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General problem

• Ensemble forecast skill degraded by
deficiencies in initialization method,
model error; generally can’t estimate
pdf directly from ensemble very well.

• Calibration: want pdf for observed |
forecast.

• General strategy: Use past (f,o) pairs to
train how to adjust current forecast.
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Bayes Rule

x is forecast, w is observed.

Would like to leverage large information content
in g(w) that commonly will be available, even if
few (w,x) pairs available for training.

! w x( ) =
f x w( )g w( )

f x w( )g w( )" dw

“posterior” “prior”“likelihood”
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Recent WAF Apr. 2008
paper proposing a new 
calibration method, 
“BPF,” or “Bayesian 
Processor of Forecasts.”  
Hypothesis is that it may 
be appealing for 
calibration because it may 
leverage long-term 
climatological information, 
lessening the need for 
long training data sets.

Actively being tested
at NCEP/EMC and
ESRL/PSD, focus on 
precipitation.
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Starting from basics

• Working front to back through Krzysztofowicz
& Evans WAF article, it’s pretty dense and
tough at first to see the forest for the trees.
Lots of transformation of variables.

• After careful reading, the essence of the
technique, once data is transformed to be
Gaussian, is thankfully rather simple.  Let’s
review this first.
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Key simplifying assumption 1:
products of prior & likelihood functions are easy

to evaluate when distributions are Gaussian

• Let                               , and let                             .
Then

f x w( )g w( ) ~ N µa
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- Normality of posterior
preserved.
- Parameters of posterior
are simple functions of
prior, likelihood
parameters

f x w( ) ~ N µa ,! a

2( ) g w( ) ~ N µb ,! b
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Somewhat more realistic assumptions

• Let                                            (i.e., regress sample x on w).
Let                              Then

! w x( ) =
f x w( )g w( )

f x w( )g w( )" dw
(Bayes Rule)

! w x( ) = N Ax + B, sx
2( ) where
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f x w( ) ~ N axw + bx ,! x

2( )
g w( ) ~ N µ

w
,!

w

2( ).

This from Krzysztofowicz 1987 JASA, employs theory of conjugate family of distributions 
(see also Degroot 1970 therein).  These equations are basically eq (24) from K.&Evans, 
MWR, 2008, but there g(w) is standard normal with mean 0.0 and variance 1.0.
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Example

prior distribution
estimated from
observed 
climatology
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Example

recent sample
of observed 
(w; abscissa)
and forecast
(x; ordinate) 
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Example

linear 
regression 
relationship
f(x|w) with
1- and 2-σ
confidence
intervals
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Example

now suppose
today’s forecast
is + 20C
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Example

estimate the
likelihood 
function based
on regression
relationship
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Example

posterior obtained
by application of
Bayes’ rule;
product 
multiplication and
normalization of
prior & likelihood,
or equivalently,
application of
equations on 
slide 6.
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Essence of how it works in
Krzysztofowicz & Evans

• Determine a parametric best fit distribution (Weibull) to
climatology, and a mapping from Weibull to standard normal
distribution.

• Get smaller training data set of obs & forecast (w,x).
– Transform w with previously determined Weibull for climatology
– Determine a new, separate parametric best fit distribution for x;

map x to standard normal.
– Perform regression analysis to predict x|w in standard normal

space.
• Given today’s forecast x, determine likelihood function,

(conditional distribution of standard normalized x|w) and apply
Bayes rule to predict posterior distribution in standard normal
space.

• Remap this distribution back to its original coordinates.
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In equations

E Z V = !( ) = a! + b

Var Z V = !( ) = " 2
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Z is random variable representing transformed forecast X.
V is random variable representing transformed obs W.
ν is specific quantity of V.

regression of transformed
w, x to determine a, b, σ2

maps forecast value x to cumulative
probability of non-exceedance using 
          distribution fitted from training data .

maps cumulative probability to
standard normal deviate

maps observed w to cumulative probability of non exceedance using
distribution fitted from long-term climatological training data .

maps standard normal deviate to cumulative probability.
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Before testing with real data…

• Let’s verify that it works well for
synthetic data
– Everything is already standard normal, so

we strip the remapping of distributions from
the problem.

