3a.1 NonEGU Point and Area Source Controls

3a.1.1 NonEGU Point and Area Source Control Strategies for Ozone NAAQS Final

In the NonEGU point and Area Sources portion of the control strategy, maximum control scenarios were used from the existing control measure dataset from AirControlNET 4.1 for 2020 (for geographic areas defined for each level of the standard being analyzed). This existing control measure dataset reflects changes and updates made as a result of the reviews performed for the final PM2.5 RIA. Following this, an internal review was performed by the OAQPS engineers in the Sector Policies and Programs Division (SPPD) to examine the controls applied by AirControlNET and decide if these controls were sufficient or could be more aggressive in their application, given the 2020 analysis year. This review was performed for nonEGU point NOx control measures. The result of this review was an increase in control efficiencies applied for many control measures, and more aggressive control measures for over 70 SCC's. For example, SPPD recommended that we apply SCR to cement kilns to reduce NOx emissions in 2020. Currently, there are no SCRs in operation at cement kilns in the U.S., but there are several SCRs in operation at cement kilns in France now. Based on the SCR experience at cement kilns in France, SPPD believes SCR could be applied at U.S. cement kilns by 2020. Following this, it was recommended that supplemental controls could be applied to 8 additional SCC's from nonEGU point NOx sources. We also looked into sources of controls for highly reactive VOC nonEGU point sources. Four additional controls were applied for highly reactive VOC nonEGU point sources not in AirControlNET.

3a.1.2 NOx Control Measures for NonEGU Point Sources.

Several types of NOx control technologies exist for nonEGU point sources: SCR, selective noncatalytic reduction (SNCR), natural gas reburn (NGR), coal reburn, and low-NOx burners. In some cases, LNB accompanied by flue gas recirculation (FGR) is applicable, such as when fuelborne NOx emissions are expected to be of greater importance than thermal NOx emissions. When circumstances suggest that combustion controls do not make sense as a control technology (e.g., sintering processes, coke oven batteries, sulfur recovery plants), SNCR or SCR may be an appropriate choice. Finally, SCR can be applied along with a combustion control such as LNB with overfire air (OFA) to further reduce NO_x emissions. All of these control measures are available for application on industrial boilers.

Besides industrial boilers, other nonEGU point source categories covered in this RIA include petroleum refineries, kraft pulp mills, cement kilns, stationary internal combustion engines, glass manufacturing, combustion turbines, and incinerators. NOx control measures available for petroleum refineries, particularly process heaters at these plants, include LNB, SNCR, FGR, and SCR along with combinations of these technologies. NOx control measures available for kraft pulp mills include those available to industrial boilers, namely LNB, SCR, SNCR, along with water injection (WI). NOx control measures available for cement kilns include those available to industrial boilers, namely LNB, SCR, and SNCR. Non-selective catalytic reduction (NSCR) can be used on stationary internal combustion engines. OXY-firing, a technique to modify

combustion at glass manufacturing plants, can be used to reduce NOx at such plants. LNB, SCR, and SCR + steam injection (SI) are available measures for combustion turbines. Finally, SNCR is an available control technology at incinerators. Table 3a.1 contains a complete list of the NOx nonEGU point control measures applied and their associated emission reductions obtained in the modeled control strategy for the alternate primary standard. For more information on these measures, please refer to the AirControlNET 4.1 control measures documentation report.

Table 3a.1: NOx NonEGU Point Emission Reductions by Control Measure

3a.1.3 VOC Control Measures for NonEGU Point Sources.

VOC controls were applied to a variety of nonEGU point sources as defined in the emissions inventory in this RIA. The first control is: permanent total enclosure (PTE) applied to paper and web coating operations and fabric operations, and incinerators or thermal oxidizers applied to wood products and marine surface coating operations. A PTE confines VOC emissions to a particular area where can be destroyed or used in a way that limits emissions to the outside atmosphere, and an incinerator or thermal oxidizer destroys VOC emissions through exposure to high temperatures (2,000 degrees Fahrenheit or higher). The second control applied is petroleum and solvent evaporation applied to printing and publishing sources as well as to surface coating operations. Table 3a.2 contains the emissions reductions for these measures in the modeled control strategy for the alternate primary standard. For more information on these measures, refer to the AirControlNET 4.1 control measures documentation report.

3a.1.4 NOx Control Measures for Area Sources

There were three control measures applied for NOx emissions from area sources. The first is RACT (reasonably available control technology) to 25 tpy (LNB). This control is the addition of a low NOx burner to reduce NOx emissions. This control is applied to industrial oil, natural gas, and coal combustion sources. The second control is water heaters plus LNB space heaters. This control is based on the installation of low-NOx space heaters and water heaters in commercial and institutional sources for the reduction of NOx emissions. The third control was switching to low sulfur fuel for residential home heating. This control is primarily designed to reduce sulfur dioxide, but has a co-benefit of reducing NOx. Table 3a.3 contains the listing of control measures and associated reductions for the modeled control strategy. For additional information regarding these controls please refer to the AirControlNET 4.1 control measures documentation report.

