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INTRODUCTION 

As part of the Expanded Expert Judgment Assessment of the Concentration-Response 
Relationship Between PM2.5 Exposure and Mortality (IEc, 2006), the elicitation team 
conducted day-long personal interviews with 12 health experts who have conducted 
research on the relationship between PM2.5 exposures and mortality.  This technical 
support document consists of summaries of  the discussions that took place during each of 
these interviews.  The  summaries provide additional detail and context that may be 
useful for understanding each expert's judgments. 

Exhibit 1 presents the list of the experts interviewed.  As described in the main report, 
experts are identified by a randomly assigned letter from A to L in order to preserve 
confidentiality.  The section headings in the interview summaries correspond to those 
found in the elicitation protocol (See IEc, 2006, Appendix A).  Each expert was given the 
opportunity to review his summary and confirm that it accurately captured the views he 
expressed in the interview.  In addition, if an expert opted to change any of his responses 
to the questions in the protocol following the June 2006 Post-elicitation Workshop, the 
changes are reflected in a “Modification to Expert Judgment” form, appended to the end 
of his interview summary. 

 

EXHIBIT 1:  F INAL EXPERT LIST 

NAME AFFILIATION 

Dockery, Doug W. Harvard School of Public Health 

Ito, Kazuhiko New York University School of Medicine 

Krewski, Daniel University of Ottawa 

Künzli, Nino 
University of Southern California Keck School of Medicine (currently 
at Institut Municipal d'Investigació Mèdica (IMIM) - Center for 
Research in Environmental Epidemiology, Barcelona, SPAIN) 

Lippmann, Morton New York University School of Medicine 

Mauderly, Joe Lovelace Respiratory Research Institute 

Ostro, Bart D. California Office of Environmental Health Hazard Assessment 

Pope, C. Arden III Brigham Young University 

Schlesinger, Richard Pace University 

Schwartz, Joel Harvard School of Public Health 

Thurston, George D. New York University School of Medicine 

Utell, Mark University of Rochester School of Medicine and Dentistry 
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IEc prepared these summaries to document both the views expressed by each expert in his 
interview and the process by which he arrived at the quantitative distribution presented in 
the main report (IEc, 2006).1  As part of documenting the process of developing an 
expert's final quantitative distribution, the summaries may include additional distributions 
generated by the IEc elicitation team during the interview that were shown to the expert 
to assist him in evaluating his responses.  For example, if an expert indicated during the 
interview that his distribution was conditional on the existence of a causal relationship 
between PM2.5 and mortality, the elicitation team showed the expert a distribution 
generated by statistically combining his distribution with his stated probability of a causal 
relationship, assuming that the probabilities are independent.  All of these additional 
distributions are marked as "IEc-generated" in the summaries and do not reflect the 
expert's final judgments, which are presented in the main report.  We also note that 
content in the interview summaries may differ from that presented in the main report if an 
expert modified his judgments following the Post-elicitation Workshop.  As noted above, 
these changes are documented in a modification form appended to the end of the 
summary of each expert who revised his judgments.  

 

                                                      
1 IEc prepared all of the interview summaries, with the exception of Expert D.  Expert D wrote his own summary, to which IEc 

added the tables and graphs and a short introductory paragraph. 
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Interview Summary 
Expert A 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.1 Mechanisms for Effects from Exposure to PM2.5 
 
Expert A thought that there were separate mechanisms for mortality associated with 
short-term and long-term exposures to PM2.5.  However, he did feel that there was some 
overlap between them.  He began by discussing mortality related to short-term exposures, 
which he felt to be the most compelling.  He then discussed potential mechanisms of 
long-term exposures, and ended with a discussion of mechanisms for intermediate length 
exposures.  He felt that the intervention studies (Clancy et al. (2002) in Dublin and Pope 
et al. (1996) in Utah Valley), involving intermediate time scales of months up to a year, 
actually provided more insight into how the effects measured in short- and long-term 
studies might be tied together and help understand the total effect of reducing particulate 
air pollution on mortality. 
 
Short-Term Exposures 
 
For short-term exposures, Expert A thought that the major causes of death, in order of 
importance were: acute cardiac events; respiratory disease; stroke; and lung cancer deaths 
(where people are frail from lung cancer and die from acute exposure to air pollution). 
 
