

Create
Files

Stat Write Read RM
0.0000

25.0000

50.0000

75.0000

100.0000

125.0000

150.0000

175.0000

200.0000

225.0000

250.0000

NFS 10
SSHFS 10
Ringer 10
NFS 100
SSHFS 100
Ringer 100

Large-Scale P2P Document
Management

Ian Pye | UC Santa Cruz
 Storage Systems Research Center

Distributed Document Management

Retrieval Protocol

One of the major challenges facing a globally distributed Enterprise is storing and retrieving documents. This task requires features from distributed storage
systems, databases and the Internet. However, because of the unique nature of the documents to be stored and the access pattern of the documents, none of these
alone suffice to provide truly reliable and searchable distributed document management. We present Ringer – a overlay network which combines elements of peer-
to-peer storage, distributed query processing and indexing to create an Internet scale content distribution and retrieval network.

Abstract:

We Need:
● Filesystem Semantics
 Concurrency control and close-to-open consistency are essential to keep things
 manageable in a distributed system with many readers and writers.
● Database-Style Indexing
 We need the ability to search on arbitrary file attributes and get good results quickly. The
 rich interconnectedness of hypertext, which enables algorithms like PageRank to work,
 does not exist for other file types. Information is stored in only a few documents, not 100s!
● Internet-Style Connectivity
 Files need to be available on demand, but only downloaded (an expensive operation on
 a WAN) as needed. Most files are accessed rarely.

 No Single System Does All This Yet!
We Propose:
● A Hierarchical Peer-to-Peer System
● Tier 1: Desktop clients store and transmit files
● Tier 2: Lightweight MetaData Servers (MDS) index files,
 manage security and permissions, store metadata
● Tier 3: Central Authority (currently Amazon.com's Simple Storage
 Service) maps file IDs to metadata servers

Client 1

Client 2
Client 6

Client 5

MDS 1 S3 MDS 2

Architecture

Client 1 | MDS 1 | S3 | MDS 2 | Client 2

get_rnode()

get_rnode()
from another MDS

get_file()

Comparative Microbenchmarks

Client 4

Client 3

Client 7

ImplementationImplementation

Case Study

Contact

Ian Pye | ipye@cs.ucsc.edu

Scott Brandt | sbrandt@cs.ucsc.edu

Carlos Maltzahn | carlosm@cs.ucsc.edu

http://code.google.com/p/metaring

The United Nations has offices in 192 countries. All of these offices are generating
reports. These reports need to be distributed to all of the other offices, as well as being
safely archived. However, reports are not all equally useful, and the value of a report
changes over time. In addition, the UN does not have a large Information Technology
budget. With these rules, the problem becomes one of distributed document
management: content can be added by any office, content must be findable by any
other office and the system must be reliable. Furthermore, the system must be
inexpensive yet scalable to support large numbers of documents. It must also function
effectively with offices scattered across the globe, connected in a network of varying
bandwidth and reliability.

ImplementationFuture Work

Time in seconds on a 64kbit/sec
network for NFS, SSHFS and Ringer
to create 10 and 100 files, stat the files,
write 4K to each file, read 4K from each
file and delete the files.

● Search: Files added to the system need to be indexed and made easily
retrievable. We are looking at ways to do this involving semantic clustering and
routing, probabilistic search and a hierarchy of indices.
● Security: There needs to be a system of permissions and access controls, in
addition to encryption of data on the wire.
● Performance: We are looking to exploit parallelism and asynchronous protocols
to improve overall performance.

Ringer is essentially a three tiered database-driven application with a custom front-end.
 It consists of a collection of clients, metadata servers (acting as middleware) and a
central backing server which ties everything together. XML-RPC is used as the
interconnect language. This protocol entails a performance hit, but also facilitates the
creation of third-party plugins, and provides access to a large pool of utilities. The client
binds with its host operating system via the FUSE (Filesystem in USerspacE) library.
FUSE allows Ringer to be mounted and unmounted like any other volume. Metadata
servers are simply user processes, and can be started and stopped at will.

In this example, a client fetches metadata
for two files from its MDS. First, it looks
up metadata for a file that its MDS owns.
The MDS is able to return the data from
its own cache. Next, the client looks up
metadata for a file that another MDS
owns. Since the client's MDS does not
have the metadata in its cache, it looks
up the requested file's MDS in the central
authority. Then, it queries the owning
MDS for the metadata. Lastly, this
metadata is sent back to the requesting
client. The client now opens the file,
which involves downloading it directly
from another client possessing a copy of
the file.

mailto:ipye@cs.ucsc.edu
mailto:sbrandt@cs.ucsc.edu