– Can test against known standard, like
linear regression algorithm used in MOS.
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Test case setup:
 ~N(0,1), no autocorrelation

• Climatology estimated from 10,000 iid
samples drawn from ~N(0,1)

• Forecast, observed drawn from ~N(0,1);
autocorrelation=0.0; Test correlations of
forecast and observed from 0.25 to 0.99.
Test sample sizes of 5,10, 30, 60, 120, 240,
480, and 960.

• Replicate process 40,000 times, calculate
Continuous Ranked Probability Skill Score
(CRPSS) in standard manner.
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Results: ~N(0,1), no autocorrelation

CRPSS CRPSS CRPSS

Only for small samples sizes (<30) and low forecast skill
(measured in correlation of forecast and observed) is there
much difference in skill.  Then BPF the winner.
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Test case setup:
 ~N(0,1), 0.5 lag-1 autocorrelation

• Climatology estimated from 10,000 iid samples drawn
from ~N(0,1), autocorrelation = 0.5 (typical of surface
temperature data)1

• Forecast, observed drawn from ~N(0,1);
autocorrelation = 0.5; Test correlations of forecast
and observed from 0.25 to 0.99.  Test sample sizes
of 5,10, 30, 60, 120, 240.

• Replicate process 40,000 times, calculate CRPSS in
standard manner.

x
t+1 ! µ = 0.5 x

t
! µ( ) + "t+1, "

t+1 ~ N(0,1)
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Results: ~N(0,1), 0.5 autocorrelation

Qualitatively, not much difference relative to 0.0 autocorrelation,
though skill at smallest sample size and lowest correlations
is somewhat smaller, as expected. BPF still outperforms linear
regression at low (F,O) correlation, small sample size. Sample
size of ~60 adequate, little improvement from more samples.

CRPSS CRPSS CRPSS

smaller skill
here than previously
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BPF CRPSS, finite-infinite
sample size

• Here, the skill of
a finite sample is
subtracted from
the skill of an
effectively infinite
sample.

• By ~50 samples,
most of the
benefit of infinite
sample achieved.



22

Comments / questions / issues
• BPF technique may not be as easily extended to multiple predictors

as linear regression.  Has conjugate family math been worked out for
multiple predictors as with single predictor?

– If multiple linear regression better than linear regression, relative
improvement of BPF over regression techniques may be exaggerated.

• Similarly, what about BPF using ensembles of forecasts?
• Experimental setup did not include state-dependent bias, which is

common.  Such bias may increase required sample size.
• Haven’t included any of the mechanics of K/E paper for dealing with

non-normal distributions.
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On to real surface
temperature data…

• Recently published an article with Renate Hagedorn
on temp, precip reforecast skill with GFS/ECMWF
reforecast data sets.

• Conclusion: for 2-meter temperature, short training
data set adequate. Used “non-homogeneous
Gaussian regression.” (NGR)

• More skill yet to be obtained if BPF used instead of
NGR?
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Observation locations
for temperature calibration

Produce probabilistic
forecasts at stations.

Use stations from
NCAR’s DS472.0
database that have
more than 96%
of the yearly records
available, and overlap
with the domain that
ECMWF sent us.
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Forecast data used
• Fall 2005 GFS 2-meter ensemble forecast

temperature data from reforecast data set.
• Forecasts computed 1 Sep - 1 Dec.; examine

leads of 1/2 day to 10 days.
• Training data sets:

– Prior 30 days of (w,x); don’t evaluate if < 20
available.

– Reforecasts: 1982-2001 = 26 years*31
samples/year (+/- 15 days) of (w,x).  Don’t
evaluate < 75% of reforecast (w,x) available
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Calibration procedure 1: “NGR”
“Non-homogeneous Gaussian Regression”

• Reference: Gneiting et al., MWR, 133, p. 1098.  Shown in Wilks and Hamill
(MWR, 135, p 2379) to be best of common calibration methods for surface
temperature using reforecasts.