		Modeled Control Strategy Reductions
Control Measure	Source Type	(annual tons/year)
RACT to 25 tpy (LNB)	Industrial Coal Combustion	5,400
	Industrial NG Combustion	3,000
	Industrial Oil Combustion	570
Switch to Low Sulfur Fuel	Residential Home Heating	970
Water Heater + LNB Space Heaters	Commercial/Institutional-NG	4.300
	Residential NG	6.700

Table 3a.3: NOx Area Source Emission Reductions by Control Measure

3a.1.5 VOC Control Measures for Area Source.

The most frequently applied control to reduce VOC emissions from area sources was CARB Long-Term Limits. This control, which represents controls available in VOC rules promulgated by the California Air Resources Board, applies to commercial solvents and commercial adhesives, and depends on future technological innovation and market incentive methods to achieve emission reductions. The next most frequently applied control was the use of low or no VOC materials for graphic art source categories. The South Coast Air District's SCAQMD Rule 1168 control applies to wood furniture and solvent source categories sets limits for adhesive and sealant VOC content. The OTC solvent cleaning rule control establishes hardware and operating requirements for specified vapor cleaning machines, as well as solvent volatility limits and operating practices for cold cleaners. The Low Pressure/Vacuum Relief Valve control measure is the addition of low pressure/vacuum (LP/V) relief valves to gasoline storage tanks at service

stations with Stage II control systems. LP/V relief valves prevent breathing emissions from gasoline storage tank vent pipes. SCAQMD Limits control establishes VOC content limits for metal coatings along with application procedures and equipment requirements. Switch to Emulsified Asphalts control is a generic control measure replacing VOC-containing cutback asphalt with VOC-free emulsified asphalt. The equipment and maintenance control measure applies to oil and natural gas production. The Reformulation—FIP Rule control measure intends to reach the VOC limits by switching to and/or encouraging the use of low-VOC pesticides and better Integrated Pest Management (IPM) practices. Table 3a.4 contains the control measures and associated emission reductions described above for the modeled control strategy. For additional information regarding these controls please refer to the AirControlNET 4.1 control measures documentation report.

3a.1.6 Supplemental Controls

Table 3a.5 below summarizes the supplemental control measures added to our control measures database by providing the pollutant it controls and its control efficiency (CE). These controls were applied not as part of the modeled control strategy, but as supplemental measures prior to extrapolating unknown control costs. However, these controls are not currently located in AirControlNET. These measures are primarily found in draft SIP technical documents and have not been fully assessed for inclusion in AirControlNET.

Table 3a.5: Supplemental Emissions Control Measures Added to the Control Measures Database

Low Emission Combustion (LEC)

Overview: LEC technology is defined as the modification of a natural gas fueled, spark ignited, reciprocating internal combustion engine to reduce emissions of NOx by utilizing ultra-lean air-fuel ratios, high energy ignition systems and/or pre-combustion chambers, increased turbocharging or adding a turbocharger, and increased cooling and/or adding an intercooler or aftercooler, resulting in an engine that is designed to achieve a consistent NO_x emission rate of not more than 1.5-3.0 g/bhp-hr at full capacity (usually 100 percent speed and 100 percent load). This type of retrofit technology is fairly widely available for stationary internal combustion engines.

For CE, EPA estimates that it ranges from 82 to 91 percent for LEC technology applications. The EPA believes application of LEC would achieve average NO_x emission levels in the range of 1.5-3.0 g/bhp-hr. This is an 82-91 percent reduction from the average uncontrolled emission levels reported in the ACT document. An EPA memorandum summarizing 269 tests shows that

96 percent of IC engines with installed LEC technology achieved emission rates of less than 2.0 g/bhp-hr.¹ The 2000 EC/R report on IC engines summarizes 476 tests and shows that 97% of the IC engines with installed LEC technology achieve emission rates of 2.0 g/bhp-hr or less.²

Major Uncertainties: The EPA acknowledges that specific values will vary from engine to engine. The amount of control desired and number of operating hours will make a difference in terms of the impact had from a LEC retrofit. Also, the use of LEC may yield improved fuel economy and power output, both of which may affect the emissions generated by the device.

Leak Detection and Repair (LDAR) for Fugitive Leaks

Overview: This control measure is a program to reduce leaks of fugitive VOC emissions from chemical plants and refineries. The program includes special "sniffer" equipment to detect leaks, and maintenance schedules that affected facilities are to adhere to. This program is one that is contained within the Houston-Galveston-Brazoria 8-hour Ozone SIP.