Expert A argued that the most compelling evidence for an association between particles 
and acute cardiac events came from the time-series cardiovascular studies.  In particular, 
he thought the pooled studies  (e.g., the National Morbidity, Mortality, and Air Pollution 
Study (NMMAPS), Air Pollution and Health – A European Approach (APHEA)) 
provided the strongest evidence because they are not as subject to confounding by co-
pollutants and weather as other study designs.  He cited as supporting evidence the 
studies involving implantable defibrillator discharges (e.g., Peters et al., 2000 and Rich et 
al., 2005 & 2006) and case-cross over studies of myocardial infarction survivors (Peters 
et al., 2001 and Foresteri et al., 2005 in Rome). He thought their strengths include 
unambiguous outcome measures and the fact that by “…looking at the same individual 
you eliminate by design possibilities for confounding by individual characteristics, such 
as smoking.  You can also largely eliminate seasonal effects, temperature.  You can 
eliminate factors that potentially confound time-series studies.  On the other hand, there 
are some other subtle issues that enter with the selection of case and control periods, and 
there is a loss of power in case-crossover compared to a time-series analysis.”  He noted 
that a weakness of both types of studies is that they have a selected population that is not 
representative of the general population (e.g., frail, high risk of cardiac instability).  Other 
case-crossover studies have not supported a relationship between myocardial events and 
air pollution (e.g., Sullivan et al., Checkoway et al., 2003, and Levy et al., 2001).  
Though these studies had good outcome measures, he was not convinced that the 
nephelometry measures of particles were good measures of air pollution. 
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In terms of mechanistic evidence for a role of particles in acute cardiac events, he was not 
sure of the mechanisms. He noted that several mechanistic pathways had been proposed 
(e.g., “inflammatory responses, change in autonomic function, release of hormones, 
cytokines, chemokines, and other chemicals delivered to the heart”).  Experimental 
evidence had not ruled any out any pathways.  He cited experimental studies in animals 
(Godleski et al., 2000) showing changes in cardiovascular responses in dogs; Watkinson 
and others at EPA showing electrical abnormalities and dysfunction in rodents; Devlin et 
al. chamber studies measuring intermediate endpoints, such as changes in heart rate 
variability and other electrical disturbances in human subjects.   
 
The next three causes of death related to short-term exposures (respiratory disease, 
strokes, lung cancer) were discussed in less detail and the expert did not feel the evidence 
was as strong.  Expert A cited respiratory disease as the next most important, though he 
did not discuss specific evidence.  He noted that death certificate coding would tend to 
place acute cardiac death as the primary cause of death even if the individual had 
underlying chronic obstructive pulmonary disease (COPD).  Therefore respiratory effects 
might not show up as associations in mortality studies. 
 
Expert A was less certain about strokes as a cause of death related to particles.  Strokes 
can be hemorrhagic or ischemic and it is often difficult to determine the type from death 
certificates.  He would not expect to see an association with hemorrhagic stroke, but 
thought that ischemic strokes might follow a similar pathway as ischemic heart attacks, 
and therefore are more plausible.  He suggested that most of the evidence for stroke 
associations with air pollution comes from Asian countries where the underlying rates of 
stroke deaths are much higher than in the U.S. 
 
The final category of death that Expert A discussed was lung cancer. “People with lung 
cancer are more likely to respond to air pollution and die acutely.”  However, he noted 
that there were no short-term studies that have actually looked at lung cancer specifically.   
 
Long-Term Exposures 
 
For long-term exposures, Expert A used the analogy of smoking and environmental 
tobacco smoke (ETS) as a conceptual model.  Airborne particles might impact human 
health through “changes in lung function, deterioration of lung volumes, development of 
chronic obstructive pulmonary disease, and a long-term debilitation, loss of respiratory 
reserve”; development of atherosclerosis, plaques and increased risk of myocardial 
infraction (MI); vascular changes; and cancer.  However, he noted that “in terms of air 
pollution, [there is] somewhat limited evidence for those effects… The prospective 
studies [including new Adventist Health and Smog (ASHMOG) data] have suggested that 
you can see some changes in pulmonary function, but I don't think the evidence is very 
compelling … [A]ir pollution at the levels we're talking, is even less than the typical 
exposures from environmental tobacco smoke.  So I don't think this is a likely pathway 
for major disability.” 
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He cited some evidence suggesting the development of atherosclerosis as a pathway for 
the influence of chronic exposure to particles on increased risk of mortality.   “There are 
new studies coming out, the Kunzli study for example, that are looking at carotid IMT, 
intima-media thickness.  The carotid IMT, looking at deposition of plaques in the carotid 
arteries, shows more plaque in those people living in the higher air pollution levels.”  
Expert A thought that the recent work by Sun and Lippmann in atherosclerotic mice has 
provided experimental evidence for the cardiac pathways.  At the same time he expressed 
some skepticism about this pathway contributing to major increases in risk or death from 
atherosclerosis, stating, “there are other, larger factors.”   
 
Intermediate Exposures 
 
Expert A thought that the intervention studies (the Pope et al. Utah Valley study and 
Clancy et al. Dublin study) tie the concept of the smoking analogy and cumulative 
exposures to air pollution together as well as point to larger mortality effects in the 
intermediate time scale than have been typically captured in time-series or cohort studies.  
He thought that the time-series studies show effects on the same day, as well as two to 
four days later “[b]ut if you … go out to longer time periods, you can still see residual 
associations from the short-term exposures.  And when you add up all those effects, 
they're much larger than … short-term effects.  Given that we're normally exposed to 
repeated days of events, I think that these air pollution events are not independent … 
Usually we'll see two, three, four, maybe a week of air pollution.  I think that's where the 
action is.”  As with smoking cessation, he thought most of the intermediate effects are in 
reduction of deaths from cardiovascular disease with a smaller impact on respiratory and 
cancer deaths, which are results of longer-term exposures. 
 