• Predictors: ensemble mean and ensemble spread
• Output: mean, spread of calibrated normal distribution

• Advantage: leverages possible spread/skill relationship appropriately. Large
spread/skill relationship, c ≈ 0.0, d ≈1.0.  Small, d ≈ 0.0

• Disadvantage: iterative method, slow…no reason to bother (relative to using
simple linear regression) if there’s little or no spread-skill relationship.

• Another disadvantage: doesn’t leverage long-term climatology like BPF?

f
CAL

x, !( ) ~ N a + bx, c + d!( )
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Calibration procedure 2:
“Bias correction”

• Calculate bias B from training data set;
for n days of samples, simply

• Subtract B from today’s ensemble
forecast

B =
1

n
x
i
! w

i( )
i=1

n

"
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Problems with applying BPF
using fitted Weibull / GEV?

• BPF as proposed in K/E ‘08 paper fits a
Weibull distribution to the prior and
likelihood distributions, transforms them
to a Gaussian.

• Need good parametric models for priors,
likelihood.  Weibull distribution (and
related GEV) have “bounded support”
and fits a distribution that has zero
probability in tails.

• If prior has zero probability for a given
temperature, posterior will have zero
probability as well. In other words, lousy
forecasts of extreme events likely.

• Other choices besides Weibull?

fitted prior has zero probability
beyond this value, while 1-2 % of
observed beyond this.

Note: GEV distribution fit with L-moments software from IBM web site.

horizontal lines:
distribution from
observed data

curve: fitted
GEV distribution
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Example: screwy posterior when
prior has bounded support
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Instead of Weibull/GEV, how about fitting
distributions of power transformed

variables, like xnew = xold
λ  ?

slightly less heavy right tail

see Wilks text, section 3.4.1 for more on power transformations.
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Power transformations have trouble
with negative data, e.g., (-1)0.5

• Use new power transformation proposed by Yeo and
Johnson, 2000, Biometrika, 87, pp. 954-959. For
variable x and possible exponent λ, the transformed
variable ψ is

! ", x( ) =

x +1( )
" #1{ } " x $ 0," % 0( )

log x +1( ) x $ 0," = 0( )

# 1# x( )
2#" #1{ } 2 # "( ) x < 0," % 2( )

# log x +1( ) x < 0," = 2( )
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Proposed method of using power
transformations to convert

distribution to standard normal
For a given sample of data (e.g., time series of observed temperature) :
(1) Determine sample mean and standard deviation
(2) Normalize data, subtracting mean and dividing by standard deviation
(3) Loop over a set of possible exponents for power transformations

between 0.25 and 3.0
(a) Perform the power transformation of Yeo and Johnson (previous page)
(b) Determine sample mean and standard deviation
(c) Normalize data again, subtracting mean and dividing by standard

deviation
(d) Compare CDF of transformed against standard normal CDF, and keep

track of the fit for this exponent.
(4) Choose and use the exponent of the power transformation that gave

a best fit. Note: (save 5 parameters: (1) original sample mean, (2)
original sample standard deviation, (2) exponent of power
transformation (4) transformed sample mean, and (5) transformed
sample standard deviation.  With these 5 parameters, can map from
original coordinates to standard normal.
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Results, 30-day training data
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Results, reforecast training data

Note: skills are somewhat higher than in MWR papers; there I mistakenly used 2005 data in the computation of the
climatology, so the climatological reference CRPS is too small.
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Questions

• Why isn’t BPF better than NGR at all leads,
as suggested from synthetic data results?

• Why is BPF, which a priori ought to be at
greatest advantage with small training data
sets, comparatively worse with the 30-day
training data set relative to multi-decadal
reforecast training data set?