Major Uncertainties: The degree of leakage from pipes and processes at chemical plants is always difficult to quantify given the large number of such leaks at a typical chemical manufacturing plant. There are also growing indications based on tests conducted by TCEQ and others in Harris County, Texas that fugitive leaks have been underestimated from chemical plants by a factor of 6 to 20 or greater. 3

Enhanced LDAR for Fugitive Leaks

 \overline{a}

Overview: This control measure is a more stringent program to reduce leaks of fugitive VOC emissions from chemical plants and refineries that presumes that an existing LDAR program already is in operation.

Major Uncertainties: The calculations of CE and cost presume use of LDAR at a chemical plant. This should not be an unreasonable assumption, however, given that most chemical plants are under some type of requirement to have an LDAR program. However, as mentioned earlier, there is growing evidence that fugitive leak emissions are underestimated from chemical plants by a factor of 6 to 20 or greater.⁴

¹ "Stationary Reciprocating Internal Combustion Engines Technical Support Document for NOx SIP Call Proposal," U.S. Environmental Protection Agency. September 5, 2000. Available on the Internet at http://www.epa.gov/ttn/naaqs/ozone/rto/sip/data/tsd9-00.pdf. 2

²"Stationary Internal Combustion Engines: Updated Information on NOx Emissions and Control Techniques," Ec/R Incorporated, Chapel Hill, NC. September 1, 2000. Available on the Internet at http://www.epa.gov/ttn/naaqs/ozone/ozonetech/ic_engine_nox_update_09012000.pdf.

³ VOC Fugitive Losses: New Monitors, Emissions Losses, and Potential Policy Gaps. 2006 International Workshop. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards and Office of Solid Waste and Emergency Response. October 25-27, 2006. 4 VOC Fugitive Losses: New Monitors, Emissions Losses, and Potential Policy Gaps. 2006 International Workshop. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards and Office of Solid Waste and Emergency Response. October 25-27, 2006.

Flare Gas Recovery

Overview: This control measure is a condenser that can recover 98 percent of the VOC emitted by flares that emit 20 tons per year or more of the pollutant.

Major Uncertainties: Flare gas recovery is just gaining commercial acceptance in the US and is only in use at a small number of refineries.

Cooling Towers

<u>.</u>

Overview: The control measure is continuous monitoring of VOC from the cooling water return to a level of 10 ppb. This monitoring is accomplished by using a continuous flow monitor at the inlet to each cooling tower.

There is not a general estimate of CE for this measure; one is to apply a continuous flow monitor until VOC emissions have reached a level of 1.7 tons/year for a given cooling tower.⁵

Major Uncertainties: The amount of VOC leakage from each cooling tower can greatly affect the overall cost-effectiveness of this control measure.

Wastewater Drains and Separators

Overview: This control measure includes an inspection and maintenance program to reduce VOC emissions from wastewater drains and water seals on drains. This measure is a more stringent version of measures that underlie existing NESHAP requirements for such sources.

Major Uncertainties: The reference for this control measures notes that the VOC emissions inventories for the five San Francisco Bay Area refineries whose data was a centerpiece of this report are incomplete. In addition, not all VOC species from these sources were included in the VOC data that is a basis for these calculations.⁶

Work Practices or Use of Low VOC Coatings

Overview: The control measure is either application of work practices (e.g., storing VOCcontaining cleaning materials in closed containers, minimizing spills) or using coatings that have much lower VOC content. These measures, which are of relatively low cost compared to other VOC area source controls, can apply to a variety of processes, both for non-EGU point and area sources, in different industries and is defined in the proposed control techniques guidelines (CTG) for paper, film and foil coatings, metal furniture coatings, and large appliance coatings published by the US EPA in July 2007.⁷

⁵ Bay Area Air Quality Management District (BAAQMD). Proposed Revision of Regulation 8, Rule 8: Wastewater Collection Systems. Staff Report, March 17, 2004.

⁶ Bay Area Air Quality Management District (BAAQMD). Proposed Revision of Regulation 8, Rule 8: Wastewater Collection Systems. Staff Report, March 17, 2004.

U.S. Environmental Protection Agency. Consumer and Commercial Products: Control Techniques Guidelines in Lieu of Regulations for Paper, Film, and Foil Coatings; Metal

The estimated CE expected to be achieved by either of these control measures is 90 percent.

Major Uncertainties: The greatest uncertainty is in how many potentially affected processes are implementing or already implemented these control measures. This may be particularly true in California. Also, there are nine States that have many of the above work practices in effect for paper, film and foil coatings processes, but the work practices are not meant to achieve a specific emissions limit.⁸ Hence, it is uncertain how much VOC reduction is occurring from this control measure in this case.

