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ABSTRACT 

A novel approach for integrating active sensing data interrogation algorithms for structural health 

monitoring (SHM) applications is presented.  These algorithms cover Lamb wave propagation, 

impedance methods, and sensor diagnostics. Contrary to most active-sensing SHM techniques, 

which utilize only a single signal processing method for damage identification, a suite of signal 

processing algorithms are employed and grouped into one package to improve the damage 

detection capability. A MATLAB-based user interface, referred to as HOPS, was created, which 

allows the analyst to configure the data acquisition system and display the results from each 

damage identification algorithm for side-by-side comparison.  By grouping a suite of algorithms 

into one package, this study contributes to and enhances the visibility and interpretation of the 

active-sensing methods related to damage identification. This paper will discuss the detailed 

descriptions of the damage identification techniques employed in this software and outline future 

issues to realize the full potential of this software. 
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1. INTRODUCTION 

Structural health monitoring (SHM) is the process of measuring the dynamic response of a 

system and determining from these data the current state of the system’s “health” in near real 

time.  This process is typically carried out by comparing the dynamic response of an undamaged, 

baseline structure to that of the current, potentially damaged structure. The advantages of SHM 

include the possible detection of damage at its onset, before it has had a chance to propagate, 

thus reducing the potential for catastrophic failure (Farrar et al., 2001, Worden and Dulieu-

Barton 2004). These processes must be implemented through hardware or software and, in 

general, some combination of these two approaches will be used. To date, however, there have 

been a limited number of technology development efforts that have approached the SHM 

problem in an integrated manner.  Instead, most efforts have focused exclusively either on the 

sensing technology or the data interrogation algorithms. 

 

As the SHM field grows and matures, the SHM process must make the transition from research 

practice to real-world field applications. The authors have attempted to develop an integrated 

software solution for piezoelectric active-sensing SHM techniques in order to facilitate this 

transition.  This software is referred to as HOPS (Health of Plate Structures), which allows the 

analyst to configure a data acquisition system and display the results in a side-by-side 

comparison. The grouping of a suite of algorithms into a single package enhances the visibility 

and interpretation of the active-sensing methods related to damage identification in a structure. 

The algorithms used for signal processing were written as MATLAB functions and integrated 

using a MATLAB graphical user interface (GUI).  HOPS is designed to communicate directly 
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with SHM data acquisition systems. For the case where the hardware is not supported by HOPS, 

data can be imported using the included data import utility.  

 

Three main categories of structural health monitoring processes are utilized in HOPS.  The first 

process is for the diagnostics and validation of the active-sensors.  Sensor diagnostics is a critical 

step in the SHM process because it is important to identify if a change in readings is caused by a 

damaged sensor, or damage within the structure itself. The second SHM process involves the 

comparison of electro-mechanical impedance measurements.  The third process incorporates a 

set of damage identification techniques which make use of measurements from guided waves. 

More detailed descriptions of the damage identification techniques can be found in the next 

sections. 

 

2. HOPS SIGNAL PROCESSING ALGORITHMS 

Three main categories of structural health monitoring techniques are utilized in HOPS,  sensor 

diagnostics, impedance-based analysis, and guided wave base techniques.  The algorithms are 

written as MatLab functions and integrated by use of a MatLab GUI.  The system is designed to 

communicate automatically with the data acquisition system, integrating the software and 

hardware components of the SHM system.  Descriptions of the algorithms follow. 

 

Sensor Diagnostics 

A critical aspect of the piezoelectric active sensing technologies is that usually large numbers of 

distributed sensors and actuators are needed to perform the required SHM process.  In addition, 

the structures in question are usually subjected to various external loading and environmental 
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conditions that may adversely affect the functionality of SHM sensors and actuators. The 

piezoelectric sensor/actuator self-diagnostic procedure, where the sensors/actuators are 

confirmed to be operational, is therefore a critical component to successfully complete the SHM 

process.     

