
Ensuring Software Quality
with Static Analysis Tools

Jonathan Aldrich
Assistant Professor
Carnegie Mellon University

CMU - Los Alamos seminar, May 14, 2008



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

2

Find the Bug!

disable interrupts

re-enable interrupts

ERROR: returning
with interrupts disabled

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

3

Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>
err(double enable)

disable =>
err(double disable)

end path =>
err(end path

with/intr
disabled)

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

4

Applying the Analysis

initial state is_enabled

transition to is_disabled

transition to is_enabled
final state is_enabled is OK

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

5

Outline

• Why static analysis?
• The limits of testing and inspection

• What is static analysis?
• How does static analysis work?
• What does the future hold?
• What tools are available?
• How does it fit into my organization?



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

6

Software Disasters: Therac-25
• Delivered radiation treatment
• 2 modes

• Electron: low power electrons
• X-Ray: high power electrons 

converted to x-rays with 
shield

• Race condition
• Operator specifies x-ray, 

then quickly corrects to 
electron mode

• Dosage process doesn’t see 
the update, delivers x-ray 
dose

• Mode process sees update, 
removes shield

• Consequences
• 3 deaths, 3 serious injuries 

from radiation overdose

from http://www.netcomp.monash.edu.au/cpe9001/assets/readings/HumanErrorTalk6.gif

source: Leveson and Turner, An Investigation of the Therac-25 Accidents, IEEE Computer, Vol. 26, No. 7, July 1993.



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

7

Software Disasters: Ariane 5
• $7 billion, 10 year rocket 

development
• Exploded on first launch

• A numeric overflow occurred in 
an alignment system

• Converting lateral velocity from 
a 64 to a 16-bit format

• Guidance system shut down 
and reported diagnostic data

• Diagnostic data was interpreted 
as real, led to explosion

• Irony: alignment system was 
unnecessary after launch and 
should have been shut off

• Double irony: overflow was in 
code reused from Ariane 4
• Overflow impossible in Ariane 4
• Decision to reuse Ariane 4 

software, as developing new 
software was deemed too risky!

from http://www-user.tu-chemnitz.de/~uro/teaching/crashed-numeric/ariane5/

source: Ariane 501 Inquiry Board report



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

8

Software Disasters



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

9

Market Drivers for Quality

• Security
• News: credit cards compromised

• Business-critical
• How much do Amazon, eBay lose if their 

sites goes offline?
• Safety-critical

• Control software for vehicles, aircraft
• Regulations

• HIPAA, others: legal requirements on 
software



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

10

Process, Cost, and Quality

CMM: 1           2           3           4          5

Software
Quality

S&S, Agile, RUP, etc: less rigorous      . . .    more rigorous

Process intervention, 
testing, and inspection 

yield first-order 
software quality

improvement

Additional technology 
and tools are needed 

to close the gap 

Critical Systems 
Acceptability

Process
Rigor, Cost

Perfection
(unattainable)

Slide: William Scherlis



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

11

Root Causes of Errors
• Requirements problems

• Don’t fit user needs

• Design flaws
• Lacks required qualities

• Implementation errors
• Assign
• Checking
• Algorithm
• Timing
• Interface
• Relationship

Taxonomy: [Chillarege et al., Orthogonal Defect Classification]

Static Analysis Contributions

Does design achieve goals?
Is design implemented right?

Is data initialized?
Is dereference/indexing valid?

Are threads synchronized?
Are interface semantics followed?
Are invariants maintained?

H
ar

d
H

ar
d

Security



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

12

Existing Approaches
• Testing: is the answer 

right?
• Verifies features work
• Finds algorithmic 

problems

• Inspection: is the quality 
there?
• Missing requirements
• Design problems
• Style issues
• Application logic

• Limitations
• Non-local interactions
• Uncommon paths
• Non-determinism

• Static analysis: will I get 
an answer?
• Verifies non-local 

consistency
• Checks all paths
• Considers all non-

deterministic choices



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

13

Errors Static Analysis can Find
• Security vulnerabilities

• Buffer overruns, unvalidated input…
• Memory errors

• Null dereference, uninitialized data…
• Resource leaks

• Memory, OS resources…
• Violations of API or framework rules

• e.g. Windows device drivers; real time libraries; GUI 
frameworks

• Exceptions
• Arithmetic/library/user-defined

• Encapsulation violations
• Race conditions

Theme: consistently following rules throughout code



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

14

Empirical Results on Static Analysis

• Nortel study [Zheng et al. 2006]
• 3 C/C++ projects
• 3 million LOC total
• Early generation static analysis tools

