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Find the Bug!

disable interrupts

re-enable interrupts

ERROR: returning
with interrupts disabled

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>
err(double enable)

disable =>
err(double disable)

end path =>
err(end path

with/intr
disabled)

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Applying the Analysis

initial state is_enabled

transition to is_disabled

transition to is_enabled
final state is_enabled is OK

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules 
Using System-Specific, Programmer-Written 
Compiler Extensions, OSDI ’00.
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Outline

• Why static analysis?
• The limits of testing and inspection

• What is static analysis?
• How does static analysis work?
• What does the future hold?
• What tools are available?
• How does it fit into my organization?
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Software Disasters: Therac-25
• Delivered radiation treatment
• 2 modes

• Electron: low power electrons
• X-Ray: high power electrons 

converted to x-rays with 
shield

• Race condition
• Operator specifies x-ray, 

then quickly corrects to 
electron mode

• Dosage process doesn’t see 
the update, delivers x-ray 
dose

• Mode process sees update, 
removes shield

• Consequences
• 3 deaths, 3 serious injuries 

from radiation overdose

from http://www.netcomp.monash.edu.au/cpe9001/assets/readings/HumanErrorTalk6.gif

source: Leveson and Turner, An Investigation of the Therac-25 Accidents, IEEE Computer, Vol. 26, No. 7, July 1993.
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Software Disasters: Ariane 5
• $7 billion, 10 year rocket 

development
• Exploded on first launch

• A numeric overflow occurred in 
an alignment system

• Converting lateral velocity from 
a 64 to a 16-bit format

• Guidance system shut down 
and reported diagnostic data

• Diagnostic data was interpreted 
as real, led to explosion

• Irony: alignment system was 
unnecessary after launch and 
should have been shut off

• Double irony: overflow was in 
code reused from Ariane 4
• Overflow impossible in Ariane 4
• Decision to reuse Ariane 4 

software, as developing new 
software was deemed too risky!

from http://www-user.tu-chemnitz.de/~uro/teaching/crashed-numeric/ariane5/

source: Ariane 501 Inquiry Board report
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Software Disasters
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Market Drivers for Quality

• Security
• News: credit cards compromised

• Business-critical
• How much do Amazon, eBay lose if their 

sites goes offline?
• Safety-critical

• Control software for vehicles, aircraft
• Regulations

• HIPAA, others: legal requirements on 
software
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Process, Cost, and Quality

CMM: 1           2           3           4          5

Software
Quality

S&S, Agile, RUP, etc: less rigorous      . . .    more rigorous

Process intervention, 
testing, and inspection 

yield first-order 
software quality

improvement

Additional technology 
and tools are needed 

to close the gap 

Critical Systems 
Acceptability

Process
Rigor, Cost

Perfection
(unattainable)

Slide: William Scherlis
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Root Causes of Errors
• Requirements problems

• Don’t fit user needs

• Design flaws
• Lacks required qualities

• Implementation errors
• Assign
• Checking
• Algorithm
• Timing
• Interface
• Relationship

Taxonomy: [Chillarege et al., Orthogonal Defect Classification]

Static Analysis Contributions

Does design achieve goals?
Is design implemented right?

Is data initialized?
Is dereference/indexing valid?

Are threads synchronized?
Are interface semantics followed?
Are invariants maintained?

H
ar

d
H

ar
d

Security
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Existing Approaches
• Testing: is the answer 

right?
• Verifies features work
• Finds algorithmic 

problems

• Inspection: is the quality 
there?
• Missing requirements
• Design problems
• Style issues
• Application logic

• Limitations
• Non-local interactions
• Uncommon paths
• Non-determinism

• Static analysis: will I get 
an answer?
• Verifies non-local 

consistency
• Checks all paths
• Considers all non-

deterministic choices
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Errors Static Analysis can Find
• Security vulnerabilities

• Buffer overruns, unvalidated input…
• Memory errors

• Null dereference, uninitialized data…
• Resource leaks

• Memory, OS resources…
• Violations of API or framework rules

• e.g. Windows device drivers; real time libraries; GUI 
frameworks

• Exceptions
• Arithmetic/library/user-defined

• Encapsulation violations
• Race conditions

Theme: consistently following rules throughout code
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Empirical Results on Static Analysis