 

The principle of sensor self-diagnostics is to track the changes in the capacitive value of a 

piezoelectric (PZT) material, which shows up distinctly in the imaginary portion of the electrical 

admittance. This portion of the electrical admittance is a function of the geometry constants and 

the mechanical and electrical properties of a PZT transducer.  Thus, breaking of the sensor and 

the subsequent degradation of the sensor parameters can be identified by monitoring the 

imaginary portion of the electrical admittance.  It has been also found that the changes in 

bonding condition of a PZT transducer significantly affect the capacitive value of a PZT 

material, which allows one to obtain critical information on the functionality of the transducers. 

A more detailed description on the sensor diagnostic process can be found in the reference (Park 

et al. 2006a, 2006b).   

 

HOPS performs the sensor diagnostics in two different ways.  The first is to compare readings 

from each sensor with baseline readings from that sensor.  This process requires the storage of 

the initial baseline readings.  The second technique is to compare readings from every sensor to 

each other rather than a baseline.  This algorithm takes advantage of the observation that the 

removal of an unhealthy sensor will cause a greater decrease in the standard deviation of the 

group of sensors than with the removal of a healthy sensor (Overly et al. 2008a).  This second 
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technique eliminates the need for a pre-stored baseline, only requiring a single current set of 

readings from each sensor.  

 

Impedance-based SHM method 

Impedance based structural health monitoring methods use high-frequency structural excitations, 

typically higher than 30 kHz, through surface bonded piezoelectric patches to monitor changes in 

structural mechanical impedance.  The electrical impedance is a function of the mechanical 

impedances of the PZT actuator and the host structure.  Assuming that the mechanical 

impedance of the PZT patch does not change over time, any changes in the electrical impedance 

measurement can be considered an indication of a change in the mechanical impedance of the 

host structure.  A change in the mechanical impedance of the host structure is due to damage.  

The change in impedance due to damage is exhibited in the real portion of the impedance 

signature (Park et al., 2003, Giurgiuitiu et al. 2004, Bhalla et al. 2003, Park S. et al. 2007).  

 

Two simple statistical algorithms are adopted in HOPS for a quantitative assessment of damage 

using impedance methods. The first is to find the cross-correlation coefficient between the 

baseline and test signals.  The cross-correlation coefficient between the two data sets determines 

the linear relationship between the two signals.  The cross-correlation coefficient is subtracted 

from one yielding a damage index between 0 and 1, where larger values indicate a greater extent 

of damage.  The second method is based on a frequency-by-frequency comparison and is 

referred to as the root-mean-square-deviation (RMSD) and is defined as: 
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where M is the damage metric, Zi,1 is the impedance of the baseline measurement, and Zi,2 is the 

test measurement at frequency interval i.  The aforementioned cross-correlation coefficient and 

RMSD have been traditionally and mainly used in electro-mechanical impedance analysis for 

SHM (Park et al. 2003). 

     

This portion of HOPS is also equipped with a hardware control module. This control module is 

made to be available for both the impedance measurement and sensor diagnostic processes, 

which would allow for data to be acquired for sensor validation and SHM purposes. This module 

allows for the direct control of an Agilent 4294A impedance analyzer and wireless impedance 

device that was developed by the authors (Overly et al. 2008b). The acquisition module reduces 

the time required to measure multiple PZT transducers and eliminates the formatting issue 

associated with data coming from multiple sources.  