• Conclusions
• Cost per fault of static analysis 61-72% compared 

to inspections
• Effectively finds assignment, checking faults
• Can be used to find potential security 

vulnerabilities



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

15

Empirical Results on Static Analysis
• InfoSys study [Chaturvedi 2005]

• 5 projects
• Average 700 function points 

each
• Compare inspection with and 

without static analysis

• Conclusions
• Fewer defects
• Higher productivity

Adapted from [Chaturvedi 2005]



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

16

Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small
• Too many paths to consider as system grew 

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations
• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Longhorn/Vista release of Windows
• Release still pending

• Early 2000s: add static analysis
• More on this later



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

17

Outline

• Why static analysis?
• What is static analysis?

• Abstract state space exploration
• How does static analysis work?
• What does the future hold?
• What tools are available?
• How does it fit into my organization?



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

18

Static Analysis Definition
• Static program analysis is the systematic 

examination of an abstraction of a program’s 
state space

• Metal interrupt analysis
• Abstraction

• 2 states: enabled and disabled
• All program information—variable values, heap contents—is 

abstracted by these two states, plus the program counter
• Systematic

• Examines all paths through a function
• What about loops?  More later…

• Each path explored for each reachable state
• Assume interrupts initially enabled (Linux practice)
• Since the two states abstract all program information, the 

exploration is exhaustive



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

19

Outline

• Why static analysis?
• What is static analysis?
• How does static analysis work?

• Termination, Soundness, and Precision
• What does the future hold?
• What tools are available?
• How does it fit into my organization?



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

20

How can Analysis Search All Paths?
• Exponential # paths with if statements
• Infinite # paths with loops
• Secret weapon: Abstraction

• Finite number of (abstract) states
• If you come to a statement and you’ve already 

explored a state for that statement, stop.
• The analysis depends only on the code and the current 

state
• Continuing the analysis from this program point and state 

would yield the same results you got before
• If the number of states isn’t finite, too bad

• Your analysis may not terminate



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

21

Example
1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12. }

Path 1 (before stmt): true/no loop
2: is_enabled
3: is_enabled
6: is_disabled
11: is_disabled
12: is_enabled

no errors



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

22

Example
1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12. }

Path 2 (before stmt): true/1 loop
2: is_enabled
3: is_enabled
6: is_disabled
7: is_disabled
8: is_enabled
9: is_enabled
11: is_disabled

already been here



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

23

Example
1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12. }

Path 3 (before stmt): true/2+ 
loops

2: is_enabled
3: is_enabled
6: is_disabled
7: is_disabled
8: is_enabled
9: is_enabled
6: is_disabled

already been here



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

24

Example
1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12. }

Path 4 (before stmt): false
2: is_enabled
5: is_enabled
6: is_disabled

already been here

all of state space has been 
explored



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

25

Sound Analyses
• A sound analysis never misses an error

[of the relevant error category]
• No false negatives (missed errors)
• Requires exhaustive exploration of state space

• Inductive argument for soundness
• Start program with abstract state for all possible initial 

concrete states
• At each step, ensure new abstract state covers all concrete 

states that could result from executing statement on any 
concrete state from previous abstract state

• Once no new abstract states are reachable, by induction all 
concrete program executions have been considered



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

26

Soundness and Precision

Program state covered in actual execution

Program state covered by abstract
execution with analysis

unsound
(false negative)

imprecise
(false positive)



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

27

Soundness and Precision

Program state covered in actual execution

Program state covered by abstract
execution with analysis

unsound
(false negative)

imprecise
(false positive)



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

28

Abstraction and Soundness

• Consider “Sound Testing”
[testing that finds every bug]

• Requires executing program on every input
• (and on all interleavings of threads)

• Infinite number of inputs for realistic programs
• Therefore impossible in practice

• Abstraction
• Infinite state space finite set of states
• Can achieve soundness by exhaustive exploration



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

29

Analysis as an Approximation
• Analysis must approximate in practice

• May report errors where there are really none
• False positives

• May not report errors that really exist
• False negatives

• All analysis tools have either false negatives or false 
positives

• Approximation strategy
• Find a pattern P for correct code

• which is feasible to check (analysis terminates quickly),
• covers most correct code in practice (low false positives),
• which implies no errors (no false negatives)