• Nortel study [Zheng et al. 2006]
• 3 C/C++ projects
• 3 million LOC total
• Early generation static analysis tools

• Conclusions
• Cost per fault of static analysis 61-72% compared 

to inspections
• Effectively finds assignment, checking faults
• Can be used to find potential security 

vulnerabilities
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Empirical Results on Static Analysis
• InfoSys study [Chaturvedi 2005]

• 5 projects
• Average 700 function points 

each
• Compare inspection with and 

without static analysis

• Conclusions
• Fewer defects
• Higher productivity

Adapted from [Chaturvedi 2005]
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Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small
• Too many paths to consider as system grew 

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations
• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Longhorn/Vista release of Windows
• Release still pending

• Early 2000s: add static analysis
• More on this later
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Outline

• Why static analysis?
• What is static analysis?

• Abstract state space exploration
• How does static analysis work?
• What does the future hold?
• What tools are available?
• How does it fit into my organization?



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

18

Static Analysis Definition
• Static program analysis is the systematic 

examination of an abstraction of a program’s 
state space

• Metal interrupt analysis
• Abstraction

• 2 states: enabled and disabled
• All program information—variable values, heap contents—is 

abstracted by these two states, plus the program counter
• Systematic

• Examines all paths through a function
• What about loops?  More later…

• Each path explored for each reachable state
• Assume interrupts initially enabled (Linux practice)
• Since the two states abstract all program information, the 

exploration is exhaustive
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Outline

• Why static analysis?
• What is static analysis?
• How does static analysis work?

• Termination, Soundness, and Precision
• What does the future hold?
• What tools are available?
• How does it fit into my organization?
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How can Analysis Search All Paths?
• Exponential # paths with if statements
• Infinite # paths with loops
• Secret weapon: Abstraction

• Finite number of (abstract) states
• If you come to a statement and you’ve already 

explored a state for that statement, stop.
• The analysis depends only on the code and the current 

state
• Continuing the analysis from this program point and state 

would yield the same results you got before
• If the number of states isn’t finite, too bad

• Your analysis may not terminate
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Example
1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12. }

Path 1 (before stmt): true/no loop
2: is_enabled
3: is_enabled
6: is_disabled
11: is_disabled
12: is_enabled

no errors
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Example
1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12. }

Path 2 (before stmt): true/1 loop
2: is_enabled
3: is_enabled
6: is_disabled
7: is_disabled
8: is_enabled
9: is_enabled
11: is_disabled

already been here
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Example
1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12. }

Path 3 (before stmt): true/2+ 
loops

2: is_enabled
3: is_enabled
6: is_disabled
7: is_disabled
8: is_enabled
9: is_enabled
6: is_disabled

already been here
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Example
1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12. }

Path 4 (before stmt): false
2: is_enabled
5: is_enabled
6: is_disabled

already been here

all of state space has been 
explored
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Sound Analyses
• A sound analysis never misses an error

[of the relevant error category]
• No false negatives (missed errors)
• Requires exhaustive exploration of state space

• Inductive argument for soundness
• Start program with abstract state for all possible initial 

concrete states
• At each step, ensure new abstract state covers all concrete 

states that could result from executing statement on any 
concrete state from previous abstract state

• Once no new abstract states are reachable, by induction all 
concrete program executions have been considered
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Soundness and Precision

Program state covered in actual execution

Program state covered by abstract
execution with analysis

unsound
(false negative)

imprecise
(false positive)
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Soundness and Precision

Program state covered in actual execution

Program state covered by abstract
execution with analysis

unsound
(false negative)

imprecise
(false positive)
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Abstraction and Soundness

• Consider “Sound Testing”
[testing that finds every bug]

• Requires executing program on every input
• (and on all interleavings of threads)

• Infinite number of inputs for realistic programs
• Therefore impossible in practice

• Abstraction
• Infinite state space finite set of states
• Can achieve soundness by exhaustive exploration
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Analysis as an Approximation
• Analysis must approximate in practice

• May report errors where there are really none
• False positives

• May not report errors that really exist
• False negatives

• All analysis tools have either false negatives or false 
positives

• Approximation strategy
• Find a pattern P for correct code

• which is feasible to check (analysis terminates quickly),
• covers most correct code in practice (low false positives),
• which implies no errors (no false negatives)