 

Guided Waves  

Since the 1960s, the ultrasonic research community has studied Lamb waves for the 

nondestructive evaluation of plate-like structures (Bourasseau et al 2000).  The advances in 

sensor and hardware technologies for efficient generation and detection of Lamb waves and the 

need to detect sub-surface damage in laminate composite structures has led to a significant 

increase in the use of Lamb waves for detecting defects in structures (Alleyne and Cawley 1992, 

Rose 1999, Kessler et al. 2002, Lee and Staszewski  2003, Giurgiuitiu et al. 2004, Ihn and Chang 

2004, Croxford et al. 2007). 
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Lamb waves are mechanical waves corresponding to vibration modes of plates with a thickness 

on the same order of magnitude as their wavelength.  Lamb waves couple longitudinal and shear 

waves of plane strain within a plate that propagate in a variety of modes that are either 

symmetric or antisymmetric.  To dates, several methods have been proposed to enhance the 

interpretation of the measured Lamb wave signals to detect and locate structural damage. They 

are based on changes in wave attenuations using wavelets (Kessler et al. 2002, Sohn et al. 2004), 

time-frequency analysis (Ihn and Chang 2004), wave reflections (Giurgiutiu et al. 2004, 

Diamanti et al. 2005), and time of flight information (Lemistre and Balageas, 2001).      

 

As stated, guided wave-based SHM methods can make use of many different features in an 

attempt to detect damage.  With this in mind, HOPS currently employs three different signal 

processing methods and includes framework to add additional methods.   A hardware control is 

also available for direct data acquisition and on-line damage detection.   

 

Wave Attenuation 

As Lamb waves propagate through a structure, the mechanical energy is usually dissipated due to 

internal damping in a structure, causing a decrease in the magnitude of the wave.  The amount of 

attenuation between two points on a structure changes when damage is located in the path 

between them.  By comparing the amplitude of the packets in a baseline measurement to those in 

a test measurement, conclusions can be made about the existence of damage between the 

actuator and sensor.  The attenuation feature can be used to identify the existence of damage, 

however a single sensor pair can make it difficult to determine the exact location of the damage.  
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Therefore, an array of PZT transducers with multiple paths is usually employed to determine 

damage location.  

 

To achieve an attenuation comparison between a baseline measurement and a test measurement, 

both signals are transformed using a wavelet transformation in HOPS.  Then, a damage index 

(DI) can be calculated based on a ratio of the kinetic energy of the test signal to that of the 

baseline, as in Equation 2.   
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In Equation 2, the t represents the test signal and b represents the baseline signal, u0 and u1 

represent the starting and ending time points for the signal.  The DI ranges from 0, no damage, to 

a maximum value of 1 as the attenuation increases.  A more detailed description of the technique 

can be found in Sohn et al. (2004). 

 

Once the damaged paths have been determined, they are plotted on a predefined grid.  The 

number of damaged paths intersecting at each grid point is divided by the number of undamaged 

paths intersecting at that point.  The result is then normalized over the entire grid.  The 

normalized values are plotted on a grid in the HOPS user interface to indicate the most likely 

locations of damage (Swartz et al. 2006). 

 

Power Spectral Density 
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A second method of feature extraction for the Lamb wave data involves the cross-correlation of 

the power spectral density functions between the baseline and test signals.  When a wave passes 

through damage, such as corrosion or a crack, the wave is scattered, referred to as mode 

conversion, causing a change in the frequency content of the signal. By looking at the degree of 

change of the frequency content, one can determine that a path contains structural damage.  After 

measuring the propagated wave, the power spectral density (PSD) is calculated for a band about 

the excitation frequency for the baseline and test signals.  As in the work by Swartz et al. (2006), 

the DI is based on the cross-correlation coefficients of the two PSDs, which identify the shape 

changes in PSD curves, and detect the frequency content distortion. For consistency with the 

other feature extraction methods, the cross-correlation coefficient is subtracted from one, so that 

the signals with the highest correlation (the lowest amount of damage) have a damage index very 

close to zero, while signals with low correlation (high amounts of damage) have a higher damage 

index. 