• Analysis can be pretty good in practice
• Many tools have low false positive/negative rates
• A sound tool has no false negatives

• Never misses an error in a category that it checks



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

30

Attribute-Specific Analysis
• Analysis is specific to

• A quality attribute
• Race condition
• Buffer overflow
• Use after free

• A strategy for verifying that attribute
• Protect each shared piece of data with a lock
• Presburger arithmetic decision procedure for array 

indexes
• Only one variable points to each memory location

• Analysis is inappropriate for some attributes
• Approach to assurance is ad-hoc and follows no 

clear pattern
• No known decision procedure for checking an 

assurance pattern that is followed



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

31

Soundness Tradeoffs

• Sound Analysis
• Assurance that no 

bugs are left
• Of the target error 

class
• Can focus other 

QA resources on 
other errors

• May have more 
false positives

• Unsound Analysis
• No assurance that 

bugs are gone
• Must still apply 

other QA 
techniques

• May have fewer 
false positives



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

32

Outline

• Why static analysis?
• What is static analysis?
• How does static analysis work?
• What does the future hold?

• Current CMU Analysis Research
• What tools are available?
• How does it fit into my organization?



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

33

Fluid: Concurrency Analysis



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

34

Principal Case Study Results
• (top-10 SV software vendor – Vendor V)

• 300KLOC concurrent Java – productized production 
code

• Highly multi-threaded container code
• 3 days modeling time
• 45 Lock models

• Models: requiresLock, aggregate, unshared, mapinto, etc.
• 1800 “+”,  230 “X”,  1700 “i”

• Several major architectural issues detected
• Deadlocks and races

• About 25 faults detected and corrected in code base
• Vendor staff developed many models themselves

• UI “natural” for developers
• Highly interactive use

• Tool identified areas for code review



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

35

Framework Usage: DropDownList
• Can add drop down lists to a web page
• Can change the selection programmatically
• Only one item is selected at a time



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

36

Class diagram



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

37

Let’s change the selection
String searchTerm = …;
ListItem newItem;
DropDownList ctrl = getControl(“myList”);

newItem = ctrl.getItems().findByValue(searchTerm);
newItem.setSelected(true);



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

38

Correct code
String searchTerm = …;
ListItem newItem, oldItem;
DropDownList ctrl = getControl(“myList”);

oldItem = ctrl.getSelectedItem();
oldItem.setSelected(false);

newItem = ctrl.getItems().findByValue(searchTerm);
newItem.setSelected(true);

Our Solution
• Track relationship between objects “child(oldItem, ctrl)”
• Track object state “selected(oldItem)”

“no_selection(ctrl)”
• Enforce constraints “must remove old selection

before setting new selection”



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

39

Cooperative Permissions

• Lightweight verification of architectural protocols
• Naturally express coordination among pointers

• Follows engineering intuition
• Immediate benefits and consistency over time

• Assure correct usage of libraries, frameworks; find defects
• Works with OO designs

• Supports aliasing, recursion, and inheritance
• Proved sound, validated on small but real examples

• OOPSLA 2007 paper, Modular Typestate Checking for 
Aliased Objects

• upcoming OOPSLA 2008 paper – extension to concurrency



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

40

Ownership Object Graphs
with Marwan Abi-Antoun

• 5-year vision: a big picture you can trust
• Summarize million LOC systems in 1 page
• Zoom in to any level of detail