3.2 Conceptual Framework for Mortality Effects of Short-Term and Long-Term 
PM2.5 Exposures 
 
When asked to describe his conceptual framework for the relationship between types of 
death caused by air pollution, he indicated that he would prefer if the Kunzli framework 
incorporated an intermediate effect.  He indicated that categories A and C constitute 
short-term effects but would include larger effect windows up to weeks or months.  He 
thought categories A and C constitute the bulk of the mortality effect.  He indicated that 
category B, the mortality effect from long term exposures, was relatively small compared 
to A and C. 
 
3.3 The Role of Epidemiologic Study Design in Characterizing the Total Impacts of 
PM2.5 Exposures on Mortality 
 
Expert A thought that, to the extent that short-term exposures are correlated with long-
term exposures, prospective cohort studies provide information on the effects of both 
types of associations, although they would not capture deaths advanced by just a few 
days.  He thought time-series studies are restricted to the short term. Given the focus of 
our question on the impact of a change in PM2.5 concentrations, he thought the 
intervention studies (Utah Valley, Dublin, Hong Kong) would be most informative 
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because he thought most of the mortality effects occur in weeks to months.  However he 
noted that the re-analysis of the Six-City data  (Laden et al., 2006), which looks over the 
last 10 years, might capture some long-term effects as well. 
 
3.4 Epidemiologic Evidence for the Impact of Exposures to PM2.5 on Mortality  
 
Specifically, Expert A relied on the estimates from the original Six Cities cohort study 
(Dockery et al., 1993) and the extended follow-up (Laden et al., 2006), a reanalysis of the 
American Cancer Society (ACS) cohort study in Los Angeles (Jerrett et al., 2005), and 
the NMMAPS (Samet et al., 2000) for his quantitative estimates. 
 
3.5 Confounding 
 
Expert A generally felt that most confounders had been adequately controlled in the 
epidemiologic literature and therefore this did not have a large effect on his quantitative 
estimates. He noted that the Krewski re-analysis had done a better job of controlling for 
confounding than the original ACS and Six Cities analyses, and that it strengthened the 
findings.  However, he did list some factors that might not have been fully accounted for 
in particular studies.  The table below lists the factors he discussed.  
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SUMMARY OF KEY POTENTIAL CONFOUNDERS IN PM MORTALITY EPIDEMIOLOGICAL STUDIES 
Study (author, date) Potential Confounder Rationale Score 

(1-3)a 
Overestimated RRs 

Six Cities Study     
     Dockery et al., 1993 Ethnic differences between cities  1 
     Laden et al., 2006 Ethnic differences between cities Results of this study suggest that ethnicity 

is unlikely to affect the results. 
1 

Intervention Studies    
     Laden et al., 2006 (Six Cities) Time-varying trends in healthcare  1 
     Clancy et al., 2002 (Dublin) Time-varying trends in healthcare Includes only a single study and because 

pollution levels dropped, but did not rise 
again. 

2 

     Pope et al., 1996 (Utah Valley) Time-varying trends in healthcare  1 
American Cancer Society    
     Jerrett et al., 2005 (Los 
       Angeles) 

Co-pollutants  1 

     Pope et al. (1995) Occupational Exposures  2 
Uncertain Direction of Bias 

American Cancer Society Community characteristics   
     Socioeconomic Status (SES)   
      Healthcare   
      Contextual   
a The scores are defined by the magnitude of their effect on the published estimates: 1 = minimal effect; 2 = medium effect; and 3 = major effect. 
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3.6 Effect Modification 
 
Expert A discussed the potential for effect modification by race, educational level, and 
housing characteristics. While he thought there might be an argument for effect 
modification by race (due more to underlying differences in SES and health status), he 
ultimately did not think that race intrinsically affected susceptibility to air pollution and 
that therefore the effect estimates in the cohort studies were likely to be representative. 
He noted that educational attainment per se was not an effect modifier but likely to be an 
indicator for other factors.  He thought the Six Cities studies had a representative sample 
so it was not an important issue. He thought that there could be some minimal effect 
modification by housing characteristics (e.g., air conditioning) in the cohort studies 
leading to a possible underestimate of the effect estimate. 
 
3.7 Exposure Issues 
 
Expert A thought that exposure misclassification (i.e., problems with use of central site 
monitors to characterize individual exposures to ambient PM2.5) was the biggest issue of 
concern.  He thought that evidence suggests that exposure misclassification causes the 
published effect estimates to be biased downwards.  “The evidence we have from the epi 
studies is that when we have improved measures of PM2.5 exposures they get much 
stronger associations. Specifically comparing the Six Cities study to the [original and 
extended] ACS [Pope et al., 1995 & 2002], comparing to the Jerrett [et al., 2005] study to 
the [original and extended] ACS studies, you see substantially higher effect estimates.   
 
When asked if variation in composition affected published effect estimates, he did not 
think so.  He basically argued that compositional differences do not seem likely to be 
resulting in an overestimate of mortality effects.  He thought similar mortality effects had 
been estimated in various areas of the country with different PM compositions (e.g., 
sulfates in the northeast and Utah Valley, nitrates in Los Angeles) as well as in 
intervention studies where the PM composition changes within a community over time, 
suggesting PM is at worst a good surrogate for whatever the toxic agent might be.  If the 
agent were known, Expert A thought it would more likely underestimate, rather than 
overestimate the relative risks attributable to that agent.  
 