In addition to the new supplemental controls presented above, there were a number of changes made to existing AirControlNET controls. These changes were made based upon an internal review performed by EPA engineers to examine the controls applied by AirControlNET and determine if these controls were sufficient or could be more aggressive in their application, given the 2020 analysis year. This review was performed for nonEGU point NOx control measures. The result of this review was an increase in control efficiencies applied for many control measures, and more aggressive control measures for over 70 SCCs. The changes apply to the control strategies performed for the Eastern US only. These changes are listed in Table 3a.6.

Furniture Coatings; and Large Appliance Coatings. 40 CFR 59. July 10, 2007. Available on the Intenet at http://www.epa.gov/ttncaaa1/t1/fr_notices/ctg_ccp092807.pdf. It should be noted that this CTG became final in October 2007.

8 U.S. Environmental Protection Agency. Consumer and Commercial Products: Control Techniques Guidelines in Lieu of Regulations for Paper, Film, and Foil Coatings; Metal Furniture Coatings; and Large Appliance Coatings. 40 CFR 59. July 10, 2007, p. 37597. Available on the Intenet at http://www.epa.gov/ttncaaa1/t1/fr_notices/ctg_ccp092807.pdf.

 \overline{a}

The last category of supplemental controls is control technologies currently in our control measures database being applied to SCCs not controlled currently in AirControlNET.

3a.2 Mobile Control Measures Used in Control Scenarios

Tables 3a.8 and 3a.9 summarize the emission reductions for the mobile source control measures discussed in this section.

Table 3a.9: VOC Mobile Emission Reductions by Control Measure

3a.2.1 Diesel Retrofits and Engine Rebuilds

Retrofitting heavy-duty diesel vehicles and equipment manufactured before stricter standards are in place—in 2007–2010 for highway engines and in 2011–2014 for most nonroad equipment can provide NO_X and HC benefits. The retrofit strategies included in the RIA retrofit measure are:

- Installation of emissions after-treatment devices called selective catalytic reduction ("SCRs")
- Rebuilding nonroad engines ("rebuild/upgrade kit")

We chose to focus on these strategies due to their high NO_x emissions reduction potential and widespread application. Additional retrofit strategies include, but are not limited to, lean NOx catalyst systems—which are another type of after-treatment device—and alternative fuels. Additionally, SCRs are currently the most likely type of control technology to be used to meet EPA's NOx 2007–2010 requirements for HD diesel trucks and 2008–2011 requirements for nonroad equipment. Actual emissions reductions may vary significantly by strategy and by the type and age of the engine and its application.

To estimate the potential emissions reductions from this measure, we applied a mix of two retrofit strategies (SCRs and rebuild/upgrade kits) for the 2020 inventory of:

- Heavy-duty highway trucks class 6 & above, Model Year 1995–2009
- All diesel nonroad engines, Model Year 1991–2007, except for locomotive, marine, pleasure craft, & aircraft engines

Class 6 and above trucks comprise the bulk of the NOx emissions inventory from heavy-duty highway vehicles, so we did not include trucks below class 6. We chose not to include locomotive and marine engines in our analysis since EPA has proposed regulations to address these engines, which will significantly impact the emissions inventory and emission reduction potential from retrofits in 2020. There was also not enough data available to assess retrofit strategies for existing aircraft and pleasure craft engines, so we did not include them in this analysis. In addition, EPA is in the process of negotiating standards for new aircraft engines.

The lower bound in the model year range—1995 for highway vehicles and 1991 for nonroad engines—reflects the first model year in which emissions after-treatment devices can be reliably applied to the engines. Due to a variety of factors, devices are at a higher risk of failure for earlier model years. We expect the engines manufactured before the lower bound year that are still in existence in 2020 to be retired quickly due to natural turnover, therefore, we have not included strategies for pre-1995/1991 engines because of the strategies' relatively small impact on emissions. The upper bound in the model year range reflects the last year before more stringent emissions standards will be fully phased-in.

We chose the type of strategy to apply to each model year of highway vehicles and nonroad equipment based on our technical assessment of which strategies would achieve reliable results at the lowest cost. After-treatment devices can be more cost-effective than rebuild and vice versa depending on the emissions rate, application, usage rates, and expected life of the engine. The performance of after-treatment devices, for example, depends heavily upon the model year of the engine; some older engines may not be suitable for after-treatment devices and would be better candidates for rebuild/upgrade kit. In certain cases, nonroad engines may not be suitable for either after-treatment devices or rebuild, which is why we estimate that retrofits are not suitable for 5% of the nonroad fleet. The mix of strategies employed in this RIA for highway vehicles and nonroad engines are presented in Table 3a.10 and Table 3a.11, respectively. The groupings of model years for highway vehicles reflect changes in EPA's published emissions standards for new engines.