• Analysis can be pretty good in practice
• Many tools have low false positive/negative rates
• A sound tool has no false negatives

• Never misses an error in a category that it checks
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Attribute-Specific Analysis
• Analysis is specific to

• A quality attribute
• Race condition
• Buffer overflow
• Use after free

• A strategy for verifying that attribute
• Protect each shared piece of data with a lock
• Presburger arithmetic decision procedure for array 

indexes
• Only one variable points to each memory location

• Analysis is inappropriate for some attributes
• Approach to assurance is ad-hoc and follows no 

clear pattern
• No known decision procedure for checking an 

assurance pattern that is followed
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Soundness Tradeoffs

• Sound Analysis
• Assurance that no 

bugs are left
• Of the target error 

class
• Can focus other 

QA resources on 
other errors

• May have more 
false positives

• Unsound Analysis
• No assurance that 

bugs are gone
• Must still apply 

other QA 
techniques

• May have fewer 
false positives
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Outline

• Why static analysis?
• What is static analysis?
• How does static analysis work?
• What does the future hold?

• Current CMU Analysis Research
• What tools are available?
• How does it fit into my organization?
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Fluid: Concurrency Analysis
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Principal Case Study Results
• (top-10 SV software vendor – Vendor V)

• 300KLOC concurrent Java – productized production 
code

• Highly multi-threaded container code
• 3 days modeling time
• 45 Lock models

• Models: requiresLock, aggregate, unshared, mapinto, etc.
• 1800 “+”,  230 “X”,  1700 “i”

• Several major architectural issues detected
• Deadlocks and races

• About 25 faults detected and corrected in code base
• Vendor staff developed many models themselves

• UI “natural” for developers
• Highly interactive use

• Tool identified areas for code review
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Framework Usage: DropDownList
• Can add drop down lists to a web page
• Can change the selection programmatically
• Only one item is selected at a time
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Class diagram
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Let’s change the selection
String searchTerm = …;
ListItem newItem;
DropDownList ctrl = getControl(“myList”);

newItem = ctrl.getItems().findByValue(searchTerm);
newItem.setSelected(true);
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Correct code
String searchTerm = …;
ListItem newItem, oldItem;
DropDownList ctrl = getControl(“myList”);

oldItem = ctrl.getSelectedItem();
oldItem.setSelected(false);

newItem = ctrl.getItems().findByValue(searchTerm);
newItem.setSelected(true);

Our Solution
• Track relationship between objects “child(oldItem, ctrl)”
• Track object state “selected(oldItem)”

“no_selection(ctrl)”
• Enforce constraints “must remove old selection

before setting new selection”
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Cooperative Permissions

• Lightweight verification of architectural protocols
• Naturally express coordination among pointers

• Follows engineering intuition
• Immediate benefits and consistency over time

• Assure correct usage of libraries, frameworks; find defects
• Works with OO designs

• Supports aliasing, recursion, and inheritance
• Proved sound, validated on small but real examples

• OOPSLA 2007 paper, Modular Typestate Checking for 
Aliased Objects

• upcoming OOPSLA 2008 paper – extension to concurrency
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Ownership Object Graphs
with Marwan Abi-Antoun

• 5-year vision: a big picture you can trust
• Summarize million LOC systems in 1 page
• Zoom in to any level of detail

• Look inside a top-level component
• Assure that the 1-page summary is 

complete
• Communication integrity
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• JHotDraw v. 5.3
• 195 classes
• 15,000 LOC

• Object graph from Womble
• Shows details effectively
• Does not scale to

high-level view
• Unsound

Output of Womble (Jackson and Waingold [JW01])

Case Study: JHotDraw
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Case Study: JHotDraw

• Architectural structure
• Shows object 

relationships
• Displays Model-View-

Controller design intent
• Fits on a page

• Characteristics
• Hierarchical

• Top level objects are 
summaries

• Can zoom in to details
• Sound

• Represents all objects
• Shows all field links
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Outline

• Why static analysis?
• What is static analysis?
• How does static analysis work?
• What are current tools like?
• What does the future hold?
• What tools are available?
• How does it fit into my organization?
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Error Taxonomy (incomplete list)
• Concurrency

