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Abstract 
 

Piezoelectric materials can be used as mechanisms to transfer mechanical energy, usually 

ambient vibration, into electrical energy that can be stored and used to power other devices.  With 

the recent advances in wireless and MEMS technology, sensors can be placed in exotic and 

remote locations.  Since these devices are wireless it becomes necessary that they have their own 

power supply.  The power supply in most cases is the conventional battery; however, problems 

can occur when using batteries because of their finite life span.  Because most sensors are being 

developed so that they can be placed in remote locations such as structural sensors on a bridge or 

GPS tracking devices on animals in the wild, obtaining the sensor simply to replace the battery 

can become a very expensive task.  Furthermore, in the case of sensors located on civil structures 

it is often advantageous to embed them, making access impossible.  Therefore, if a method of 

obtaining the untapped energy surrounding these sensors was implemented, significant life could 

be added to the power supply.  One method is to use piezoelectric materials to obtain ambient 

energy surrounding the test specimen.  This captured energy could then be used to prolong the 

life of the power supply or in the ideal case provide endless energy for the sensors lifespan.  The 

goal of this study is to develop a model of the piezoelectric power harvesting device.  This model 

would simplify the design procedure necessary for determining the appropriate size and vibration 

levels necessary for sufficient energy to be produced and supplied to the electronic devices.  An 

experimental verification of the model is also performed to ensure its accuracy. 
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Nomenclature 

 
α = proportional damping constant 

a = acceleration 

A = amplitude of vibration 

β = proportional damping constant 

b = width of beam 

c = modulus of elasticity 

Cp = capacitance of piezoelectric 

C = damping matrix 

δ = variation 

dij = piezoelectric constant relating voltage and stress 

D = Electric Displacement 

E = electric field 

e = piezoelectric coupling coefficient 

f  = external force 

K = stiffness 

L = length of beam 

M = mass 

φ = location of electrical potential 

q = electrical charge 

ρ = density 

r = temporal coordinate of displacement 

R = resistance 

ε = dielectric constant 

S = strain 

t = thickness of beam or time 

tp = thickness of piezoelectric 

T = kinetic energy or stress in piezoelectric constitutive equations 

θ = piezoelectric coupling matrix 

u = displacement 

U = potential energy 

v = voltage 

V = volume 
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V.I. = variational indicator 

Φ = mode shapes 

ω = natural frequency 

ζ = damping ratio 

 

Superscript 

 

E = parameter at constant electrical field (short circuit) 

S = Value taken at constant strain 

T = parameter at constant stress or transpose 

 

Subscript 

 

p = piezoelectric 

s = structure 

 

 

Introduction 
 

 The idea of building portable electronic devices or wireless sensors that do not rely on 

power supplies with a limited lifespan has intrigued researchers and instigated a sharp increase in 

research in the area of power harvesting.  One method of power harvesting is to use piezoelectric 

materials, which form transducers that are able to interchange electrical energy and mechanical 

strain or force.  Therefore, these materials can be used as mechanisms to transfer ambient motion 

(usually vibration) into electrical energy that may be stored and used to power other devices.  By 

implementing power harvesting devices, portable systems can be developed that do not depend on 

traditional methods for providing power, such as the battery, which has a limited operating life. 

  

A significant amount of research has been devoted to developing and understanding 

power harvesting systems.  These studies, demonstrate the feasibility of using piezoelectric 

devices as power sources.  One early studied performed by Umeda et al (1996) investigated the 

power generated when a free-falling steel ball impacted a plate with a piezoceramic wafer 

attached to its underside.  Their study used an electrical equivalence model to simulate the energy 

generated and calculate the efficiency of the PZT’s ability to transform mechanical impact energy 
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into electrical power.  It was found that a significant amount of the impact energy was returned to 

the ball in the form of kinetic energy during the balls rebound off of the pate, however, it is stated 

that if the ball stuck to the plate an efficiency of 52% could be achieved.  In a later paper, Umeda 