Table 3a.11: Application of Retrofit Strategy for Nonroad Equipment by Percentage of Fleet

The expected emissions reductions from SCR's are based on data derived from EPA regulations (Control of Emissions of Air Pollution from 2004 and Later Model Year Heavy-duty Highway Engines and Vehicles published October 2000), interviews with component manufacturers, and EPA's Summary of Potential Retrofit Technologies. This information is available at www.epa.gov/otaq/retrofit/retropotentialtech.htm. The estimates for highway vehicles and nonroad engines are presented in Table 3a.12 and Table 3a.13, respectively.

It is important to note that there is a great deal of variability among types of engines (especially nonroad), the applicability of retrofit strategies, and the associated emissions reductions. We applied the retrofit emissions reduction estimates to engines across the board (e.g., retrofits for bulldozers are estimated to produce the same percentage reduction in emissions as for agricultural mowers). We did this in order to simplify model runs, and, in some cases, where we did not have enough data to differentiate emissions reductions for different types of highway vehicles and nonroad equipment. We believe the estimates used in the RIA, however, reflect the best available estimates of emissions reductions that can be expected from retrofitting the heavyduty diesel fleet.

Using the retrofit module in EPA's National Mobile Inventory Model (NMIM) available at http://www.epa.gov/otaq/nmim.htm, we calculated the total percentage reduction in emissions (PM, NOx, HC, and CO) from the retrofit measure for each relevant engine category (source category code, or SCC) for each county in 2020. To evaluate this change in the emissions inventory, we conducted both a baseline and control analysis. Both analyses were based on NMIM 2005 (version NMIM20060310), NONROAD2005 (February 2006), and MOBILE6.2.03 which included the updated diesel PM file PMDZML.csv dated March 17, 2006.

For the control analysis, we applied the retrofit measure corresponding to the percent reductions of the specified pollutants in Tables 3a.12 and 3a.13 to the specified model years in Tables 3a.10 and 3a.11 of the relevant SCCs. Fleet turnover rates are modeled in the NMIM, so we applied the retrofit measure to the 2007 fleet inventory, and then evaluated the resulting emissions inventory in 2020. The timing of the application of the retrofit measure is not a factor; retrofits only need to take place prior to the attainment date target (2020 for this RIA). For example, if retrofit devices are installed on 1995 model year bulldozers in 2007, the only impact on emissions in 2020 will be from the expected inventory of 1995 model year bulldozer emissions in 2020.

We then compared the baseline and control analyses to determine the percent reduction in emissions we estimate from this measure for the relevant SCC codes in the targeted nonattainment areas.

3a.2.2 Implement Continuous Inspection and Maintenance Using Remote Onboard Diagnostics (OBD)

Continuous Inspection and Maintenance (I/M) is a new way to check the status of OBD systems on light-duty OBD-equipped vehicles. It involves equipping subject vehicles with some type of transmitter that attaches to the OBD port. The device transmits the status of the OBD system to receivers distributed around the I/M area. Transmission may be through radio-frequency, cellular or wi-fi means. Radio frequency and cellular technologies are currently being used in the states of Oregon, California and Maryland.

Current I/M programs test light-duty vehicles on a periodic basis—either annually or biennially. Emission reduction credit is assigned based on test frequency. Using Continuous I/M, vehicles are continuously monitored as they are operated throughout the non-attainment area. When a vehicle experiences an OBD failure, the motorist is notified and is required to get repairs within the normal grace period—typically about a month. Thus, Continuous I/M will result in repairs happening essentially whenever a malfunction occurs that would cause the check engine light to illuminate. The continuous I/M program is applied to the same fleet of vehicles as the current periodic I/M programs. Currently, MOBILE6 provides an increment of benefit when going from a biennial program to an annual program. The same increment of credit applies going from an annual program to a continuous program.

Source Categories Affected by Measure:

- All 1996 and newer light-duty gasoline vehicles and trucks:
- All 1996 and newer (SCC 2201001000) Light Duty Gasoline Vehicles (LDGV), Total: All Road Types
- All 1996 and newer (SCC 2201020000) Light Duty Gasoline Trucks 1 (LDGT1), Total: All Road Types
- All 1996 and newer (SCC 2201040000) Light Duty Gasoline Trucks 2 (LDGT2), Total: All Road Types

OBD systems on light duty vehicles are required to illuminate the malfunction indicator lamp whenever emissions of HC, CO or NOx would exceed 1.5 times the vehicle's certification standard. Thus, the benefits of this measure will affect all three criteria pollutants. MOBILE6 was used to estimate the emission reduction benefits of Continuous I/M, using the methodology discussed above.