• Look inside a top-level component
• Assure that the 1-page summary is 

complete
• Communication integrity



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

41

ToolButton

ToolButton

SelectionToolfTool

JavaDrawApp

fListener

PaletteIcon

fIcon

String

fName

ToolButton

SelectionTool

fTool

JavaDrawApp

fListener

fIcon

fName

ToolButton

SelectionTool

fTool

JavaDrawApp

fListener

fIcon

fName

ToolButton

ToolButton

Main app

Undoable

SelectionTool

SelectionTool myUndoActivity

JavaDrawApp

myDrawingEditor

Tool

fChild

AbstractTool$EventDispatcher

myEventDispatcher

Object

SelectionTool
myUndoActivity

myDrawingEditor

fChild

AbstractTool$EventDispatcher
myEventDispatcher

SelectionTool

SelectionTool myUndoActivity

JavaDrawApp

myDrawingEditor

Tool

fChild

AbstractTool$EventDispatcher

myEventDispatcher

SelectionTool

myUndoActivity

myDrawingEditor Tool

fChild
AbstractTool$EventDispatchermyEventDispatcher

myUndoActivity

myDrawingEditor

fChild

AbstractTool$EventDispatchermyEventDispatcher

myUndoActivity

JavaDrawAppmyDrawingEditor

fChild

myEventDispatcher

JavaDrawApp

JavaDrawApp

fSelectedToolButton

fDefaultToolButton

fTool

AnimatorfAnimator

DrawingView

fView

VectormdiListeners

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

JComponent

desktop

JTextFieldfStatusLine

EventListenerList

listenerList

fView

AnimatablefAnimatable

fSelectedToolButton

fDefaultToolButton

fTool

fAnimator

fView

Vector

mdiListeners

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

fAnimator

fView

Vector

mdiListeners

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

mdiListeners::elts

fAnimator

fView

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

mdiListeners::elts

fAnimator

fView

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

fAnimator

fView

mdiListeners

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

desktop

fStatusLine

listenerList

Rectangle

UndoableHandle

Image

DrawingEditor

Tool
fSelectGroup

fAnchorHandle

myDrawingEditor

AbstractTool$EventDispatchermyEventDispatcher

DragTracker

myWrappedTool

fSelectGroup

fAnchorHandle

myDrawingEditor

AbstractTool$EventDispatcher
myEventDispatcher

myWrappedTool

fSelectGroup

fAnchorHandle

myDrawingEditor

AbstractTool$EventDispatchermyEventDispatcher

DragTracker

myWrappedTool

fSelected

fNormal

fPressed Dimension

fSize

Vector

Object[]elementData

AbstractTool$EventDispatcher myRegisteredListeners

myObservedTool

myObservedTool

myRegisteredListeners

myObservedTool

myRegisteredListeners

myObservedTool

myRegisteredListeners

myObservedTool

ToolListener

myRegisteredListeners::elts

myObservedTool

myRegisteredListeners

myUndoActivity

myDrawingEditor

myEventDispatcher

Figure

fAnchorFigure POPUP_MENU

listenerList[]
NULL_ARRAY[]

• JHotDraw v. 5.3
• 195 classes
• 15,000 LOC

• Object graph from Womble
• Shows details effectively
• Does not scale to

high-level view
• Unsound

Output of Womble (Jackson and Waingold [JW01])

Case Study: JHotDraw



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

42

Case Study: JHotDraw

• Architectural structure
• Shows object 

relationships
• Displays Model-View-

Controller design intent
• Fits on a page

• Characteristics
• Hierarchical

• Top level objects are 
summaries

• Can zoom in to details
• Sound

• Represents all objects
• Shows all field links



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

43

Outline

• Why static analysis?
• What is static analysis?
• How does static analysis work?
• What are current tools like?
• What does the future hold?
• What tools are available?
• How does it fit into my organization?



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

44

Error Taxonomy (incomplete list)
• Concurrency

• race conditions
• deadlock
• data protected by locks
• non-lock concurrency (e.g. AWT)

• Exceptional conditions
• integer over/underflow
• division by zero
• unexpected exceptions
• not handling error cases
• type conversion errors

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, 

freed)
• illegal free (double free, not 

allocated)
• memory leak
• use uninitialized data

• Resource/protocol errors
• calling functions in incorrect order
• failure to call initialization function
• failure to free resources

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Other security
• privilege escalation
• denial of service
• dynamic code
• malicious trigger
• insecure randomness
• least privilege violations

• Design and understanding
• dependency analysis
• heap structure
• call graph

• Code quality
• metrics
• unused variables



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

45

Microsoft Tools
• Static Driver Verifier (was SLAM)

• http://www.microsoft.com/whdc/devtools/tools/sdv.mspx
• Part of Windows Driver Kit
• Uses model checking to catch misuse of Windows device driver APIs

• PREfast and the Standard Annotation Language
• Ships with Visual Studio 2005 (team edition) and Windows SDK

• http://windowssdk.msdn.microsoft.com/
• Standard Annotation Language

• Lightweight code specifications
• Buffer size, memory management, return values, tainted data

• PREfast
• Symbolically executes paths to find memory errors
• Lightweight version of PREfix analysis used internally at Microsoft
• Verifies SAL specifications