et al (1997) investigated the energy storage characteristics of a power harvesting system 

consisting of a PZT, full-bridge rectifier and a capacitor.  Their work discussed the effect of 

various parameters on the efficiency of the storage circuit.  Following their analytic investigation 

a prototype was developed and stated to have an efficiency of over 35%, more than three times 

greater than a solar cell.  Starner (1996) examines the possible location for power harvesting 

devices around the human body and surveys the energy available from sources of mechanical 

energy including blood pressure, walking, and upper limb motion of a human being.  The author 

claims 8.4 watts of useable power can be achieved from a PZT mounted in a shoe.  Kymissis et al 

(1998) examines using a piezofilm in addition to a Thunder actuator (http://www.face-int.com), to 

charge a capacitor and power a RFID transmitter from the energy lost to the shoe during walking.  

The polyvinylidene fluoride (PVDF) stave was located in the sole to absorb the bending energy of 

the shoe, and the piezoceramic thunder actuator was located in the heel to harvest the impact 

energy.  Their work showed that the power generated by the piezoelectric devices was sufficient 

for powering functional wireless devices and were able to transmit a 12-bit signal five to six times 

every few seconds.  Following the work of Kymssis et al (1998), the research involving wireless 

sensors began to grow, and in 1998, Kimura received a US Patent that centered on the use of a 

vibrating piezoelectric plate to generate energy sufficient to run a small transmitter fixed to 

migratory birds for the purpose of transmitting their identification code and location.  The 

effectiveness of the power harvesting system is also compared to existing battery technology.  

Goldfarb et al (1999) presented a linearized model of a PZT stack and analyzed its efficiency as a 

power generation device.  It was shown that the maximum efficiency occurs in a low frequency 

region, much lower than the structural resonance of the stack.  It is also stated that the efficiency 

is also related to the amplitude of the input force due to hysteresis of the PZT.  In addition to the 

force applied in the poling direction (d33 mode), Clark and Ramsay (2000) have investigated and 

compared it with the transverse force (d31 mode) for a PZT generator.  There work showed that 

the d31 mode has a mechanical advantage in converting applied pressure to working stress for 

power generation.  They concluded that a 1-cm2 piezoceramic wafer can power a MEMS device 

in the microwatt range.  Elvin et al (2001) theoretically and experimentally investigated a self-

powered wireless sensors using PVDF.  The power harvesting system used the energy generated 

by the PVDF to charge a capacitor and power a transmitter that could send information regarding 

the strain of the beam a distance of 2m.  Kasyap et al (2002) formulated a lumped element model 
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to represent the dynamic behavior of PZT in multiple energy domains using an equivalent circuit.  

Their model has been experimentally verified using a 1-d beam structure with peak power 

efficiencies of approximately 20%.   

 

Most of the previous studies all realized that the energy generated by the piezoelectric 

material must be accumulated before it can be used to power other electronic devices.  Rather 

than use the traditional capacitor that most other studies used, Sodano et al (2002) investigated 

the use of rechargeable batteries to accumulate the generated energy.  The goal of this study was 

to show that the small amounts of ambient vibration found on a typical system could be used to 

charge the battery from its discharged state and demonstrated the compatibility of rechargeable 

batteries and the power generated by piezoelectric materials.  To do this, the vibration of the air 

compressor of a typical automobile was measured and a similar signal was applied to an 

aluminum plate with a piezoelectric patch attached.  It was found that the random signal from the 

engine compartment of a car could charge the battery in only a couple of hours and that a 

resonant signal could charge the battery in under an hour.  Ottman et al (2002) realized that if 

circuitry was used to maximize the energy generated then these storage devices could be charged 

with greater efficiency.  Therefore, they investigated the effects of utilizing a DC-DC step down 

converter with an adaptive control algorithm to maximize power output of the piezoelectric 

material.  Their efforts found that when using the adaptive circuit, energy was harvested at over 

four times the rate of direct charging without a converter.   