He thought that the measurement method in the Laden et al. (2006) extended analysis of 
the Six Cities data, in which the PM2.5 is estimated rather than measured directly, might 
be an important limitation of the study.  He thought it might introduce some bias though 
he was unable to define a direction of bias. 
 
3.8 Causality 
 
Expert A discussed a number of the standard criteria for supporting a causal relationship.  
He particularly focused on the consistency of results across studies and across different 
study designs (e.g., time series, prospective cohort, intervention).  He thought the 
intervention studies are important because they are semi-experimental designs.   In 
addition, he thought clinical and toxicological studies have provided supporting evidence. 



 

A-7 

 
Expert A specified a range of values for the likelihood of a causal relationship between 
PM2.5 and mortality of 70 – 99.5 percent, with a most likely value of 95 percent (1 in 20).  
He selected the low end of the range based on the concern that there is a lack of 
specificity in the mechanism (i.e., every pathway proposed seems to have an association) 
and possibility that there just might be some alternate explanation for the effects, though 
it is difficult to imagine what it might be.  The upper end of the range was based on 
Expert A’s confidence in there being a mortality effect of PM2.5 exposures.  “There’s 
lingering doubt, but not as much as there was in [the past].” 
 
3.9 Thresholds 
 
While Expert A felt strongly that individual thresholds exist (i.e., concentrations of 
particles that are sufficient to overcome and individual’s defense mechanisms), he also 
argued that there is a continuum of individual responses, based on variety of genetic, 
environmental, and SES factors.  Therefore, he did not expect to see evidence of a 
population threshold in epidemiologic studies.  “That's a construct of experimental 
studies, but it's not something I expect to see in epidemiology.”  He indicated that 
epidemiological studies, not clinical or toxicological, are the appropriate tool for 
exploring population thresholds because they allow investigators to look at the full range 
of susceptible individuals in a population. 
 
Expert A indicated that the epidemiologic literature has shown no evidence of a threshold 
in the C-R function.  In addition, he thought that study designs were becoming 
increasingly sophisticated, and therefore more able to detect effects at lower levels, 
further supporting the lack of threshold in the C-R relationship.  He thought that 
arguments for thresholds that focus on lack of statistical significance for relationships at 
low concentrations were confusing detectability with the likelihood that a threshold 
exists.  He thought that the population data indicate a linear relationship at low doses.    
 
3.10 Other Influential Factors 
 
Expert A thought that an additional source of uncertainty arises from his concern that 
there is a lack of independent statistical and epidemiological expertise to provide 
adequate external criticism of the particulate matter (PM) studies.  He thought that many 
working in this field are very self-critical and are better at identifying weaknesses in their 
studies than the critics.  Nonetheless, it concerns him that they are all “moving in the 
same direction … There actually are quite a few studies coming along, replicating [the 
Six Cities and ACS studies].  That's where the scientific certainty, I think, comes from, 
that is from other people really challenging thee results [in other] populations.” 
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PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert A thought that the C-R function was linear (expressed in percent change per 
1µg/m3) and consistent over the entire range of annual average PM2.5 concentrations that 
were the focus of the study (4-30 µg/m3).  

Expert A chose to provide a C-R function that was conditional on the existence of a 
causal relationship (with a 95 percent likelihood of a causal relationship).  The elicitation 
team then combined his elicited distribution with his likelihood of causality using Monte 
Carlo simulation to create a final distribution.2 

Expert A preferred to discuss estimates in terms of mortality impact per 10 µg/m3 change 
in PM2.5.  The elicitation team later scaled these estimates to a 1 µg/m3 change. 

Expert A began by thinking about the studies he thought were most informative. “ [T]he 
benchmarks that I would use [are] the Six Cities original analysis, which would give me a 
13 percent increase per 10 micrograms; the Jerrett study, which gives me 17 percent 
increase per 10 micrograms; the extended Six Cities analysis (Laden), gives me 16 
percent; the ACS extended analysis, which gives me 6.2 percent and the Six Cities 
change analysis, which gives me actually 37 percent.  So these kind of define the upper 
bounds.  I suppose also there's another bound, which might be the NMMAPS study, 
which was about half a percent, 0.4 percent, approximately, for 10.”   

Expert A iterated through the process of developing his distribution, relying on results 
from these studies to guide him.  He initially identified the NMMAPS estimate, 1.004, 
and the 1.37 relative risk from the Laden et al. 2006 as plausible lower and upper bounds, 
respectively.3  He chose the NMMAPS estimate, 1.004, as a lower bound, noting that the 
NMMAPS is probably over controlled.  He argued for using the Jerrett (2005) study 
relative risk estimate (1.17), supported by the (1.16) extended analysis for the Six-Cities 
study, as the basis for the central estimate.  He chose these studies because he thought 
they did not suffer from the biases created by non-representativeness, educational 
attainment levels, and exposure errors inherent to the ACS original study and re-analysis.  
Using the natural log of these values, he then estimated a standard deviation based on an 
assumed normal distribution.  The median and standard deviation then were converted 
into percent change per 1 µg/m3 change in PM2.5. He then decided to increase his 
standard deviation because he was not satisfied with the spread of the distribution.  He 
settled on a median of 1.6 percent increase in mortality per 1 µg/m3 change in PM2.5 and a 
standard deviation of 0.78.  From these values, he calculated 5th and 95th percentile values 
of 0.29 and 2.9, respectively.  The elicitation team entered these values into Crystal Ball 
and using a normal distribution, calculated the remaining percentiles.  He ultimately set 
his minimum value at zero and his maximum at 4 percent per 1 µg/m3 change in PM2.5.  
His final distribution in Exhibit 1 incorporates his estimate that there is a 95 percent 
likelihood that the relationship is causal, as noted above. 
                                                 