• Blogs on getting started with SAL
• http://blogs.msdn.com/michael_howard/archive/2006/05/19/602077.aspx
• http://blogs.msdn.com/michael_howard/archive/2006/05/23/604957.aspx

• Microsoft docs
• http://msdn2.microsoft.com/en-us/library/ms182025.aspx
• http://msdn2.microsoft.com/en-us/library/y8hcsad3.aspx

• If you use Microsoft tools, use these!

http://windowssdk.msdn.microsoft.com/
http://blogs.msdn.com/michael_howard/archive/2006/05/19/602077.aspx
http://blogs.msdn.com/michael_howard/archive/2006/05/23/604957.aspx
http://msdn2.microsoft.com/en-us/library/ms182025.aspx
http://msdn2.microsoft.com/en-us/library/y8hcsad3.aspx


May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

46

FindBugs
• findbugs.sourceforge.net

• Focus: bug finding
• Language: Java

• Open source project
• Free
• Large community
• Easy to adapt and 

customize
• Many defect detectors
• Eclipse plugin support
• Mostly searches for 

localized bugs

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, 

freed)
• double free
• memory leak
• use uninitialized data

• Input validation
• command injection
• tainted data

• Concurrency
• race conditions
• deadlock
• data protected by locks

• Resource/protocol errors
• failure to free resources

• Exceptional conditions
• integer over/underflow
• not handling error cases
• type conversion errors

• Code quality
• unused variables



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

47

Coverity Prevent/Extend
• www.coverity.com

• Focus: bugs and security
• Languages: C, C++, Java
• OS: Windows, Linux, OS X, 

NetBSD, FreeBSD, Solaris, 
HPUX

• Builds on the Metal static 
analysis research project at 
Stanford 

• Open source analysis project
• http://scan.coverity.com

• Selling points
• Low false positive rates
• Scales to 10 MLOC+
• Statistical bug finding approach
• Extensibility with Extend
• Seamless build integration

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, 

freed)
• double free
• memory leak
• use uninitialized data

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Concurrency
• race conditions
• deadlock

• Resource/protocol errors
• calling functions in incorrect 

order
• BSTR library usage (Microsoft 

COM)
• failure to free resources

• Exceptional conditions
• not handling error cases



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

48

GrammaTech CodeSonar
• www.grammatech.com

• Focus: bug finding
• Languages: C, C++
• OS: Windows, Linux, Solaris
• Company founded by Tim 

Teitelbaum of Cornell and 
Tom Reps of U. Wisc. Mad. 

• Selling points
• Strong coverage of C/C++ 

errors
• Binary analysis technology 

under development
• Support for custom checks
• Easy integration with build
• CodeSurfer program 

understanding tool

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, freed)
• illegal free (double free, not 

allocated)
• memory leak
• use uninitialized data

• Input validation
• format string
• tainted data

• Concurrency
• race conditions
• deadlock

• Exceptional conditions
• integer over/underflow
• not handling error cases
• division by zero
• type conversion errors

• Design and understanding
• navigation
• dependency analysis
• ASTs, CFGs, pointer analysis
• heap structure
• call graph



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

49

Klocwork K7 Development Suite
• www.klocwork.com

• Focus: security and bugs
• Languages: C, C++, Java
• OS: Windows, Linux, Solaris

• Selling points
• Strong focus on both bugs  

and vulnerabilities
• Built-in extensibility
• Enterprise/process support

• track quality over time
• Architectural visualization 

support

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, freed)
• illegal free (double free, not allocated)
• memory leak
• use uninitialized data

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Concurrency
• race conditions

• Resource/protocol errors
• calling functions in incorrect order

• Exceptional conditions
• not handling error cases

• Other security
• insecure randomness
• least privilege violations

• Design and understanding
• dependency analysis



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

50

Fortify Source Code Analysis Suite
• www.fortify.com

• Focus: security
• Languages: C, C++, .NET family (C#, 

VB), Java, ColdFusion, TSQL, 
PLSQL, XML
• OO support from the beginning

• Windows, Linux, OS X, Solaris, AIX
• Sponsor of FindBugs, fully integrated 

FindBugs support

• Selling points
• Strong focus on security
• Built-in extensibility
• Good coverage of security errors

• Runtime products from same rule set:
• Fortify Tracer— transform black 

box tests into white box results
• Fortify Defender—detect attacks

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, freed)
• double free
• memory leak
• use uninitialized data

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Concurrency
• race conditions
• deadlock

• Resource/protocol errors
• calling functions in incorrect order
• failure to call initialization function
• failure to free resources

• Exceptional conditions
• integer over/underflow
• unexpected exceptions
• not handling error cases

• Code quality
• metrics (attack surface, etc.)