 

The work that will be presented in this document concentrates on developing an analytic 

model of a beam with piezoelectric elements attached that will provide an accurate estimate of the 

power generated through the piezoelectric effect.  It has been found in previous studies that 

piezoelectric material attached to a beam with cantilever boundary conditions provides an 

effective configuration for capturing transverse vibrations and converting them into useful 

electrical power.  This configuration has proven itself to be effective in several experiments 

carried out by Sodano et al 2002 and Sodano et al 2003.  The model detailed in this paper is based 

off of a more general one developed by Hagood et al. (1990) to estimate the performance of 

piezoelectric shunt damping circuits for passive vibration control.  In addition, the model 

developed in Crawley et al. (1990) was used to develop the actuation equations for piezoelectric 

devices and the constitutive equations of bimorph actuators were obtained from Smits et al. 

(1991).  However, an important addition is made to the combination of these models to 

accommodate power harvesting, which was neglected in previous models, was to add material 
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damping; if excluded the model can predict significantly more energy generation that actually 

developed in the real system.  The following sections will develop a model of the piezoelectric 

power harvesting device.  This model would simplify the design procedure necessary for 

determining the appropriate size and extent of vibration needed for sufficient energy to be 

produced and supplied to the desired electronic devices.  An experimental verification, of the 

model is also performed to ensure its accuracy.  Following the verification of the model, the 

effects of power harvesting on the dynamics of a structure are compared to those brought on from 

shunt damping. 

 

 

Model of Piezoelectric Power Harvesting Beam 
 

The following derivation will use energy methods to develop the constitutive equations of 

a bimorph piezoelectric cantilever beam for power harvesting.  To begin the deviation we will 

start with the general form of Hamilton’s Principle.  This states that the variational indicator must 

be zero at all time, as shown below in equation 1: 
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where U is the potential energy, T is the kinetic energy, xfδ  is the external work applied to the 

system, S is the strain, T is the stress, E is the electric filed, D is the electric displacement, V is the 

volume, u is the displacement, x is the position along the beam, v is the applied voltage, q is the 
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charge, ρ is the density f is the applied force and the subscripts p and s, represent the piezoelectric 

material and the substrate, respectively.  Before the variational indicator can be used to solve for 

the equations of motion the piezoelectric constitutive equations need to be introduced into the 

potential energy term and the variation of both the potential and kinetic energy must be found.  

First the piezoelectric constitutive equations will be introduced, which are: 
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where c is the modulus of elasticity, ε is the dielectric constant and the superscript, ( )S, signifies 

the parameter was measured at constant strain and the superscript, ( )E, indicates the parameter 

was measured at constant electric field (short circuit).  These constitutive equations relate the 

electrical and mechanical properties of the piezoelectric element.  The specification of these 

relationships will allow electromechanical interaction to be included in the model.  The term e is 

the piezoelectric coupling coefficient and relates the stress to the applied electric field.  The 

piezoelectric coupling coefficient can be written as shown in equation 6 in terms of the more 

commonly specified coupling coefficient d by: 

 
E

ijcde =              (6) 

 

where c is the  dij is the piezoelectric coupling coefficient with the subscript i and j referring to the 

direction of the applied field and the poling, respectively.  Now we can incorporate the 

piezoelectric properties in the potential energy function: 
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Taking the variation of the kinetic energy from equation 3, and the potential energy term 

containing the piezoelectric properties of equation 7, yields: 
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The variations found in equations 4, 8 and 9 can be substituted into equation 1 to obtain the 

variational indicator: 
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This equation can now be used to solve for the equations of motion of any mechanical system 

containing piezoelectric elements.  In order to solve equation 10 for the cantilever beam with 

bimorph piezoelectric elements some assumptions must be made.  The first assumption follows 

the Rayleigh-Ritz procedure, which says that the displacement of the beam can be written as the 

summation of modes in the beam and a temporal coordinate (Inman, 2001): 
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N
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where Φi(x) is the assumed mode shapes of the structure which can be set to satisfy any 

combination of boundary conditions, r(t) is the temporal coordinate of the displacement and N is 

the number of modes to be included in the analysis. The second assumption made is to apply the 