• race conditions
• deadlock
• data protected by locks
• non-lock concurrency (e.g. AWT)

• Exceptional conditions
• integer over/underflow
• division by zero
• unexpected exceptions
• not handling error cases
• type conversion errors

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, 

freed)
• illegal free (double free, not 

allocated)
• memory leak
• use uninitialized data

• Resource/protocol errors
• calling functions in incorrect order
• failure to call initialization function
• failure to free resources

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Other security
• privilege escalation
• denial of service
• dynamic code
• malicious trigger
• insecure randomness
• least privilege violations

• Design and understanding
• dependency analysis
• heap structure
• call graph

• Code quality
• metrics
• unused variables
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Microsoft Tools
• Static Driver Verifier (was SLAM)

• http://www.microsoft.com/whdc/devtools/tools/sdv.mspx
• Part of Windows Driver Kit
• Uses model checking to catch misuse of Windows device driver APIs

• PREfast and the Standard Annotation Language
• Ships with Visual Studio 2005 (team edition) and Windows SDK

• http://windowssdk.msdn.microsoft.com/
• Standard Annotation Language

• Lightweight code specifications
• Buffer size, memory management, return values, tainted data

• PREfast
• Symbolically executes paths to find memory errors
• Lightweight version of PREfix analysis used internally at Microsoft
• Verifies SAL specifications

• Blogs on getting started with SAL
• http://blogs.msdn.com/michael_howard/archive/2006/05/19/602077.aspx
• http://blogs.msdn.com/michael_howard/archive/2006/05/23/604957.aspx

• Microsoft docs
• http://msdn2.microsoft.com/en-us/library/ms182025.aspx
• http://msdn2.microsoft.com/en-us/library/y8hcsad3.aspx

• If you use Microsoft tools, use these!

http://windowssdk.msdn.microsoft.com/
http://blogs.msdn.com/michael_howard/archive/2006/05/19/602077.aspx
http://blogs.msdn.com/michael_howard/archive/2006/05/23/604957.aspx
http://msdn2.microsoft.com/en-us/library/ms182025.aspx
http://msdn2.microsoft.com/en-us/library/y8hcsad3.aspx
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FindBugs
• findbugs.sourceforge.net

• Focus: bug finding
• Language: Java

• Open source project
• Free
• Large community
• Easy to adapt and 

customize
• Many defect detectors
• Eclipse plugin support
• Mostly searches for 

localized bugs

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, 

freed)
• double free
• memory leak
• use uninitialized data

• Input validation
• command injection
• tainted data

• Concurrency
• race conditions
• deadlock
• data protected by locks

• Resource/protocol errors
• failure to free resources

• Exceptional conditions
• integer over/underflow
• not handling error cases
• type conversion errors

• Code quality
• unused variables
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Coverity Prevent/Extend
• www.coverity.com

• Focus: bugs and security
• Languages: C, C++, Java
• OS: Windows, Linux, OS X, 

NetBSD, FreeBSD, Solaris, 
HPUX

• Builds on the Metal static 
analysis research project at 
Stanford 

• Open source analysis project
• http://scan.coverity.com

• Selling points
• Low false positive rates
• Scales to 10 MLOC+
• Statistical bug finding approach
• Extensibility with Extend
• Seamless build integration

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, 

freed)
• double free
• memory leak
• use uninitialized data

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Concurrency
• race conditions
• deadlock

• Resource/protocol errors
• calling functions in incorrect 

order
• BSTR library usage (Microsoft 

COM)
• failure to free resources

• Exceptional conditions
• not handling error cases



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

48

GrammaTech CodeSonar
• www.grammatech.com

• Focus: bug finding
• Languages: C, C++
• OS: Windows, Linux, Solaris
• Company founded by Tim 

Teitelbaum of Cornell and 
Tom Reps of U. Wisc. Mad. 