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

51

Ounce Labs 5 
• www.ouncelabs.com

• Focus: security
• Languages: Java, C, C++, 

C#, other web
• OS: Windows, Solaris, Linux, 

AIX

• Selling points
• Sound detects critical 

classes of errors
• Reports when error can be 

confirmed
• Scales to 50 MLOC+
• Broad coverage of security 

errors
• Total portfolio risk 

management

• Memory errors
• array bounds / buffer overrun

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Concurrency
• race conditions

• Resource/protocol errors
• failure to free resources

• Other security
• privilege escalation
• denial of service
• dynamic code
• malicious trigger



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

52

PolySpace 
• www.polyspace.com

• (now part of MathWorks)

• Focus: embedded system 
defects

• Languages: C, C++, Ada
• UML Rhapsody, Simulink

models
• OS: Windows, Linux, Solaris

• Selling points
• Focus on embedded systems
• Mathematically verifies code 

with proof engine
• Assured code shown in green
• Errors in checked classes 

cannot occur

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, 

freed)
• use uninitialized data
• reference to non-initialized class 

members

• Exceptional conditions
• integer over/underflow
• division by zero
• arithmetic exceptions
• type conversion errors



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

53

SureLogic JSure
• www.surelogic.com

• Focus: concurrency, architecture, 
API usage

• Language: Java

• Selling points
• Focus on Java concurrency
• Immediate return on 

investment
• Professional services

• End-to-end support for FindBugs 
analysis

• Sound analysis – shows 
assured code w/ green plus
• Errors in checked classes 

cannot occur

• Concurrency
• race conditions
• data protected by locks
• non-lock concurrency (e.g. AWT)

• Architecture compliance
• module structure

• Full disclosure: I have a stake in 
SureLogic as a consultant and 
potential technology provider

http://www.surelogic.com/


May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

54

Lattix LDM 
• www.lattix.com

• Focus: architectural structure
• Languages: C, C++, Java, .NET
• OS: Windows, Linux, Mac OS X

• Published in OOPSLA 2005

• Selling points
• Focus on architectural 

structure
• Design Structure Matrix 

representation
• Built automatically from code
• Analysis extracts layered 

architecture
• Checks design rules
• Downloadable trial version

• Design and understanding
• dependency analysis
• impact analysis
• architecture violations

Source: OOPSLA 2005 paper

http://www.lattix.com/


May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

55

Headway Software Structure 101 
• www.headwaysoftware.com

• Focus: architectural structure
• Languages: Java, Ada
• OS: Windows, Linux, Mac OS 

X

• Selling points
• Focus on architectural 

structure
• Supports design structure 

matrices, other notations
• Structural analysis

• dependencies
• impact of change
• architectural evolution

• Downloadable trial version

• Design and understanding
• dependency analysis
• impact analysis
• architectural violations
• complexity metrics

Source: Headway Software web site



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

56

Outline

• Why static analysis?
• What is static analysis?
• How does static analysis work?
• What are current tools like?
• What does the future hold?
• What tools are available?
• How does it fit into my organization?

• Lessons learned at Microsoft & eBay: Introduction, 
measurement, refinement, check in gates
• Microsoft source: Manuvir Das
• eBay source: Ciera Jaspan



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

57

Introducing Static Analysis
• Incremental approach

• Begin with early adopters, small team
• Use these as champions in organization

• Choose/build the tool right
• Not too many false positives
• Good error reporting

• Show error context, trace
• Focus on big issues

• Something developers, company cares about
• Ensure you can teach the tool

• Suppress false positive warnings
• Add design intent for assertions, assumptions

• Bugs should be fixable [Manuvir Das]
• Easy to fix, easy to verify, robust to small changes

• Support team
• Answer questions, help with tool



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

58

Tool Customization

• Tools come with many analyses
• Some relevant, some irrelevant
• eBay example [Jaspan et al. 2007]

• Dead store to local is a critical performance bug 
if the dead code is a database access

• Process
• Turn on all defect detectors
• Estimate value of reports, false positives
• Assign each detector a priority

• Tied to enforcement mechanism, e.g. prohibited 
on check-ins



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

59

Cost/Benefit Analysis
• Costs

• Tool license
• Engineers internally supporting tool
• Peer reviews of defect reports

• Benefits
• How many defects will it find, and what priority?