Euler-Bernoulli beam theory.  This allows the stain in the beam to be written as the product of the 

distance from the neutral axis and the second derivative of displacement with respect to the 
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position along the beam.  Once the strain is defined in this way equation 11 can be used define the 

strain as follows: 
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The third and last assumption is that the electric potential across the piezoelectric element is 

constant.  This assumption also indicates that no field is applied to the beam, which in latter 

equations designates the beam to be inactive material: 
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The previous assumption is for a beam with bimorph piezoelectric elements on the top and 

bottom of the beam as shown in Figure 1.  The beam in Figure 1 also shows the notation for the 

geometry of the beam that is used throughout the derivation. 

 

 
Figure 1: Schematic of beam describing the variables. 
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Using the previous assumptions we can simplify the variational indicator to include terms that 

represent physical parameters.  By doing this the equations describing the system become more 

recognizable when compared to those of a typical system and help give physical meaning to the 

parameters in the equations of motion.  The mass matrices for the system can be written as: 
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The stiffness matrices can be written as: 
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The electromechanical coupling matrix, Θ, and the capacitance matrix, Cp, are defined by: 
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The parameters defined in equations 14, 15 and 16 can be substituted into variational indicator of 

equation 10.  This substitution allows the variational indicator to be written as: 
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where δ() indicates the variation of the corresponding variable.  Taking the integral of the 

variational indicator leaves two coupled equations.  The two equations shown below are coupled 

by the previously defined electromechanical coupling matrix Θ.  The top equation defines the 

mechanical motion and the bottom equation defines the electrical properties of the system:  
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These equations now represents the electro-mechanical system and can be used to determine the 

motion of the beam, however this system of equations does not contain any energy dissipation.  

Because the model is intended to represent a power harvesting system that must be removing 

energy, this form is not suitable for our needs, as it does not account for energy lost through the 

structure.  In addition, the energy removed from the system through energy harvesting must be 

accounted for.  To incorporate energy dissipation into the equation one can use ohm’s law and add 

a resistive element between the positive and negative electrodes of the piezoelectric.  The 

resistive element will provide a means of removing energy from the system.  Then electrical 

boundary condition becomes: 

 

( ) ( )tqRtvi &−=            (19) 

 

In addition, the system should have some type of additional mechanical damping that needs to be 

accounted for.  If only the electrical damping is accounted for, the model will over predict the 

actual amount of power generated.  The amount of mechanical damping added to the model was 

determined from experimental results.  This is done using proportional damping methods and the 

damping ratio that is predicted from the measured frequency response function.  With the 

damping ratio known, proportional damping can be found from (Inman, 2001): 
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where ζi is the damping ratio found from the frequency response of the structure.  Incorporating 

equations 19 and 20 into equation 18, results in the final model of the power harvesting system: 
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Equation 22 shown above provides an accurate model of the power harvesting system.  The ( )tq&  

term provides the current output of the piezoelectric element and can be directly related to the 

power output of the piezoelectric through the load resistance R.   

 

The last portion of our model left undefined is the forcing function.  The system that will 

be investigated is a cantilever beam that is excited by transverse vibrations of the structure that it 

is clamped to; therefore no force is directly applied to the beam.  Instead the clamped end of the 

beam is experiencing base motion and transferring that energy to the beam through its own 

inertia.  The standard boundary conditions of the clamped end of the beam say that the slope and 

displacement are zero at all time.  For the condition of base motion the zero displacement 

condition would not be held and a new set of mode shapes would need to be generated.  Rather 

than doing this, it was decided that a force corresponding to the inertia of the beam when 

subjected to the base motion could be used and the clamped-free mode shapes would still be 

valid.  The forcing function used to model the inertia of the beam is: 
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With the forcing function defined everything necessary to simulate the power harvesting 

system is included in the model.  The following sections of this paper will describe the 

experimental procedures and results, in order to demonstrate the accuracy of this model. 
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Experimental Setup for Model Verification 
 

The accuracy of the model will be tested on a Midé Technology Corporation Quick Pack 

model QP40N, although it could be used to model any beam with a piezoelectric attached.  The 

QP40N is a bimorph actuator with dimensions and properties shown in Figure 2.  The Quick Pack 

actuator is constructed from four piezoceramic wafers embedding in a Kapton and epoxy matrix.  