• Selling points
• Strong coverage of C/C++ 

errors
• Binary analysis technology 

under development
• Support for custom checks
• Easy integration with build
• CodeSurfer program 

understanding tool

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, freed)
• illegal free (double free, not 

allocated)
• memory leak
• use uninitialized data

• Input validation
• format string
• tainted data

• Concurrency
• race conditions
• deadlock

• Exceptional conditions
• integer over/underflow
• not handling error cases
• division by zero
• type conversion errors

• Design and understanding
• navigation
• dependency analysis
• ASTs, CFGs, pointer analysis
• heap structure
• call graph
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Klocwork K7 Development Suite
• www.klocwork.com

• Focus: security and bugs
• Languages: C, C++, Java
• OS: Windows, Linux, Solaris

• Selling points
• Strong focus on both bugs  

and vulnerabilities
• Built-in extensibility
• Enterprise/process support

• track quality over time
• Architectural visualization 

support

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, freed)
• illegal free (double free, not allocated)
• memory leak
• use uninitialized data

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Concurrency
• race conditions

• Resource/protocol errors
• calling functions in incorrect order

• Exceptional conditions
• not handling error cases

• Other security
• insecure randomness
• least privilege violations

• Design and understanding
• dependency analysis
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Fortify Source Code Analysis Suite
• www.fortify.com

• Focus: security
• Languages: C, C++, .NET family (C#, 

VB), Java, ColdFusion, TSQL, 
PLSQL, XML
• OO support from the beginning

• Windows, Linux, OS X, Solaris, AIX
• Sponsor of FindBugs, fully integrated 

FindBugs support

• Selling points
• Strong focus on security
• Built-in extensibility
• Good coverage of security errors

• Runtime products from same rule set:
• Fortify Tracer— transform black 

box tests into white box results
• Fortify Defender—detect attacks

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, freed)
• double free
• memory leak
• use uninitialized data

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Concurrency
• race conditions
• deadlock

• Resource/protocol errors
• calling functions in incorrect order
• failure to call initialization function
• failure to free resources

• Exceptional conditions
• integer over/underflow
• unexpected exceptions
• not handling error cases

• Code quality
• metrics (attack surface, etc.)
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Ounce Labs 5 
• www.ouncelabs.com

• Focus: security
• Languages: Java, C, C++, 

C#, other web
• OS: Windows, Solaris, Linux, 

AIX

• Selling points
• Sound detects critical 

classes of errors
• Reports when error can be 

confirmed
• Scales to 50 MLOC+
• Broad coverage of security 

errors
• Total portfolio risk 

management

• Memory errors
• array bounds / buffer overrun

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Concurrency
• race conditions

• Resource/protocol errors
• failure to free resources

• Other security
• privilege escalation
• denial of service
• dynamic code
• malicious trigger
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PolySpace 
• www.polyspace.com

• (now part of MathWorks)

• Focus: embedded system 
defects

• Languages: C, C++, Ada
• UML Rhapsody, Simulink

models
• OS: Windows, Linux, Solaris

• Selling points
• Focus on embedded systems
• Mathematically verifies code 

with proof engine
• Assured code shown in green
• Errors in checked classes 

cannot occur

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, 

freed)
• use uninitialized data
• reference to non-initialized class 

members

• Exceptional conditions
• integer over/underflow
• division by zero
• arithmetic exceptions
• type conversion errors
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SureLogic JSure
• www.surelogic.com

• Focus: concurrency, architecture, 
API usage

• Language: Java

• Selling points
• Focus on Java concurrency
• Immediate return on 

investment
• Professional services

• End-to-end support for FindBugs 
analysis

• Sound analysis – shows 
assured code w/ green plus
• Errors in checked classes 

cannot occur

• Concurrency
• race conditions
• data protected by locks
• non-lock concurrency (e.g. AWT)

• Architecture compliance
• module structure

• Full disclosure: I have a stake in 
SureLogic as a consultant and 
potential technology provider

http://www.surelogic.com/
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Lattix LDM 
• www.lattix.com

• Focus: architectural structure
• Languages: C, C++, Java, .NET
• OS: Windows, Linux, Mac OS X

• Published in OOPSLA 2005

• Selling points
• Focus on architectural 

structure
• Design Structure Matrix 

representation
• Built automatically from code
• Analysis extracts layered 

architecture
• Checks design rules
• Downloadable trial version

• Design and understanding
• dependency analysis
• impact analysis
• architecture violations

Source: OOPSLA 2005 paper

http://www.lattix.com/
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Headway Software Structure 101 
• www.headwaysoftware.com

• Focus: architectural structure
• Languages: Java, Ada
• OS: Windows, Linux, Mac OS 

X

• Selling points
• Focus on architectural 

structure
• Supports design structure 

matrices, other notations
• Structural analysis

• dependencies
• impact of change
• architectural evolution

• Downloadable trial version

• Design and understanding
• dependency analysis
• impact analysis
• architectural violations
• complexity metrics

Source: Headway Software web site
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Outline

• Why static analysis?
• What is static analysis?
• How does static analysis work?
• What are current tools like?
• What does the future hold?
• What tools are available?
• How does it fit into my organization?