2 Using Monte Carlo simulation in Crystal Ball™, 95 percent of the iterations take a value drawn from the 
elicited distribution and 5 percent are assigned a value of zero.   
3 Expert A briefly considered using as his upper bound the upper 95 percent confidence limit (1.75) on the 
1.37 RR from Laden et al, 2006, but rejected it as implausibly large. 
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Exhibit 1: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 

Percentile Percent Change in Mortality 
Elicited Distributiona 

Percent Change in Mortality 
Incorporating Causality 

(IEc Generated)b 

Minimum 0 0 
5th 0.29 0 
25th 1.1 0.97 
50th 1.6 1.6 
75th 2.1 2.1 
95th 2.9 2.9 
Maximum 4.0 4.0 

 a. Assuming or conditional on a causal relationship 
 b. Incorporating 5 percent likelihood of a non-causal relationship using Monte Carlo simulation. 
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Exhibit 2: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 percent Confidence Intervals for Various Studies to Distributions from Expert A 

• = median □ = interquartile range │= 90 percent confidence interval 
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Elicited Distribution 
 

 
 
Distribution Incorporating Causality - Probability Density Function (IEc 
Generated) 
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Distribution Incorporating Causality - Cumulative Density Function (IEc 
Generated) 
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U.S. EPA EXPERT ELICITATION STUDY OF THE CONCENTRATION-RESPONSE 
RELATIONSHIP BETWEEN ANNUAL AVERAGE PM2.5 EXPOSURE AND 

MORTALITY 
 

Modification to Expert Judgments 
 

Expert A 
 

 
Date: 11 July 2006 
 
 
Section of Protocol Affected (Section Number and/or Title): 
 
 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
 
 
Description of Change (e.g. to a specific percentile, or to a qualitative opinion or 
statement of belief): 
 
C-R function is NOT conditional on the existence of a causal relationship 
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Interview Summary 
Expert B 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.1 Mechanisms for Effects of Exposure to PM2.5 
 
Expert B discussed the biological mechanisms for short-term and long-term exposures 
separately, preferring to begin with long-term. 
 
Long-term Exposures 
 
Expert B thought that the two main causes of death associated with long-term exposures 
were lung cancer and cardiopulmonary disease.  He cited evidence from studies of 
concentrated ambient particles (CAPs) showing the mutagenicity of these complex 
mixtures (e.g., the 1992 International Programme on Chemical Safety (IPCS) study in 
which CAPs from Washington, D.C. were analyzed (Krewski et al., 1992)4) as the basis 
for a hypothesis of a relationship between exposure to airborne particles and cancer.  The 
extended analysis of the American Cancer Society (ACS) cohort (Pope et al., 2002) then 
provided clear epidemiologic evidence for increases in lung cancer associated with PM2.5 
exposures.  For cardiopulmonary mortality, he noted that as recently as 1998, when the 
National Research Council (NRC) set forth research priorities for particulate matter, the 
mechanism for cardiopulmonary mortality was “a mystery.”  However, he indicated that 
he now felt that inflammatory responses to particles (and release of cytokines affecting 
endothelial cells) leading to accelerated formation of atherosclerotic plaque is now the 
prime hypothesis for the mechanism for this cause of death, citing the paper by Pope et 
al. published in Circulation (2004), and toxicological studies in rabbits conducted at the 
University of British Columbia.  While he thought cardiopulmonary mortality is the 
dominant cause of mortality, he indicated that the weight of evidence was stronger for the 
causal mechanism for cancer mortality.  He noted respiratory mortality as a third cause of 
death, but he thought that less epidemiological evidence exists for the respiratory effect, 
and the evidence that is available is weaker. 
 
Short-term Exposures 
 
Expert B did not think that there was sufficient evidence to discuss the specific 
mechanisms underlying the causes of death associated with short-term exposures, 
although he did feel that there were some deaths associated with short-term exposures 
that were not captured by the long-term studies.  He did not feel that the time-series 
studies allowed for a clear understanding of the specific role of PM2.5.  The issue of 
harvesting remained uncertain in his mind.  “There's a lot of conversation about this 
harvesting hypothesis, frail individuals or in poor health, and you hit them with this little 
additional insult and it just is enough to push them over the edge.  But if you look at 
studies that Mark Goldberg has done in Montreal, where you examine the association 
                                                 
4 Krewski et al. (1992) Mutation Research/Reviews in Genetic Toxicology 276: 33-59. 
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between mortality and pre-existing co-morbidities, you don't see a real strong predictive 
effect there … If harvesting was a real phenomenon, you should be able to show that 
people with pre-existing co-morbidities are at greater risk than the general population.”  
He did not feel that toxicological or clinical studies shed light on the mechanisms for 
mortality related to short-term exposures.   