 

Triangulation of Reflected Waves 

When Lamb waves travel through damage, some of the waves can be reflected due to the 

presence of damage, creating new wave arrivals in the received signal.  The third method of 

feature extraction for Lamb waves uses the reflection features to locate the damage.  For this 

process in HOPS, a wavelet transform is first performed to denoise the measured signals.  Then, 

the arrival time for the first wave is calculated for each path to determine the wavespeed.  The 

baseline signal is then subtracted from the test signal, leaving only the reflections.  A Hilbert 

transform is then performed on the reflections signal to calculate the corresponding analytic 

signal, the magnitude of which is the signal’s envelope.  Peaks in the envelope pinpoint the 
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arrival times of the reflections.  Using the wavespeed, the distances traveled by the reflections 

are calculated.  With the travel distance of each reflection, an ellipse is drawn around the sensor 

pair indicating where the reflection could have originated. Crossing of ellipses from multiple 

sensor pairs reveals the damage location.  

 

3. HOPS SOFTWARE 

HOPS user graphical interface is created to merge the various SHM signal processing method 

described in the previous section, as shown in Figure 1. There are three main panels in HOPS: 

Setup, Current Data, and SHM.  

 

The Setup panel contains links to the geometry module that let the user configures the structural 

parameters and the sensor/actuator configuration, and the data import module that can transport 

data for being processed in HOPS. Current Data is a panel that allows for the manipulation of 

the currently loaded data. This manipulation of the data includes saving it to a new file, clearing 

it for other modules or loading a previously recorded data set.  

 

The final panel, SHM, includes three links to modules that do the brunt of the SHM analysis. The 

three main capabilities include the analysis of Lamb wave propagations, the analysis of 

impedance based measurements and the diagnosis of sensor condition. Hardware control 

functions are embedded in each module to collect live data as needed. The program is also 

designed in such a way that the measured data and the hardware parameters can be dynamically 

saved and loaded for future analyses.  Data and variables are passed between modules through 

the main function.  By integrating hardware and several signal processing algorithms into one 
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package, HOPS can be an efficient and integrated SHM tool for various applications, allowing 

the uses to select the most suitable algorithm for different forms of damage. 

 

4. EXPERIMENTAL SETUP AND PROCEDURE 

Experiments were performed to investigate the performance of HOPS.  The test structure was an 

aluminum plate instrumented with an array of piezoelectric transducers. The sensor diagnostics 

process was first carried out in order to assess the sensor installation condition.  Damage to the 

structure was introduced in the form of corrosion, which is the most typical type of damage in 

aluminum plates. Impedance and guided wave measurements were then taken before and after 

damage to assess the condition of the plate.  All the signal processing was performed using 

HOPS and only selected results are presented due to the space constraints of the paper.  

 

An aluminum plate used in this study had dimensions of 1219 mm square.  The plate was 

instrumented with nine PZT transducers, which were spaced at 304.8 mm to create a 3 by 3 array 

configuration.  One side of the plate had 6.25 mm diameter circular PZT transducers.   The PZT 

transducers were bonded to the plate using a quick-setting adhesive. The impedance and sensor 

diagnostic data were collected with an Agilent impedance analyzer.  The Lamb wave data are 

acquired using a commercial system capable of sampling up to 25 MHz. Damage was introduced 

in the form of corrosion.  A mixture of water and table salt, an aluminum cathode and a power 

supply are used to introduce corrosion.  Measurements are taken after each stage of the damaged 

conditions.  
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To perform the sensor diagnostics test, a frequency range of 1 - 20 kHz was used.  For the 

impedance test, the frequency range of interest was 185 kHz to 190 kHz.  This range contains 

several peaks and does not contain the natural frequency of the PZT transducer, so it is a useful 

range for obtaining information about the health of the plate structure.  Two different frequencies 

were used for the guided wave portion of the study, 80 and 250 kHz.  The driving frequencies for 

the various modes are dependent on the size of the PZT used and the structure monitored.  

Included in HOPS is a tool that creates the group and phase velocity of the plate and transfer 

functions of PZT transducers that helps to select the desired driving frequency.  This tool is 

embedded in the wave propagation module. Figure 2 shows the curves from the tool for a 1.59 

mm plate and 6.25 mm diameter transducers. 

