

Andrew Shewmaker¹ Carlos Maltzahn¹ Scott Brandt¹

Tim Kaldewey¹ Richard Golding² Theodore M Wong²

¹University of California Santa Cruz Computer Science Department {shewa,kalt,carlosm,scott}@cs.ucsc.edu

RADoN: Storage Network QoS

¹IBM Almaden Research Center Storage Systems Department {rgolding,theowong}@us.ibm.com

The Goal of RADoN

Performance guarantees on standard commodity storage networks

- General
- Flexible
- Fine grained

Switch Congestion is the Key Problem

Rate guarantees ensure a feasible volume of network traffic Congestion in switches due to port contention may still cause

- large variance in delays
- packet loss

Intra and Inter Port Contention in a Simple Switch Model

Methods of Congestion Detection

- Traditionally: packet loss, cannot prevent queue overflows
- RADoN uses Forward Delay as in TCP Santa Cruz

Packet Loss Based Forward Delay Based VS. **Congestion Control Congestion Control Client Observes Packet Loss Client Observes Increased Delay Bottleneck Switch Queue Overflows** Santa Cruz: Bottleneck queue size **Queue Settles At Operating Point** Improving TCP Congestion Control Over Internets with Heterogeneous Transmission Media (1999) Christina Parsa, J.J. Garcia-Luna-Aceves. Proceedings of the 7th IEEE ICNP

Correct Congestion Detection and Controlled Response

- Corresponding to a share
- Bound by a time limit
- Addressing debiliating synchronization

RAD Model **Network Model** Resource Allocation Flow Control Utilization U Packet Service Time pktS Period p Budget (packets) m = e / pktS PPS, e/ u, p Dispatching **Congestion Control** Window size $2 \le w \le m'$ Budget $e = u \cdot p$ $n = \lceil m' / w \rceil$ **Budget (windows)**

Window target

Window change

 $W_{op} = \max(m'-\ell, 2)$

 $- | w - w_{op} | / 2$

Dispatch Offset $\ell / n \cdot rand$

Laxity $\ell = d - t - e'$

The RAD model separates scheduling into Resource Allocation and Dispatching.

Proven correct for CPU scheduling, RADoN applies the model to the network resource.

The key to RADoN is a guaranteed real-time dispatching algorithm

PPS, e', ℓ

Subscripts omitted for clarity

Least Laxity First (LLF) is a guaranteed scheduling algorithm that dispatches jobs in order of criticality.

d = r + p

 $\ell = d - t - e'$

Less Laxity More (LLM) approximates LLF without requiring:

- Global knowledge
- Synchronization

Release

Deadline

Laxity

Current Time

A stream's work for a given period is divided into windows that change in dispatch time and size according to its laxity and remaining work when congestion is detected.

Laxity Based Congestion Response

