A Programmer-Oriented Approach to ;
Software Assurance and Evolution

Bill Scherlis, as told by Dean Sutherland
(e

MU School of Computer Science

scherlis@cmu.edu
412-268-8741

The Fluid Project
www. fluid.cs.cmu.edu Jan 05

Carnegie Mellon
= Direct measures R’

We treat our software as if it were
a phenomenon of nature

— Sir Tony Hoare, 2004

Direct Measures
- Model coverage
- By attribute kind

Indirect Measures

- Process
- People -

- Bug counts - By code coverage
- KLOC counts - Code/model consistency
© Wil L Schris 2004 Decos

Quality stakeholders W
At each supply chain interface:

» Developers
= Immediate code guidance
= Basis for dependability claims
= Incremental progress

* Managers
= Direct evidence / measurement
= Design intent capture

¢ CIO organization
= Standards (e.g., framework enforcement)
= Organizational memory

» Acceptance evaluators
= Proxy elimination
= Direct artifact evaluation

QWiliam L Scherii 2004 Decos

Carnegie Mellon
= Fluid dependability attributes (examples) %

= Safe concurrency
* Race conditions
* Lock management
+ Single thread concurrency control
= Lock ordering and deadlocks

= Code safety
« Ignored exceptions
= Appropriate typing

= Policy compliance
= API policy compliance
+ Framework compliance
+ Object references and aliasing
* Patterns, uses, structure

= Real time
+ Real-time thread/memory policies

« Engineering properties for safety, dependability, security

e Hard to test
¢ Nondeterminism

e Hard to inspect
* Non-local
¢ Model-based

QWiliam L Scherii 2004 Decos

Carnegie Mellon
= IT supply chain barriers e

Interface barriers exist between producers and consumers
at all stages of IT supply chains
Five barriers Mitigation (today’s best)
« Contractor qualification ¢ CMM/CMMI
« Requirements definition « Close relationships
« “Second” sourcing)| . API conventionalization
« Risk allocation * Asymmetry
« Engineering acceptance « Testing and inspection
Producers:
Internal development groups
Subcontractors
Outsources
hore
Off-the-shelf
Open Source
© Wilam L scher 2004 Decos

CarnegieMellon
Software and code

Code
= The ground truth of software

Challenges
= Poor quality measures
= Impact: Difficulty of ROI case
= Design intent is missing

= Huge information loss

There is no escape

= We create it, but we do not understand it

= Weak proxies: People, process, bug counts, KLOC

= Code embodies insufficient information about itself

= Generation and abstraction: program at higher level

QWiliam L Scherii 2004 Decos

CarnegieMellon

The Fluid Project 4

» Create and maintain safe, dependable, secure code

= Directly assure critical dependability attributes
= Attributes tend to defy testing and inspection
+ {Dependability, safety, security}
= Direct static assurance

= Express dependability-related models B
= Incrementally capture design intent

= Provide direct assurance and measurement
1. Inventory of fault-relevant sites
2. Modeling progress *
3. Analysis progress: assurance, potential faults

L] Adogtability and scalability are paramount

= Ease of use by practicing developers
Management value — metrics and process support
Composability and components
Incrementality and early rewards
Partiality and contingency

QWiliam L Scherii 2004 Decos

CarnegieMellon

The Fluid Eclipse Plug-in W

x
[ig|ma|Ee -

i 37 unidentifiable lock(s); what is the name of the lock? what state is being prokected?
i 3 nanefinal lock expression(s); analysis cannot determine which lack s being acquired
i 7 synchronized blocks not protecting any state; what state is being protected?
4y concurrency (1 issue)
@@ lock Lagger LogLockis this protects fiter on Logger at Logger.java fne 144
i 1 protected reference(s) to a possibly shared unpratected object; possible race condition detected
g Z protected Field access(es)
E- B javautilogaing
E- @ Logger
4 Lock "<this; >.Logger.LogLock” held when accessing fiker at Logger.java ine 412
& Lock "<this; ».Logger.Loglock” held when accessing fiter at Logger.java ne 412
=g 2 unprotected field accesses); possible race condition detected
B H java.utillogging
B @ Logger

3 Lock "<this; ».Logger.Loglock” not held when accessing fiker at Logger.java line 395
#@ region private fiter on Logger at Logger java line 156

QWiliam L Scherii 2004 Decos

CarnegieMellon

Assured Development: Hub and spokes W

¢ Hub — Fluid core infrastructure
= Representations, core analyses, etc.
= Interactive online, build-based offline
= Verification support
= Proof management, Assertion propagation
= Permissions
= Effects, aliasing, regions

» Spokes — attribute-specific analyses (examples):
= Assurance:
= Races (lock)
= Races (non-lock)
= Modular non-lock
= Real time
= Indicators
= Appropriate typing