 

5. DEMONSTRATION OF HOPS 

The experimental results illustrate the performance of HOPS. Each module and each signal 

processing techniques are utilized in order to provide the effectiveness of the software. 

 

Geometry and Data Import 

In HOPS, the Geometry module allows the user to define the size and the shape of the structure, 

sensor locations, the size of a grid to be used for locating damage, and the sensor paths that can 

be used for the Wave Propagations.  Data collected with programs other than HOPS can be 

imported using the Import Data module. The geometry and the automatically generated sensor 

paths defined for the test structure are shown in Figure 3.  

 

Sensor Diagnostics 
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Sensor diagnostics are then performed to confirm if all of the sensors are functioning properly 

and are all bonded to a similar level.  As is shown in Figure 4, there are several key features to 

this interface. The first is the ability to select any of the past measurements in the file for 

analysis. The Measurement panel is where the measurement is selected and allows for 

comparison over time. The second important feature is the ability to select the number of data 

points to be included. This selection is important to avoid possible structural resonances that 

could invalidate the algorithm. This parameter is set in the Analysis Information panel. Beyond 

these two user selectable parameters, the algorithm works as developed in Overly et al (2008a). 

 

The algorithm takes advantage of the characteristic that the removal of an unhealthy patch will 

cause a greater decrease in the standard deviation of the group of sensors than with the removal 

of a health sensor. The output of the proposed algorithm is a hybrid plot with the upper plot 

showing all of the admittance measurements with color coding corresponding to the lower plot.  

The lower plot shows the effect of the reducing the sample number with the x-axis showing 

which sensors are recommended for replacement. The lower plot also has a line delineating the 

healthy patches from the unhealthy ones.  When the algorithm was run on the plate, one sensor 

(sensors 1) on the Aluminum plate was recommended for replacement because of the poor 

bonding.    

 

The effects of the active-sensor defects on high frequency structural health monitoring 

techniques are found to be significant, modifying the magnitude and the shape of the propagated 

Lamb waves, and influencing the measured magnitude and resonances of the electro-mechanical 

impedance spectrum (Park et al. 2006b).  These changes could be registered as structural damage 
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unless an efficient sensor-diagnostic process is implemented in the practice.  As shown, with this 

sensor diagnostic module, HOPS is able to differentiate signal changes caused by damage from 

those due to sensor failures. 

 

Impedance analysis 

The impedance analysis was performed to detect structural damage.  Corrosion was introduced 

between sensor 1 and 2 with 30 mm diameter and 0.86 mm deep.  Only five sensors were used to 

measure the impedance, sensors 1, 3, 5, 7 and 9.  This procedure is taken as the impedance 

method is not able to pin-point the location of damage, rather this method only gives the 

estimated area of structural damage.  PZT sensors 1, 3, 5 were able to detect the presence of 

damage by showing damage index values in the range of 135-158 (RMSD) and 0.58-0.72 

(Correlation), while PZT sensors 7 and 9 showed in the range of 20-30 (RMSD) and 0.08-0.1 

(Correlation).  As shown in Figure 5, this module displays cross correlation and RMSD damage 

index, as well as the measurements taken for visual comparison. HOPS also changes the color of 

the graphical representation of the sensors to red (as shown in Figure 5) suggesting that the area 

close to these sensors might be damaged. The impedance analysis module has also the ability to 

select any of the past measurement in the file for the SHM analysis, and the user can set the 

threshold limit for sensor damage identification dynamically by looking at the statistics values in 

conjugation with the graph provided.  In such a way, misclassification (false-positive or false-

negative) can be reduced.  

 

HOPS is designed to store the measurement history into a database, so that one can track the 

variation of signatures usually caused by environmental or operational condition changes. By 
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doing so, the variation of SHM algorithms can be identified and the threshold level for damage 

identification can be established.  Both damage indices for sensors 1, 3 and 5 were well above 

the variation that was observed from temperature variations, while the variation in the damage 

indices for sensors 4 and 5 were within the normal variation.  By referring the history of 

signature variation in the past, the users can dynamically set the threshold limit to increases the 

ability to detect the presence of damage.  