• Lessons learned at Microsoft & eBay: Introduction, 
measurement, refinement, check in gates
• Microsoft source: Manuvir Das
• eBay source: Ciera Jaspan
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Introducing Static Analysis
• Incremental approach

• Begin with early adopters, small team
• Use these as champions in organization

• Choose/build the tool right
• Not too many false positives
• Good error reporting

• Show error context, trace
• Focus on big issues

• Something developers, company cares about
• Ensure you can teach the tool

• Suppress false positive warnings
• Add design intent for assertions, assumptions

• Bugs should be fixable [Manuvir Das]
• Easy to fix, easy to verify, robust to small changes

• Support team
• Answer questions, help with tool
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Tool Customization

• Tools come with many analyses
• Some relevant, some irrelevant
• eBay example [Jaspan et al. 2007]

• Dead store to local is a critical performance bug 
if the dead code is a database access

• Process
• Turn on all defect detectors
• Estimate value of reports, false positives
• Assign each detector a priority

• Tied to enforcement mechanism, e.g. prohibited 
on check-ins
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Cost/Benefit Analysis
• Costs

• Tool license
• Engineers internally supporting tool
• Peer reviews of defect reports

• Benefits
• How many defects will it find, and what priority?

• Experience at eBay [Jaspan et al. 2007]
• Evaluated FindBugs
• Found less severe bugs than engineer equivalent
• Clearly found more bugs than engineer equivalent
• Ultimately incorporated tool into process

• See OOPSLA 2007 practitioner report, Understanding the 
Cost of Program Analysis Tools, Tuesday 2pm
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Enforcement
• Microsoft: check in gates

• Cannot check in code unless analysis suite has been run and 
produced no errors
• Test coverage, dependency violation, insufficient/bad design 

intent, integer overflow, allocation arithmetic, buffer overruns, 
memory errors, security issues

• eBay: dev/QA handoff
• Developers run FindBugs on desktop
• QA runs FindBugs on receipt of code, posts results

• High-priority fixes required

• Requirements for success
• Low false positives
• A way to override false positive warnings

• Typically through inspection
• Developers must buy into static analysis first
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Root Cause Analysis

• Deep analysis
• More than cause of each bug
• Identify patterns in defects
• Understand why the defect was introduced
• Understand why it was not caught earlier

• Opportunity to intervene
• New static analyses

• written by analysis support team
• Other process interventions



May 14, 2008 CMU – Los Alamos Seminar: Ensuring Software 
Quality with Static Analysis Tools 

62

Impact at Microsoft

• Thousands of bugs caught monthly
• Significant observed quality improvements

• e.g. buffer overruns latent in codebaes
• Widespread developer acceptance

• Check-in gates
• Writing specifications
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Analysis Maturity Model
Caveat: not yet enough experience to make strong claims
• Level 1: use typed languages, ad-hoc tool use
• Level 2: run off-the-shelf tools as part of process

• pick and choose analyses which are most useful
• Level 3: integrate tools into process

• check in quality gates, milestone quality gates
• integrate into build process, developer environments
• use annotations/settings to teach tool about internal libraries

• Level 4: customized analyses for company domain
• extend analysis tools to catch observed problems

• Level 5: continual optimization of analysis 
infrastructure
• mine patterns in bug reports for new analyses
• gather data on analysis effectiveness
• tune analysis based on observations
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Summary

• Analysis is changing QA practices in leading 
organizations today

• Exhibit A: Microsoft
• Comprehensive analysis was centerpiece of QA 

for Windows Vista
• Now affects every part of the engineering process

• Analysis technology
• Enables organizations to increase quality while 

enhancing functionality
• Will differentiate tomorrow's leaders in the market
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Questions?
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