= Exceptions ignored i

= Concurrency finder
= Thread effects

QWiliam L Scherii 2004 Decos

V] Logger.java B2
public void log (L
if (record.getlevel().i

ecord record)

synchronized (this)

ter.isLoggable (record)) {

Example race condition

java.util.logging

ilter) throws Secu

. checkRcoess () ;

Filter;

CarnegieMellon

Reporting Code-Model Consistency

Tool analyzes model/code consistency
= No model => no assurance

= Identify likely model sites

Three classes of results
= Code-model consistency

ﬁ = Code—model inconsistency

i = Informative — Request for annotation

QWiliam L Scherii 2004 Decos

CarnegieMellon

Models are missing

* Programmer design intent is missing
= Not explicit in Java, C, C++, etc
= What lock protects this object?
o This lock protects that state
= What is the actual extent of shared state of this object?
« This object is "part of” that object

¢ Adoptability
= Programmers: “Too difficult to express this stuff.”
= Fluid: Minimal effort — concise expression
= Capture what programmers are already thinking about
= No full spedfication

¢ Incrementality
= Programmers: “I'm too busy; maybe after the deadline.”
= Fluid: Payoffs early and often
= Direct programmer utility — negative marginal cost
= Increments of payoff for increments of effort

QWiliam L Scherii 2004 Decos

CarnegicMellon
Reporting Assurance Results E
Assurance results Metric results (recent work)
« Model - programmer provided design How much have I done?
E intent « Model building
= = Assurance development

= Assured — design intent is consistent
with code Assurance locator
= Identies w/ere models and assurance
« Not Assured — design intent is exist within the system’s structure
inconsistent with code « Incrementalty allows assurance of focused
* Relative to design intent “islands” within a large software system
Cut poits alow programmer sekected
Inferred results modulrization of assurance efforts
= Possible problems, next steps,
reasonable defaults

CarnegicMellon

Fluid Tool Capabilities (for Java) W

¢ Lock-based concurrency
= Region model

» Non-lock concurrency
Color model

» Real-time thread policy compliance
Color model

» Code quality analysis
= Appropriate types
= Ignored exceptions

» Facets of API compliance

© Willam L Scherlis 2004 Dec 04

s
1
+7 #1 i29 @ og.apachelogd
i 14 8 org.apache.logdi.chainsay

8 org.apache.logdj.config >

B1 468 # org.apache.log4. helpers 5

-
© Wiliam L Scherls 2004 Decon

CarnegicMellon

Apache Log4j BoundedFIFO: Model semantics E

Exprssmg lock policy
= Object protects tsef:
@lock BufLock i this protects Instance

1 L[]
[1]
[2]

= Caller of method must acquire lock:
@requiresLock BufLock

references to arrays are
protected, not the arrays themselves

Aggregating state
= Only re

= Aggregate unaliased arrays:
@unshare:
@aggregate] into Instance

Constructors

Cannot be synchronized Aliases-are not

allowed tothe array
= But most are single-threaded:

@singleThreaded o -
@borrowed this B 0]
[1]

[2]

size

Verification and assurance
= Access to shared data next

= Correct lock
= Lock heH by callers
= Unshai

r
[}
1
1
1

© Willam | Scherlss 2004 Dec 04

CarnegicMellon

Races and security e

Examples of security-related race conditions:

15-11-2003: monopd Race Condition Denial of Service Vulnerability
15-10-2003: Sun Solaris Pipe Function Unspecified Kernel Race Condition Vulnerability
Windows RPCSS Multi-thread Race Condition Vulnerability
ndition Vulnerabil
cve0)9rstem Cal Race Condtion Vuloerabilty

04-2003: SAP Database SDBINST Race Condition Vulnerability

Vulnerability

‘Samba REG File Writing Race Condition Vulnerability
Hypermail Local Temporary File Race Conditon Vuinerablty

Vulnerability
: Sun Solaris AT Command Race Conditin valneraiity

: BitMover Bitkeeper Local Temporary File Race Condition Vulnerability

: Tmpwatch Race Condition Vulnerability

: STHPClean Raco Condion ainarabity

Vulnerability
: ImHmux e Locking Race Conditon vuln-r.-hllntv
2:

Vulnerability

. SUSEAAA. Base. Cean Core Script o Raco Condition Vulnerabity

2: Multiple 1/0 Vulnerability
: G Fleutls Directery Remeval Race Condtion Vulnerdoiey