• Experience at eBay [Jaspan et al. 2007]
• Evaluated FindBugs
• Found less severe bugs than engineer equivalent
• Clearly found more bugs than engineer equivalent
• Ultimately incorporated tool into process

• See OOPSLA 2007 practitioner report, Understanding the 
Cost of Program Analysis Tools, Tuesday 2pm



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

60

Enforcement
• Microsoft: check in gates

• Cannot check in code unless analysis suite has been run and 
produced no errors
• Test coverage, dependency violation, insufficient/bad design 

intent, integer overflow, allocation arithmetic, buffer overruns, 
memory errors, security issues

• eBay: dev/QA handoff
• Developers run FindBugs on desktop
• QA runs FindBugs on receipt of code, posts results

• High-priority fixes required

• Requirements for success
• Low false positives
• A way to override false positive warnings

• Typically through inspection
• Developers must buy into static analysis first



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

61

Root Cause Analysis

• Deep analysis
• More than cause of each bug
• Identify patterns in defects
• Understand why the defect was introduced
• Understand why it was not caught earlier

• Opportunity to intervene
• New static analyses

• written by analysis support team
• Other process interventions



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

62

Impact at Microsoft

• Thousands of bugs caught monthly
• Significant observed quality improvements

• e.g. buffer overruns latent in codebaes
• Widespread developer acceptance

• Check-in gates
• Writing specifications



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

63

Analysis Maturity Model
Caveat: not yet enough experience to make strong claims
• Level 1: use typed languages, ad-hoc tool use
• Level 2: run off-the-shelf tools as part of process

• pick and choose analyses which are most useful
• Level 3: integrate tools into process

• check in quality gates, milestone quality gates
• integrate into build process, developer environments
• use annotations/settings to teach tool about internal libraries

• Level 4: customized analyses for company domain
• extend analysis tools to catch observed problems

• Level 5: continual optimization of analysis 
infrastructure
• mine patterns in bug reports for new analyses
• gather data on analysis effectiveness
• tune analysis based on observations



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

64

Summary

• Analysis is changing QA practices in leading 
organizations today

• Exhibit A: Microsoft
• Comprehensive analysis was centerpiece of QA 

for Windows Vista
• Now affects every part of the engineering process

• Analysis technology
• Enables organizations to increase quality while 

enhancing functionality
• Will differentiate tomorrow's leaders in the market



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

65

Questions?


	Ensuring Software Quality�with Static Analysis Tools
	Find the Bug!
	Metal Interrupt Analysis
	Applying the Analysis
	Outline
	Software Disasters: Therac-25
	Software Disasters: Ariane 5
	Software Disasters
	Market Drivers for Quality
	Process, Cost, and Quality
	Root Causes of Errors
	Existing Approaches
	Errors Static Analysis can Find
	Empirical Results on Static Analysis
	Empirical Results on Static Analysis
	Quality Assurance at Microsoft (Part 1)
	Outline
	Static Analysis Definition
	Outline
	How can Analysis Search All Paths?
	Example
	Example
	Example
	Example
	Sound Analyses
	Soundness and Precision
	Soundness and Precision
	Abstraction and Soundness
	Analysis as an Approximation
	Attribute-Specific Analysis
	Soundness Tradeoffs
	Outline
	Fluid: Concurrency Analysis
	Principal Case Study Results
	Framework Usage: DropDownList
	Class diagram
	Let’s change the selection
	Correct code
	Cooperative Permissions
	Ownership Object Graphs�with Marwan Abi-Antoun
	Case Study: JHotDraw
	Case Study: JHotDraw
	Outline
	Error Taxonomy (incomplete list)
	Microsoft Tools
	FindBugs
	Coverity Prevent/Extend
	GrammaTech CodeSonar
	Klocwork K7 Development Suite
	Fortify Source Code Analysis Suite
	Ounce Labs 5 
	PolySpace 
	SureLogic JSure 
	Lattix LDM 
	Headway Software Structure 101 
	Outline
	Introducing Static Analysis
	Tool Customization
	Cost/Benefit Analysis
	Enforcement
	Root Cause Analysis
	Impact at Microsoft
	Analysis Maturity Model
	Summary
	Questions?