Experiments were performed to verify the accuracy of the models ability to predict the amount of 

power generated from this device when subjected to transverse vibrations of varying frequency 

and amplitude.  As mentioned previously we were interested in the Quick Pack being mounted 

with cantilever boundary conditions.  To provide the transverse vibration, the Quick Pack was 

mounted actuator to an electromagnetic shaker as shown in Figure 3.  

 

 
Device size (mm): 100.6 x 25.4 x 0.762 

Device weight (g): 9.52 

Active elements: 2 stacks of 2 piezos 

Piezo wafer size (mm): 45.974 x 20.574 x 0.254 

Full scale voltage range (V): ±200 

 

Figure 2: Midé Technology Corporation Quick Pack model QP40N (from Midé Technology 

Corporation). 
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Figure 3: Quick Pack QP40N attached to the shaker and dimensions of beam when one end is 

clamped. 

 

One complication that arose when modeling the Quick Pack actuator was due to its 

composite structure and the piezoelectric wafers not spanning the entire length of the beam, 

which can be seen in Figure 2.  Because the area of the beam with no piezoelectric wafer 

consisted of only Kapton and epoxy, it contained a localized area with a lower modulus of 

elasticity.  Midé Technology Corporation could not specify a value for the effective modulus of 

the complete beam.  Therefore, the setup shown in Figure 4 was constructed to measure the 

stiffness of the Quick Pack.  To obtain a value for the stiffness the force applied to the beam and 

its corresponding deflection needed to be measured.  The experimental setup consists of a 
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Transducer Techniques 100 gram load cell model GSO-100C and a Polytec laser vibrometer.  The 

load cell was mounted on a lead screw to allow a steady force to be applied at the tip of the beam.  

The results of this test found the modulus of the beam to be 2.5 GPa.  The reason for this value 

being so low is due to the area at the mid-span of the beam that consisted of only the Kapton and 

epoxy.  When the static tests were performed on the beam it was apparent that the majority of the 

bending was occurring at this location.  Therefore, it was concluded that the experimental tests 

performed had actually measured the modulus of elasticity corresponding to the Kapton and 

epoxy portion of the beam.  This still left the overall modulus of the beam unknown.  The value 

calculated for the overall the modulus of the beam was found by simply averaging the modulus of 

the piezoelectric material, that was supplied by Midé and the experimentally found modulus for 

the Kapton and epoxy matrix according to their individual percent of the cross sectional area.  

The resulting modulus of elasticity and the other piezoelectric properties used are shown in Table 

1. 

 

 
 

Figure 4: Experimental setup used to find the elastic modulus of the Kapton-epoxy matrix. 
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Table 1: Properties of the Quick Pack 

 

Property Symbol Value 

Dielectric Constant Tk3  1800 

Piezoelectric Strain Coefficient  
13d  -179x10-12 m/volt 

Modulus of Piezoelectric cE
 63 GPa 

Modulus of Kapton-epoxy cs 2.5 Gpa 

Modulus of Quick Pack cb 35.17 GPa 

Density of Piezo Material ρ 7700 kg/m3 

Density Composite Matrix ρ 2150 kg/m3 

 
 

Model Verification 
 

The accuracy of the model was compared against experimental results to demonstrate the 

ability of the model to accurately predict the amount of power produced by the Quick Pack when 

subjected to transverse vibration.  To ensure that the model and experimental tests were subjected 

to the same excitation force an accelerometer was used to calculate the amplitude of the 

sinusoidal force applied to the beam through: 

 

( ) 2max
2 sin

ω
ωω aAtAa =⇒=          (24) 

 

 where a is the acceleration of the clamped end of the beam.  The beam was excited by a 

sinusoidal input and the steady state power output was measured across several different resistors.  