3a.2.3 Eliminating Long Duration Truck Idling

Virtually all long duration truck idling—idling that lasts for longer than 15 minutes—from heavy-duty diesel class 8a and 8b trucks can be eliminated with two strategies:

- truck stop & terminal electrification (TSE)
- mobile idle reduction technologies (MIRTs) such as auxiliary power units, generator sets, and direct-fired heaters

TSE can eliminate idling when trucks are resting at truck stops or public rest areas and while trucks are waiting to perform a task at private distribution terminals. When truck spaces are electrified, truck drivers can shut down their engines and use electricity to power equipment which supplies air conditioning, heat, and electrical power for on-board appliances.

MIRTs can eliminate long duration idling from trucks that are stopped away from these central sites. For a more complete list of MIRTs see EPA's Idle Reduction Technology page at http://www.epa.gov/otaq/smartway/idlingtechnologies.htm.

This measure demonstrates the potential emissions reductions if every class 8a and 8b truck is equipped with a MIRT or has dependable access to sites with TSE in 2020.

To estimate the potential emissions reduction from this measure, we applied a reduction equal to the full amount of the emissions attributed to long duration idling in the MOBILE model, which is estimated to be 3.4% of the total NOx emissions from class 8a and 8b heavy duty diesel trucks. Since the MOBILE model does not distinguish between idling and operating emissions, EPA estimates idling emissions in the inventory based on fuel conversion factors. The inventory in the MOBILE model, however, does not fully capture long duration idling emissions. There is evidence that idling may represent a much greater share than 3.4% of the real world inventory, based on engine control module data from long haul trucking companies. As such, we believe the emissions reductions demonstrated from this measure in the RIA represent ambitious but realistic

targets. For more information on determining baseline idling activity see EPA's "Guidance for Quantifying and Using Long-Duration Truck Idling Emission Reductions in State Implementation Plans and Transportation Conformity" available at http://www.epa.gov/smartway/idle-guid.htm.

Pollutants and Source Categories Affected by Measure: NOx

Estimated Emissions Reduction from Measure (%): 3.4 % decrease in NOx for all SCCs affected by measure

3a.2.4 Commuter Programs

Commuter programs recognize and support employers who provide incentives to employees to reduce light-duty vehicle emissions. Employers implement a wide range of incentives to affect change in employee commuting habits including transit subsidies, bike-friendly facilities, telecommuting policies, and preferred parking for vanpools and carpools. The commuter measure in this RIA reflects a mixed package of incentives.

This measure demonstrates the potential emissions reductions from providing commuter incentives to 10% and 25% of the commuter population in 2020.

We used the findings from a recent Best Workplaces for Commuters survey, which was an EPA sponsored employee trip reduction program, to estimate the potential emissions reductions from this measure.⁹ The BWC survey found that, on average, employees at workplaces with comprehensive commuter programs emit 15% fewer emissions than employees at workplaces that do not offer a comprehensive commuter program.

¹ 9 Herzog, E., Bricka, S., Audette, L., and Rockwell, J., 2005. *Do Employee Commuter Benefits Reduce Vehicle Emissions and Fuel Consumption? Results of the Fall 2004 Best Workplaces for Commuters Survey*, Transportation Research Record, Journal of the Transportation Research Board: Forthcoming.

We believe that getting $10\% - 25\%$ of the workforce involved in commuter programs is realistic. For modeling purposes, we divided the commuter programs measure into two program penetration rates: 10% and 25%. This was meant to provide flexibility to model a lower penetration rate for areas that need only low levels of emissions reductions to achieve attainment.

According to the 2001 National Household Transportation Survey (NHTS) published by DOT, commute VMT represents 27% of total VMT. Based on this information, we calculated that BWC would reduce light-duty gasoline emissions by 0.4% and 1% with a 10% and 25% program penetration rate, respectively.

Pollutants and Source Categories Affected by Measure (SCC): NO_x, and VOC

Estimated Emissions Reduction from Measure (%): With a 10% program penetration rate: 0.4% With a 25% program penetration rate: 1%

3a.2.5 Reduce Gasoline RVP from 7.8 to 7.0 in Remaining Nonattainment Areas

Volatility is the property of a liquid fuel that defines its evaporation characteristics. RVP is an abbreviation for "Reid vapor pressure," a common measure of gasoline volatility, as well as a generic term for gasoline volatility. EPA regulates the vapor pressure of all gasoline during the summer months (June 1 to September 15 at retail stations). Lower RVP helps to reduce VOCs,

which are a precursor to ozone formation. This control measure represents the use of gasoline with a RVP limit of 7.0 psi from May through September in counties with an ozone season RVP value greater than 7.0 psi.