• Are there adjustments to the BPF algorithm
that can improve it?
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Pathological example:
Omaha, NE, October 24, 2005

These busts are not frequent, but when they happen,
they can make an unbelievably bad forecast.
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Is the prior somehow screwy?  No.

1980-2004 observations, 41 days
centered on date of interest
(+ / - 20 days)

Start with fitting normal distribution
to power-transformed climatological
data.  Steps:
(1) Normalize data, subtracting
mean, dividing by standard
deviation.
(2) Test variety of power
transformations, choose the one
that provides the best fit to standard
Gaussian after power
transformation and second
normalization.

Reasonable fit with exponent
of 1.6
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Anything obviously wrong with
the training data for likelihood?

mean F = 297.3

mean O = 295.4

~2-degree warm
bias in forecast.

Today’s F
outside range of
training data, 
though. 

This day’s (O,F)

training 
sample
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Recall that best power transformation to apply
to observed to make ~normal was to raise to
power of 1.6

For the forecast training data, a
power transformation of 0.25 selected
automatically to pull in these outliers.

Is the remapping of power-transformed
variables a source of error?
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After power transformations
and standardization

+1σ
+2σ

-1σ
-2σ

notice strong warping of data; whereas today’s forecast data consistent
before transformations to standard normal, inconsistent after.



41

Plotting power-transformed
regression on the original data

The warping from applying a 
different power transformation to 
the forecast relative to the
observed (from climatological
data) made today’s forecast/
observation, which were outliers
but relatively consistent before
the transformation, into a -6σ 
forecast outlier.

Possible lessons:
(1) Dangers of fitting non-normal
distributions with small training data set.
(2) Dangers of fitting different
distribution of forecast relative to 
observed.

(Though illustrated with power-
transformed normals, no reason
to suspect that Weibull would be
qualitatively any better).

+2σ

+4σ

+6σ

-2σ
-4σ

-6σ -8σ today’s
forecast

Prior

Posterior

Likelihood

regression of
forecast on 
observed,
remapped.
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What if we enforce the
same 1.6 power transformation on

forecast as was used on observed?

perhaps not ideal, but non-pathological now.

-1σ

-2σ

+1σ

+2σ
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How often does the climatology and forecast
apply different power transformations?

What are the errors?
Colors indicate the magnitude
of average forecast error when
a given observed/forecast power
transformation pair is used.

Black box size indicates the
fraction of samples for this
transformation pair.

Notes:
(1) Different obs / forecast power
transformations are common.
(2) Forecast transformations that
are very large/small are common
(due to small training sample size?)
(3) Errors larger when obs transform
different from forecast transform.
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Results, 30-day training data,
different observed / forecast transforms
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Results, 30-day training data,
same observed / forecast transforms

some
improvement,
but still not
competitive
with NGR.
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Other sources of error in BPF:
non-stationary climatology?

Fall 2005 was exceptionally
warm, so BPF, modifying
a climatological prior
from previous colder years
(1980-2004), may have 
consistently underforecast 
the temperatures.

Perhaps climatological prior
should include some
linear trend?

Source: http://www.ncdc.noaa.gov/oa/climate/research/2005/ann/us-summary.html
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Incorporating changing
climate into prior

• Use 1980-2004 temperature trend from
regression analysis to change sample
values to make them more appropriate
for 2005.
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Results, 30-day training data,
same observed / forecast transforms,
no bias correction of climate samples
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Results, 30-day training data,
same observed / forecast transforms,

 bias correction of climate samples

Slight improvement
relative to no bias 
correction of 
climatology.

Other skill scores 
shift, too, since
they’re calculated
relative to slightly
changed climatology.
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Average quantile of 2005 fall
observations relative to

bias-corrected climatology

In much of the country, the fall 2005 observed was warmer
yet than even the bias-corrected climatology.
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Average temperature difference of
2005 fall observations relative to

bias-corrected climatology

In much of the country, the fall 2005 observed was warmer
yet than even the bias-corrected climatology.
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