 

Guided Wave Analysis  

In HOPS, the Wave Propagation Module displays the results of the various analysis techniques 

for a side-by-side comparison.  Figure 6 shows the Wave Propagation Module with data for the 

corrosion damage from the piezoelectric transducers.  The left side of the module will define the 

data acquisition parameters, such as a sampling frequency, excitation frequency, number of 

average, and number of data point taken.   The right side of the module displays the result of 

damage detection using different signal processing algorithms. 

 

The upper-left figures show the results using the wave attenuation feature. The attenuation of the 

fundamental symmetric mode is found to be sensitive to corrosion damage.  Sensor paths 

crossing the corrosion damage indices as large as 0.86.  The damage location algorithm 

successfully identifies the damaged paths in all damage cases for both plates.  A summarization 

of the mean damage indices for damaged and undamaged paths for all cases is shown in the 

Figure.  These paths are then used to locate the damage on a user-defined grid.  The grid size 

used for this study is 30 mm by 30 mm. The state of damage for a given grid location is indicated 

by the intensity of the color displayed, which is a function of the probability that that grid is 
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damaged.  The probability is based on the number of damaged paths intersecting the grid 

location versus the number of undamaged grid lines. 

 

As in the Impedance Module, databases of damage indices history are created for each 

measurement. HOPS also allows to display the response of each path by pressing the “view set” 

button.  Figure 7 displays the baseline and a test measurement for visual comparison. Any 

response from each path can be automatically displayed by clicking the corresponding path.  

 

Similar results were obtained using power spectral density function as well as Triangulation of 

Reflected Waves, as shown in Figure 6. New signal processing algorithms could be easily 

implemented into HOPS as they are developed. 

 

6. DISCUSSION  

Specific topics that have not been extensively addressed in the SHM literature are i) the 

development of user friendly and automated software for data analysis; ii) coupling the sensing 

hardware directly with SHM data interrogation software.  This work is trying to address these 

issues, and the successful studies toward these areas will help to transition the current state of 

SHM to full-scale industrial adoption. By integrating various data interrogation and signal 

processing algorithms, a powerful SHM tool has been developed that can be applied to a wide 

variety of applications.  By integrating the software and hardware functions into one package and 

automating the process, the burden for the analyst is significantly reduced.   
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Each algorithm produces various levels of efficacy based on the type of damage present.  For 

example, the analyst could perform an impedance test to determine if damage is present in the 

structure.  Then, the analyst could estimate if the damage is in the structure or the sensors 

themselves using the sensor diagnostic process. If the analyst determines that damage is present, 

wave propagation could then be used to locate the damage.  Including the ability to compile a 

database of baseline values gives the analyst the ability to determine if changes detected by the 

SHM algorithms are statistically significant and thus due to damage and not the normal changes 

caused environmental conditions.      

 

7. CONCLUSIONS 

This study developed an automated and integrated active-sensing SHM system for various 

applications.  The use of a suite of SHM signal processing algorithms provides the analyst with a 

richer output than would a single algorithm alone.  The effectiveness of each of these signal 

processing algorithms for SHM is then compared and demonstrated. Although this study focuses 

on the monitoring of an aluminum panel only, the software developed in this research can be 

adapted into a variety of structural health monitoring applications. 
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Figure 1: HOPS main function GUI 
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Figure 2: Dispersion curve and Transfer Function Tool. 
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Figure 3: Geometry module GUI 
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Figure 4: The sensor diagnostic module automatically determines which sensors are broken or 
debonded 
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Figure 5: Impedance Analysis for Corrosion detection 
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Figure 6: A snap shot of HOPS wave propagation module 
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Figure 7: A snap shot of HOPS that displays the response of each path 
 

 