Under section $211(c)(4)(C)$ of the CAA, EPA may approve a non-identical state fuel control as a SIP provision, if the state demonstrates that the measure is necessary to achieve the national primary or secondary ambient air quality standard (NAAQS) that the plan implements. EPA can approve a state fuel requirement as necessary only if no other measures would bring about timely attainment, or if other measures exist but are unreasonable or impracticable.

Source Categories Affected by Measure:

- All light-duty gasoline vehicles and trucks: Affected SCC:
	- 2201001000 Light Duty Gasoline Vehicles (LDGV), Total: All Road Types
	- 2201020000 Light Duty Gasoline Trucks 1 (LDGT1), Total: All Road Types
	- 2201040000 Light Duty Gasoline Trucks 2 (LDGT2), Total: All Road Types
	- 2201070000 Heavy Duty Gasoline Vehicles (HDGV), Total: All Road Types
	- 2201080000 Motorcycles (MC), Total: All Road Types

3a.3 EGU Controls Used in the Control Strategy

Table 3a.16 contains the ozone season emissions from all fossil EGU sources (greater than 25 megawatts) for the baseline and the control strategy.

^a Numbers in parentheses are the percentage change in emissions.

3a.3.1 CAIR

The data and projections presented in Section 3.2.2 cover the electric power sector, an industry that will achieve significant emission reductions under the Clean Air Interstate Rule (CAIR) over the next 10 to 15 years. Based on an assessment of the emissions contributing to interstate transport of air pollution and available control measures, EPA determined that achieving required reductions in the identified States by controlling emissions from power plants is highly cost effective. CAIR will permanently cap emissions of sulfur dioxide $(SO₂)$ and nitrogen oxides (NO_x) in the eastern United States. CAIR achieves large reductions of SO₂ and/or NO_x emissions across 28 eastern states and the District of Columbia.

Figure 3a.1: CAIR Affected Region

When fully implemented, CAIR will reduce SO_2 emissions in these states by over 70% and NO_x emissions by over 60% from 2003 levels (some of which are due to NOx SIP Call). This will result in significant environmental and health benefits and will substantially reduce premature mortality in the eastern United States. The benefits will continue to grow each year with further implementation. CAIR was designed with current air quality standard in mind, and requires significant emission reductions in the East, where they are needed most and where transport of pollution is a major concern. CAIR will bring most areas in the Eastern US into attainment with the current ozone and current PM_{2.5} standards. Some areas will need to adopt additional local control measures beyond CAIR. CAIR is a regional solution to address transport, not a solution to all local nonattainment issues. The large reductions anticipated with CAIR, in conjunction with reasonable additional local control measures for SO_2 , NO_x , and direct PM, will move States towards attainment in a deliberate and logical manner.

Based on the final State rules that have been submitted and the proposed State rules that EPA has reviewed, EPA believes that all States intend to use the CAIR trading programs as their mechanism for meeting the emission reduction requirements of CAIR.

The analysis in this section reflects these realities and attempts to show, in an illustrative fashion, the costs and impacts of meeting a proposed 8-hr ozone standard of 0.070 ppm for the power sector.

3a.3.2 Integrated Planning Model and Background

CAIR was designed to achieve significant emissions reductions in a highly cost-effective manner to reduce the transport of fine particles that have been found to contribute to nonattainment. EPA

analysis has found that the most efficient method to achieve the emissions reduction targets is through a cap-and-trade system on the power sector that States have the option of adopting. The modeling done with IPM assumes a region-wide cap and trade system on the power sector for the States covered.

It is important to note that the proposal RIA analysis used the Integrated Planning Model (IPM) v2.1.9 to ensure consistency with the analysis presented in 2006 PM NAAQS RIA and report incremental results. EPA's IPM v2.1.9 incorporated Federal and State rules and regulations adopted before March 2004 and various NSR settlements.

Final RIA analysis uses the latest version of IPM (v3.0) as part of the updated modeling platform. IPM v3.0 includes input and model assumption updates in modeling the power sector and incorporates Federal and State rules and regulations adopted before September 2006 and various NSR settlements. A detailed discussion of uncertainties associated with the EGU sector modeling can be found in 2006 PM NAAQS RIA (pg. 3-50)

The economic modeling using IPM presented in this and other chapters has been developed for specific analyses of the power sector. EPA's modeling is based on its best judgment for various input assumptions that are uncertain, particularly assumptions for future fuel prices and electricity demand growth. To some degree, EPA addresses the uncertainty surrounding these two assumptions through sensitivity analyses. More detail on IPM can be found in the model documentation, which provides additional information on the assumptions discussed here as well as all other assumptions and inputs to the model (http://www.epa.gov/airmarkets/progsregs/epaipm.html).

