

GFS CRPSS of Surface Temp, 20035

1.0[ i

i e — —+ 30-day NGR ]

0.8 - o eeann. e 30—day Bias—Corr _

i e— o Raw ]

0.6 e — — o 30—day BPF —

W 0.4 - _
n - ]
& — -
o - i
© 0.2 — -
0.0 - .
—0.2| -
-0.4 L ]

Forecast Lead (Days)



Results, reforecast training data

GFS CRPSS of Surface Temp, 20035
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Note: skills are somewhat higher than in MWR papers; there | mistakenly used 2005 data in the computation of the
climatology, so the climatological reference CRPS is too small.



Questions

 Why isn’t BPF better than NGR at all leads,
as suggested from synthetic data results?

 Why is BPF, which a priori ought to be at
greatest advantage with small training data
sets, comparatively worse with the 30-day
training data set relative to multi-decadal
reforecast training data set?

* Are there adjustments to the BPF algorithm
that can improve it?

35



Pathological example:
Omaha, NE, October 24, 2005

Omaha Temperature, Prior & Posterior
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These busts are not frequent, but when they happen,
they can make an unbelievably bad forecast.



Cumulate Probability

Is the prior somehow screwy? No.
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Start with fitting normal distribution
to power-transformed climatological
data. Steps:

(1) Normalize data, subtracting
mean, dividing by standard
deviation.

(2) Test variety of power
transformations, choose the one
that provides the best fit to standard
Gaussian after power
transformation and second
normalization.

Reasonable fit with exponent
of 1.6 37



Anything obviously wrong with
the training data for likelihood?

(a) 30 dcy Trommg Data + Today

SepTTTTTT 7 mean F=297.3
310 .
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Cumulate Probability

Is the remapping of power-transformed
variables a source of error?

Omaha T, Climatology,
Power Transformed Gaussian for Julian Day 298
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Recall that best power transformation to apply
to observed to make ~normal was to raise to
power of 1.6

For the forecast training data, a
power transformation of 9-2° selected
automatically to pull in these outliers.
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After power transformations
and standardization

(a) 30—day Training Data + Today (b) Transformed Training Data
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notice strong warping of data; whereas today’s forecast data consistent
before transformations to standard normal, inconsistent after.



Forecast (K)
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Plotting power-transformed
regression on the original data
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regression of
forecast on
observed,
remapped.

today’s
forecast

The warping from applying a
different power transformation to
the forecast relative to the
observed (from climatological
data) made today’s forecast/
observation, which were outliers
but relatively consistent before
the transformation, into a -6o
forecast outlier.

Possible lessons:

(1) Dangers of fitting non-normal
distributions with small training data set.
(2) Dangers of fitting different
distribution of forecast relative to
observed.

(Though illustrated with power-
transformed normals, no reason
to suspect that Weibull would be

qualitatively any better). 21



Probability Density
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perhaps not ideal, but non-pathological now. 42



Power of Forecast Transformation

How often does the climatology and forecast
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apply different power transformations?

What are the errors?

Average CRPS of BPF
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Colors indicate the magnitude

of average forecast error when

a given observed/forecast power
transformation pair is used.

Black box size indicates the
fraction of samples for this
transformation pair.

Notes:

(1) Different obs / forecast power
transformations are common.

(2) Forecast transformations that
are very large/small are common

(due to small training sample size?)
(3) Errors larger when obs transform
different from forecast transform.
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CRPSS

Results, 30-day training data,
different observed / forecast transforms

GFS CRPSS of Surface Temp, 20035
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CRPSS
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Results, 30-day training data,
same observed / forecast transforms

GFS CRPSS of Surface

Temp, 20035
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some
improvement,
but still not
competitive
with NGR.
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Other sources of error in BPF:
non-stationary climatology?

September-November 2005 Statewide Ranks

National Climatic Data Center/NESDIS/NOAA
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Source: http://www.ncdc.noaa.gov/oa/climate/research/2005/ann/us-summary.htmi

Mormal

Fall 2005 was exceptionally
warm, so BPF, modifying

a climatological prior

from previous colder years
(1980-2004), may have
consistently underforecast
the temperatures.

Perhaps climatological prior

should include some
linear trend?
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Incorporating changing
climate into prior

« Use 1980-2004 temperature trend from
regression analysis to change sample
values to make them more appropriate

for 2005.
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CRPSS

Results, 30-day training data,

same observed / forecast transforms,
no bias correction of climate samples
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CRPSS

Results, 30-day training data,

same observed / forecast transforms,
bias correction of climate samples
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GFS CRPSS of Surface

Temp, 20035

IIIIIII

30—day NGR
30—day Bias—Corr
Raw

30—day BPF

IIIIlllllllllllllllllllllll

Forecast Lead (Days)

Slight improvement
relative to no bias
correction of
climatology.

Other skill scores
shift, too, since

they’re calculated
relative to slightly

changed climatology.
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(a) Avero%e Quantile of 1 Sep
ative fo 1980—-2004 Adjusted Climatology

Obs Re

Average quantile of 2005 fall
observations relative to
bias-corrected climatology

— 1 Dec 2005 00 UTC

(b) Avero%e Quantile of 1 Sep

— 1 Dec 2005 12 UTC
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In much of the country, the fall 2005 observed was warmer

yet than even the bias-corrected climatology.




Average temperature difference of
2005 fall observations relative to

bias-corrected climatology

a) Avg. Temperature Diff., 1 Sep — 1 Dec 2005 00 UTC
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In much of the country, the fall 2005 observed was warmer
yet than even the bias-corrected climatology.
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