3.2. Conceptual Framework for Mortality Effects of Short-term and Long-Term 
PM2.5 Exposures 
 
Expert B thought the Künzli diagram was a good conceptualization of the relationship 
between long- and short-term exposures, although he did not think it adequately captured 
the influence of other co-factors and he would alter the relative magnitude of the circles.  
He thought the biggest contribution of PM2.5 to mortality would be from long-term 
exposures, and that the overlap between long- and short-term exposures, if any, would be 
very small.   
 
3.3. Role of Epidemiologic Study Design in Characterizing the Total Impacts of 
PM2.5 Exposures on Mortality 
 
Expert B thought that a combination of cohort, time-series, case-crossover, case-control, 
and intervention studies were appropriate for capturing the mortality effects of changes in 
annual average PM2.5 concentrations.  The effects captured by each study design are 
shown in the table below: 

 
Study Design Type of Effects Captured (e.g., short-

term, long-term, or both) 
Cohort Studies Long-term, and possibly some acute effects 

that are the end stages of long-term exposure. 
Missing true acute effects related to peak 
pollution episodes. 

Time-Series Studies Short-term 
Case-Crossover Studies Short-term 
Intervention Studies Long-term 

 
3.4. Epidemiologic Evidence for the Impact of Exposures to PM on Mortality 
 
Expert B thought that the following characteristics would be part of an ideal 
epidemiologic study to characterize the PM2.5-mortality relationship in the U.S. 
population: 
 

• Individual exposure measurements (ideally, each participant would have a 
personal dosimeter that could distinguish between ambient and indoor exposures, 
though a dosimeter that gives average annual ambient exposures might be 
sufficient); 

• Large number of individuals; and 
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• Collection of information on a series of co-factors (e.g., indoor air pollution, 
gaseous co-pollutants, and confounders such as diet and occupation). “Any of 
them that had significant temporal heterogeneity should be longitudinally 
measured.” 

 
When asked to review the epidemiologic studies that have been most informative about 
the percent change in all-cause mortality related to a reduction in annual average ambient 
PM2.5 concentrations, Expert B focused primarily on the estimates from the original ACS 
cohort study (Pope et al., 1995) and the reanalysis in Los Angeles (Jerrett et al., 2005), 
and the Six Cities Cohort Study (Dockery et al., 1993).  
 
“[N]umber one would be Arden Pope's 1995 first analysis of the ACS cohort, which had 
as the two key strengths the very large sample size, both in terms of number of people, 
about a half a million it’s less than that in the PM2.5 cohort … But more importantly … 
[t]here were about 50 cities in the PM2.5 cohort. The big limitation of that first [ACS] 
analysis was the ecologic measure of the exposure.  You've got one measure of exposure 
for each of those 50 cities …. The second most important study is Mike Jerrett's 2005 
study of intra-urban variation in Los Angeles, where there were some 30-odd pollution 
monitors around the city.  People were allocated to the closest monitor.  And the risk 
estimates went up by a factor of two- to three-fold when you got a more localized 
measure of exposure.”  
 
Expert B also mentioned a “what if” analysis by Mallik et al. (2002) of the Six Cities data 
that found essentially the same effect.  He indicated that he authors “postulated a certain 
level of exposure misclassification by using ecologic rather than personal dosimeters [and 
by] adjusting for it analytically, … actually got risk estimates that were two- to three-fold 
higher.” 
 
His third choice was the Harvard Six Cities study, which has the limitation of only having 
six cities and … “there's such a co-linearity among all the pollutants measured that you 
get almost the same concentration-response function for any pollutant that you look at.”  
He also did not believe it was demographically representative of the U.S. (e.g., it does not 
represent Washington D.C., which is more white collar and less industrially based). 
 
Expert B also briefly discussed the Adventists Health and Smog (AHSMOG) and the 
Veteran’s cohort (VA) studies but he was not familiar with the methodological details.  
He also discussed Moolgavkar’s criticisms that the cohort studies and their re-analyses 
have focused too heavily on PM2.5 as a prior, and have therefore potentially missed 
effects of other gaseous co-pollutants.  Expert B argued that the Health Effects Institute 
(HEI) re-analyses did study other co-pollutants but only found effects associated with 
SO2.  He felt that Moolgavkar’s views are based on time-series studies primarily and 
argued that “it's harder to disentangle the effects of multiple pollutants in the acute 
studies because typically you're focusing on a much narrower geographic area, where you 
don't have the heterogeneity of the pollution mixes that you get in the ACS cohort.” 

Expert B felt the most influential published studies of the effects of short-term exposures 
to date were the multi-city studies (Canadian studies of 8-11 cities by Burnett et al. (2000 
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& 2003), the National Morbidity, Mortality and Air Pollution Study (NMMAPS) (Samet 
et al., 2000), and the Air Pollution and Health – A European Approach (APHEA) study).   