The frequency response of the model and the experimentally tested Quick Pack are shown in 

Figure 5.  The differences in the two responses are attributed to the Quick Pack’s composite 

structure resulting in coupled modes and the nonlinear properties of the Kapton material, 

especially its modulus of elasticity that varies nonlinearly with frequency.  Additionally, looking 

at the mode shapes of a cantilever beam shown in Figure 6 it can be seen that in the second mode 

a large amount of bending occurs at the beam’s midsection.  However the Quick Pack has an area 

of low stiffness at the midsection but due to the use of a uniform modulus of elasticity and density 

in the model, the stiffness is increased at this location and the predicted frequency of the second 
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mode is higher than measured.  It is expected that a beam constructed of a homogeneous material 

with a piezoelectric mounted to is surface would produce a more accurate frequency response.   
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Figure 5: Frequency response of the model and the experimental data. 
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Figure 6: First three mode shapes of a cantilever beam. 
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The measured current generated by the Quick Pack was compared to the predicted 

current from the model for various frequencies and load resistances.  The output current across a 

10kΩ resistor for several excitation frequencies of the model and the measured current obtained 

through experiments are shown in Figures 6, 7 and 8.  Figures 9 and 10 show the output current 

across a 100Ω load resistance at 25Hz and 50Hz, respectively, and Figures 11 and 12 show the 

output current across a 100kΩ load resistor at 25Hz and 50Hz, respectively.  The predicted 

response shown in these Figures shows a transient response for a small period of time while the 

experimental results do not because they were recorded at steady state vibration.  Table 2 

provides an approximate list of the measured and predicted currents generated for numerous 

values of frequency and load resistance.  The values in this table demonstrate that the model 

provides a very accurate measurement of the power generated at various frequencies and resistive 

loads.  This shows that the model would be effective as a design tool for determining the ideal 

size and excitation level necessary to provide the desired power. 
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Figure 6: Output current predicted by model and measured across a 10KΩ resistor at 25Hz. 
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Figure 7: Output current predicted by model and measured across a 10KΩ resistor at 50Hz. 
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Figure 8: Output current predicted by model and measured across a 10KΩ resistor at 75Hz.  
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Figure 9: Output current predicted by model and measured across a 100Ω resistor at 25Hz. 
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Figure 10: Output current predicted by model and measured across a 100KΩ resistor at 50Hz. 
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Figure 11: Output current predicted by model and measured across a 10KΩ resistor at 50Hz. 
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Figure 12: Output current predicted by model and measured across a 100KΩ resistor at 50Hz. 
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Table 2: Amplitude of measured and simulated current. 

 

Frequency Load Resistance Simulated Current Measured Current Percent Error
25 Hz 100 Ω 0.101mA 0.104mA 2.97% 
25 Hz 10 kΩ 0.105mA 0.106mA 0.95% 
25 Hz 100 kΩ 0.032mA 0.032mA 0.00% 
30 Hz 100 Ω 0.360mA 0.345mA 4.17% 
30 Hz 10 kΩ 0.295mA 0.30mA 1.67% 
30 Hz 100 kΩ 0.065mA 0.068mA 4.61% 
50 Hz 100 Ω 0.20mA 0.20mA 0.00% 
50 Hz 10 kΩ .175mA .180mA 2.86% 
50 Hz 100 kΩ 0.033mA 0.032mA 3.03% 
75 Hz 10 kΩ 0.142mA 0.144mA 1.41% 

150 Hz 10 kΩ 0.0132mA 0.0133mA 0.75% 
 

 

