CASCC: A Fast Algorithm for Time Series Classification
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CASCC Is a new algorithm for classifying time series. It is highly competitive in terms of speed and accuracy compared to many other algorithms. It is inspired

by another leading algorithm DTVW-1NN however does not suffer the same computational limitations when applying the model to new time series.
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time series to produce a distance matrix used for clustering.
2. Use these computed distances to cluster time series (usually hierarchically).

3. Generate a set of prototype time series that roughly characterize specific clusters (or classes). Also, select training time series
that roughly characterize major clusters. We have developed several algorithms for doing this.

4. Align and stretch each training time series against the prototype or archetype. The approach used here is chosen through cross
validation.

5. Concatenate each of these results into a pseudo-time series for (6) input into a conventional classifier, such as an SVM.
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3. Many conventional classifiers can handle properly
registered features. The goodness of
alignment+stretching can be used as discnminating
features for the conventional classifier!

4. Big win: model application is independent of

the number of training points, unlike the algorithm
upon which this approach Is based DTW-1NN.

The approach was tested against several other algorithms: baseline classifiers on ||z
raw time series, DTW-1NN, AdaBoost using Decision Stumps on DTW distances, |[Z] ...
and Continuous Hidden Markov Models (using Left-to-Right (LR), strict LR,

and arbitrary transition matrices). We performed 10-fold cross validation 10 times,
using the same folds for each of the methods tried. The average cross-validation
error and standard deviation are reported. The best method for each experiment is
shown in bold. The total computation for all the experiments is roughly 100 days on

a 2.8 Ghz processor. Several prototype and archetype algorithms
(RODS, CLTR, MADS, KC) and conventional classifiers (Linear SVM, SVM with
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RBF kernel) were tried. All parameters were adjusted through cross-validation.
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