3.5 and 3.6. Confounding and Effect Modification 
 
Expert B preferred to discuss confounding and effect modification together.  He 
discussed the following factors as possible confounders or effect modifiers of the 
relationship between PM2.5 and mortality: 
 
Cohort Studies 
 

• Confounding by Occupational Exposures: Expert B did not think that this was 
a confounder because of extensive analysis done on the ACS (Siemiatycki et al., 
2003) and Six Cities studies examining this factor. 

• Confounding by SO2: Expert B thought SO2 was correlated with both PM2.5 and 
mortality. “Another key limitation … of the ACS study, was this powerful effect 
of SO2, which can almost negate, almost but not quite, the PM2.5 effect … There's 
no mechanism; obviously it's a marker for something else.  So at this point I don't 
have any … clear explanation for why that SO2 effect is so strong, but it is a very 
strong effect that does require some kind of investigation.”  He felt that failing to 
account for SO2 could lead to a “major” (i.e., a score of 3) overstatement of the 
PM2.5 effect. 

• Effect Modification by Educational Attainment: Expert B thought effect 
modification by educational attainment was a “major” (i.e., a score of 3) issue for 
the ACS study and to a lesser extent for the Six Cities Study.  He thought that 
individuals with less than high school education were under-represented in the 
ACS study and effect estimates for this group were nearly six times as high as the 
group with greater than a high school education.  He felt that educational 
attainment was an indicator for a complex set of lifestyle factors (e.g., exercise, 
access to health services, diet, and occupational exposures).  A similar type of 
effect, though smaller and non-significant, was also found in the Six Cities study. 

 
He indicated that he has not seen clear statistical evidence of effect modification by other 
factors that might be expected to modify risk, such as gender, smoking status, or pre-
existing co-morbidities. 

 
Short-Term Studies 
 
Expert B thought that confounding by gaseous co-pollutants (NOx and SOx, especially) 
could lead to a “moderate” (i.e., a score of 2, or on the order of a 25 percent) overestimate 
of the relative risk for PM2.5 in these studies.  He noted that time-series studies examining 
mortality and reproductive effects have shown strong associations with both PM and 
primary gaseous pollutants.  “We don't have a good scientific basis, in my view, to 
distinguish between the two.”  However, he thought “if the dominant circle in the Künzli 
diagram is the long-term mortality and the acute effects are much smaller, then really our 
understanding … is much better in the long-term effects.  So we're capturing much more 
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of the population health impact, and the uncertainty caused by lack of ability to 
disentangle co-pollutants in the short term effect contributes less to the overall 
uncertainty in terms of overall mortality.”  He thought effect modification by weather or 
seasonal effects is possible, which is why he thought these variables should be included 
in the time-series models, but he thought it would be minimal (i.e., a score of 1) for 
PM2.5. 

 
3.7. Exposure Issues 
 
Expert B focused on two issues 1) exposure misclassification; and 2) temporal variation 
in exposure.  He also discussed instrument measurement error and the role of indoor 
versus outdoor measurements of exposure, but thought these were trivial issues. 
 
Exposure Misclassification 
 
Expert B thought that exposure misclassification, particularly differences between central 
site monitoring exposure estimates and actual individual exposures, could cause the 
published effect estimates to be biased downward.  He saw evidence for this in a series of 
studies: “[First,] when you take one monitor or the average of all monitors in an urban 
area to represent individual exposure from everybody in a city of hundreds of thousands 
or several million people, just intuitively doesn't seem like a good thing to do.  And when 
we actually do find associations with that very crude ecologic measure, it's first of all 
quite surprising … Second is [the Willis et al. (2003) reanalysis of the] ACS cohort,5 
actually had some data within urban areas at the county level … for about half the cohort 
… [The analysis] showed that the risk estimates were approximately double when you 
use ecologic measures on a county level as opposed to an SMA level … So that was the 
second chapter in the story, having gone [from] an association with such a crude measure 
of exposure, to showing that we get stronger associations going down to the county level.  
Third chapter was [a paper by Mallick et al. (2002)] … which was this sort of 
hypothetical, what if the exposure misclassification from using one fixed-site monitor 
representing all of an urban area on actual personal exposures of such and such a 
magnitude?”  [She] gauged that by looking at inter-monitor variation in cities, where you 
have multiple monitors, and then did a regression calibration kind of adjustment, and the 
risk estimates went up by a factor of two- to three-fold.  And then the fourth and final 
piece was Mike Jerrett's Los Angeles analyses, where a totally different way of adjusting 
for exposure misclassification [than the] Mallick paper [was taken] and got almost the 
same effect.” 
 
Expert B thought this type of exposure misclassification was more of an issue in the ACS 
cohort study (Pope et al., 1995 & 2002) than in the Six Cities study, which had better 
spatial resolution of exposure.   
 
 
 
                                                 
5 Willis, A.J. et al. (2003) Journal of Toxicology and Environmental Health 66: 1605-1624. 
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Temporal Variation in Exposure 
 
Expert B thought that temporal variation in exposure was the second area of concern; that 
is to understand “what the long-term effects of air pollution are from exposure in the last 
year, the last five years, the last ten years – When in the past does exposure actually 
contribute most to mortality?  And if we believe the accelerated atherosclerosis 
hypothesis for cardiopulmonary effects …you would expect maybe 5, 10, 15 years ago 
would be the most important window for current mortality.”   
 