2:

exec() Race ! Condition Vilnerabilty
Temporary File Race Condition VuInerability

 15M ALX Belimai Race Gondtion Valnerabi

19735-2001 Muiple BSD FTS Diectory Travereal Race Candition Vulnerabilty

(Source: Bugtraq vulnerabilities list) -

© Willam L Scherlss 2004 Dec 04

CarnegicMellon

Fluid: published results e

Annotation, analysis, and tool publications

* POPL 05

* CSIP'04

* OOPSLA ‘03 Eclipse Tech eXchange

* Greenhouse thesis ‘03

* PASTE ‘02

« ICSE 02

* Software—Practice and Experience 01
« ECOOP '99

« ICSE 98

http://www.fluid.cs.cmu.edu/

E

© Willam | Scherlss 2004 Dec 04

Model intent that all
* @lock L is this protects Instance constructors are
* @promise “@singleThreaded” for new(**) single threaded.
* @promise “@borrowed this” Model intent that no
* method retains
public class DateFormatManager { reference to the
/** @singleThreaded */ receiver.
public DateFormatManager(TimeZone timeZone) {
super();
_timeZone = timeZone;
configure();

private synchronized void configure() {...}

}

Now the locking model can be assured (deeply)...as the tool displays

@ lock DateFormatManager.DateFormatManager is this pratects Instance
e 29 protected field access(es)
@ region public Instance on Object

© Willam L Scherlss 2004 Dec 04

CarnegieMellon

Consistency of model and code is contingent on a “trusted” result |

The “red dot” — exploit partial results Bf

EE‘.@/ promise “starts nothing™ for all
f--g@" starts nothing on DateF

QWiliam L Scherii 2004 Dec0d

CarnegieMellon

 The assurance evaluation we are presently offering for case stud
purposes focuses on race conditions, including both lock-base:
non-lock concurrency.

* Questions

What are the sizes and complexity of the candidate systems and the
major subsystems and components of interest?

What are your most challenging concurrency-related assurance
issues? Where is the greatest complexity of threading and locks? Is
there significant exploitation of thread-locality or time-sharing of
state?

Are there known races and other anomalies?

* Focus of effort

= We prefer to work on the most challenging concurrency issues in
your code, where you are having the most vexing and costly
problems
We expect to provide some immediate improvement in the overall
quality of your software system. All design intent annotation will
remain after we leave.
CMU values the experience gained from exercising the FTT
technology in a live, production environment.

Case Study - Scope W

© Wilam L scher 2004 Decos
Carnegie Mellon
Case Study - Staffing W
FTT Team Host Team
¢ The team includes technical « Ideally, we collaborate with

principals who have
considerable experience in
applying the tool in production
settings.

developers in identifying (reverse
engineering, in some cases)
concurrency-related design intent.

« Itis therefore important to us to

have access to individuals with
analysis, Java concurrency, and whom we can address technical
model/code management for questions as modeling and analysis
larger systems. proceed.

« They are experts in program

¢ Our team are all CMU
researchers and US citizens.

* We expect to either execute a
suitable bilateral NDA or work
under informal NDA.

QWiliam L Scherii 2004 Dec0d

CarnegieMellon

Fluid summary: towards safer code

Realities
Code is the as-built reality
= Nonetheless, we don't understand code
= Non-local properties are (often) known but not expressed
= Loss of intellectual control

« Models are necessary
= Code and design evolve separately
= We assure consistency

= Adoption barriers exist for present semantic assurance techniques

Our approach
+ Incrementality

* Capture and express critical properties
= New vays to model and express dverse mechanical properties

= Create assurance: chains of evidence
« Couple models/annotations, analyss
« Are we i the framework? Are we compliant with the API?

= Build semantic links between code and design
«Accept coding constraint to facilitate this

- grate directly into practice
» Build on existing practice (e.g., open source, Eclipse, etc:)
. k invisible or incremental interventions
« Instant gratification principle

QWiliam L Scherii 2004 DecOd

CarnegieMellon

Case Study - Agenda

e Day1
We work together in a room with a digital projector, though
we will likely break into 1-3 person teams after the initial
session.
= Morning -- Meet and greet
= Fluid team: Tool intro
= Host team: Software system overview and issues
= Afternoon: Load tool with the code base and do a local build.
= Start analysis
= Obtain preliminary results

e Day?2
= Tool use by both teams and collaboration
= Mid-way assessment

e Day3
= Tool use by both teams and collaboration
= Assessment
= Outbrief of overall results and discussion

QWiliam L Scherii 2004 DecOd

CarnegieMellon

Case Study - Preparation

» Advance preparation
= Informal presentation/discussion regarding concurrency
patterns and potential issues in the code base of interest.

= Additionally, architectural overview information would be
helpful.

= We prefer to bring our own laptops which already have the
tools installed. (We have done this at highly secure sites.)
= We will load/unload code under host supervision.
= If this is not possible, we will need to have access to high-
performance Windows computers with 2GB RAM
= Our tool is presently based in Eclipse

QWiliam L Scherii 2004 Dec0d