Disscusion of Power Harvesting and Shunt Damping 
 

In addition to providing an accurate estimate of the of the power generated by a beam 

with a complicated piezoelectric layout and a non-homogeneous material composition, the model 

also demonstrates that power harvesting works much like a shunt damper.  When a power 

harvesting system is implemented, energy is removed from the system and supplied to the desired 

electrical components.  Due to the removal of energy from the system conservation of energy 

says that increased damping must occur.  This is the same principle that is used in shunt damping 

systems.  However, when implementing shunt circuits it is often advantageous to use a RLC 

circuit that allows the circuit to be tuned to the resonant frequency of the system for maximum 

power dissipation.  In the case of the power harvesting system that has been investigated in this 

paper a constant load resistance was used which will also induce damping into the system but 

over a broad range of frequencies rather than the turned frequency of a RLC circuit.  The 

damping effect caused by power harvesting on the impulse response of a beam for three different 

load resistances is shown in Figures 13, 14 and 15.  In Figure 13 the load resistance is set at a low 

value of 100Ω, which does not dissipate a large amount of energy causing only a small amount of 

damping to be added to the system.  In the case of Figure 14 the load resistance is set at an ideal 

value of 10kΩ allowing the maximum flow of energy from the piezoelectric device and in turn 
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causing higher damping that is apparent in the increased settling time of the response.   Now 

looking at Figure 15, the load resistance is further increased to 100kΩ giving the system the 

ability to dissipate a large amount of energy from the system.  However, when the load resistance 

becomes very high the ability of energy to flow from the piezoelectric material is reduced causing 

the damping induced in the system to decrease.  These Figures demonstrate the effect of power 

harvesting on the dynamics of a structure.  It is apparent that as more energy is removed from the 

system the impulse dies out faster until a critical level is reached, after which the resistive load of 

the circuit exceeds the impedance of the piezoelectric network causing lower efficiency power 

generation and for this example lower energy dissipation to the beam.  This study shows that the 

effects of power harvesting on the dynamics of a mechanical system are very similar to those of 

shunt damping, with the major difference being that the energy is stored for use rather than of 

dissipated. 
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Figure 13: Impulse response with a 100Ω resistive load. 
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Figure 14: Impulse response with a 15kΩ resistive load. 
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Figure 15: Impulse response with a 100kΩ resistive load. 
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Conclusions 
 

One method of performing power harvesting is to use piezoelectric materials that can 

convert the ambient vibration energy surrounding them into electrical energy.  This electrical 

energy can then be used to power other devices or stored for later use.  This technology has 

gained an increasing large amount of attention due to the recent advances in wireless and MEMS 

technology allowing sensors to be placed in remote locations and operate at very low power.  The 

need for power harvesting devices is caused by the use batteries as power supplies for these 

wireless electronics.  Since the battery has a finite lifespan, once extinguished of its energy, the 

sensor must be recovered and the battery replaced for the continued operation of the sensor.  This 

practice of obtaining sensors solely to replace the battery can become and expensive task, because 

their wireless nature allows them to be placed in exotic locations.  Therefore, methods of 

harvesting the energy around these sensors must be implemented to expand the life of the battery 

or ideally provide an endless supply of energy to the sensor for its lifetime.   

 

This Paper has developed a model to predict the amount of power capable of being 

generated through the vibration of a cantilever beam with attached piezoelectric elements.  The 

derivation of the model has been provided, allowing it to be applied to a beam with various 

boundary conditions or layout of piezoelectric patches.  The model was verified using 

experimental results and proved to be very accurate independent of excitation frequency and load 

resistance.  In addition, the verification of the model was performed on a structure the contained a 

complex piezoelectric layout and a non-homogenous material beam, indicating that the model is 

robust and can be applied to a variety of different mechanical conditions.  The damping effects of 

power harvesting were also shown to be predicted in the model and to follow that of a resistive 

shunt damping circuit.  This model provides a design tool for developing power harvesting 

systems by assisting in determining the size and extent of vibration needed to produce the desired 

level of power generation.  The potential benefits of power harvesting and the advances in low 

power electronics and wireless sensors are making the future of this technology look very bright.   
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