3a.3.3 EGU NOx Emission Control Technologies

IPM v3.0 includes SO_2 , NO_x , and mercury (Hg) emission control technology options for meeting existing and future federal, regional, and state, SO_2 , NO_x and Hg emission limits. The NOx control technology options include Selective Catalytic Reduction (SCR) system and Selective Non-Catalytic Reduction (SNCR) systems. It is important to note that beyond these emission control options, IPM offers other compliance options for meeting emission limits. These include fuel switching, re-powering, and adjustments in the dispatching of electric generating units. Table 3a.17 summarizes retrofit NOx emission control performance assumptions.

Table 3a.17: Summary of Retrofit NOx Emission Control Performance Assumptions

^a Controls to oil- or gas-fired EGUs are not applied as part of the EGU control strategy included in this RIA.

Existing coal-fired units that are retrofit with SCR have a NOx removal efficiency of 90%, with a minimum controlled NOx emission rate of 0.06 lb/mmBtu in IPM v2.1.9. Potential (new) coalfired, combined cycle, and IGCC units are modeled to be constructed with SCR systems and designed to have emission rates ranging between 0.02 and 0.06 lb NOx/mmBtu.

Detailed cost and performance derivations for NOx controls are discussed in detail in the EPA's documentation of IPM (**http://www.epa.gov/airmarkets/progsregs/epa-ipm/pastmodeling.html**).

3a.4 Emissions Reductions by Sector

Figures 3a.2–3a.6 show the NOx reductions for each sector and Figures 3a.7–3a.10 show the VOC reductions for each sector under the modeled control strategy.

* Reductions are negative and increases are positive.

** The −99–+100 range is not shown because these are small county-level NOx reductions or increases that likely had little to no impact on ozone estimates. Most counties in this range had NOx differences of under 1 ton.

Figure 3a.3: Annual tons/year of Nitrogen Oxide (NOx) Emissions Reduced from NonEGU Point Sources*

***** Reductions are negative and increases are positive.

** The −99–0 range is not shown because these are small county-level NOx reductions or increases that likely had little to no impact on ozone estimates. Most counties in this range had NOx differences of under 1 ton.

Figure 3a.4: Annual tons/year of Nitrogen Oxide (NOx) Emissions Reduced from Area Sources*

*Reductions are negative and increases are positive

**The −99–0 range is not shown because these are small county-level NOx reductions or increases that likely had little to no impact on ozone estimates. Most counties in this range had NOx differences of under 1 ton.

Figure 3a.5: Annual tons/year of Nitrogen Oxide (NOx) Emissions Reduced from Nonroad Sources*

*Reductions are negative and increases are positive

**The −99–0 range is not shown because these are small county-level NOx reductions or increases that likely had little to no impact on ozone estimates. Most counties in this range had NOx differences of under 1 ton.

Figure 3a.6: Annual tons/year of Nitrogen Oxide (NOx) Emissions Reduced from Onroad Sources*

*Reductions are negative and increases are positive

**The −99–0 range is not shown because these are small county-level NOx reductions or increases that likely had little to no impact on ozone estimates. Most counties in this range had NOx differences of under 1 ton.

Figure 3a.7: Annual tons/year of Volatile Organic Compounds (VOC) Emissions Reduced from NonEGU Point Sources*

*Reductions are negative and increases are positive

**The −99–0 range is not shown because these are small county-level VOC reductions or increases that likely had little to no impact on ozone estimates

Figure 3a.8: Annual tons/year of Volatile Organic Compounds (VOC) Emissions Reduced from Area Sources*

*Reductions are negative and increases are positive

**The −99–0 range is not shown because these are small county-level VOC reductions or increases that likely had little to no impact on ozone estimates.

Figure 3a.9: Annual tons/year of Volatile Organic Compounds (VOC) Emissions Reduced from Nonroad Mobile Sources*

*Reductions are negative and increases are positive

**The −99–0 range is not shown because these are small county-level VOC reductions or increases that likely had little to no impact on ozone estimates.

Figure 3a.10: Annual tons/year of Volatile Organic Compounds (VOC) Emissions Reduced from Onroad Mobile Sources*

*Reductions are negative and increases are positive

**The −99–0 range is not shown because these are small county-level VOC reductions or increases that likely had little to no impact on ozone estimates.

3a.5 Change in Ozone Concentrations Between Baseline and Modeled Control Strategy

Table 3a.18 provides the projected 8-hour ozone design values for the 2020 baseline and 2020 control strategy scenarios for each monitored county. The changes in ozone in 2020 between the baseline and the control strategy are also provided in this table.