Expert B believed we currently do not know the answer to these questions.  He indicated 
that Villeneuve et al. (2002) attempted to look at temporal variation in exposure in the 
Six Cities study taking into account people who moved, but few of the original cohort 
moved and the author was not “able to tease out much of a temporal effect of exposure on 
risk.”  He did not think that the Pope et al. (2002) extended analysis of the ACS cohort 
really revealed significant differences between effect estimates based on exposures from 
1980 versus the later exposures up to 2000, because of correlation between exposures for 
the two time periods.  He indicated that work is being done on a nutritional sub-cohort of 
the ACS study that will take into account both mobility and temporal changes in PM, but 
data are not available yet from that study.   
   
3.8. Causality 
 
Expert B felt a causal relationship would be best supported by a “strong, statistically 
significant, and robust association.  Robust in the sense that adjustment for confounders 
and effect modifiers still leaves the association intact … replication of the results in 
independent studies … a plausible biological mechanism by which those effects could 
occur … a clear exposure response gradient.” 

“[I]f we look at long-term exposure, I think we have strong, statistically significant, 
robust associations that have been replicated in the Harvard Six Cities study, the 
American Cancer Society cohort, and the Seventh Day Adventist.  [These associations 
are r]obust against adjustment for a whole host of factors.”  Expert B noted that the 
Health Effects Institute in their reanalysis “has looked at the ACS data just about every 
way imaginable, and have had extensive opportunity to control for 140 covariates.  [W]e 
do have a plausible … biologic mechanism, by which particles can cause 
cardiopulmonary mortality and lung cancer mortality.”  He thought the exposure response 
gradient had been observed in both the ACS studies and the Six Cities study. 

Expert B thought there was less strength of evidence for causal effects of short-term 
exposures “even though there are only a handful of chronic studies and lots of short-term 
studies.”  For example, he pointed out that there are not statistically significant results for 
all 90 cities in NMMAPS.   
 
Expert B specified a range and most likely value for the likelihood of a causal 
relationship for long-term and short-term exposures separately.  For long-term, he 
initially specified a range of 80-95 percent with a most likely value of 95 percent.  “The 
main factors that would [contribute to the 80 percent] are the SO2 effect on PM2.5, which 
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is quite substantial as we discussed earlier” and to a lesser extent the ecologic measures 
of exposure.   For short-term, he initially specified a range of 70-90 percent with a most 
likely value of 90 percent.  After further consideration of his views on the overall strength 
of the evidence, he expressed greater confidence in the strength of the evidence for a 
long-term impact, and ultimately provided a range of 90-99 percent and a most likely 
value of 98 percent for the likelihood of a causal relationship for long-term and short-
term exposures combined.  This estimate reflects a greater emphasis on causality for 
long-term effects, which he thought were the dominant contributor to effects seen for 
changes in annual average PM2.5. 
 
3.9 Thresholds 
 
Expert B summarized his views on thresholds with four main points “Number one, 
conceptually, looking at mechanisms of lung cancer and cardiopulmonary mortality, 
particularly for lung cancer, I think there's a strong argument to be made that 
conceptually there is no population threshold.  Number two, for acute effects … without 
knowing those mechanisms, just drawing analogies with other causes of acute mortality 
due to environmental exposures, I think there's a stronger argument to be made for the 
existence of a threshold.  Number three, observationally, for both long-term and short-
term exposures, I don't think we have much of a chance of demonstrating a threshold 
because of the limits of resolution of epidemiologic data at low exposure levels.  We see 
in the chronic studies, as we go down the concentration-response curve, the uncertainty 
bands widening to the point where you get to the lower end of that 4 to 30 µg/m3 range, 
you really can't tell definitively if there is an increased risk or not, unless you believe that 
trend line holds even with confidence bounds at the possibility of no risk at the lower end 
of the range.”  He indicated that Cakmak et al. (1999) did an analysis published in Risk 
Analysis showing empirically how difficult it would be to identify a threshold even in 
acute studies. 

He thought the population exposure-response relationship might flatten out some at lower 
exposures, including levels below 4µg/m3.  In essence, he thought it was more an issue of 
some non-linearity at low doses rather than a threshold concept. 

He concluded: “[A]nother overarching observation here is that the question of thresholds 
may not be a question that's really worth trying to resolve because of the limits of 
observational studies and defining that threshold, because any conceptual arguments that 
you can put forward will remain conceptual unless you've worked out the biological 
mechanism by which particles cause mortality in full detail and embed a sensitive marker 
that you can trace right down to the very low exposure levels.  And I don't think we're 
there yet.”   
 
3.10 Other Influential Factors 
 
Expert B discussed additional sources of uncertainty that were not part of the protocol.  
He thought that more research into biological mechanisms was warranted.  In addition, he 
thought that errors in outcome ascertainment (misinterpretation of cause of death, 
ascertainment of vital status) could add uncertainty to the concentration-response (C-R) 
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function (although all-cause mortality would not be affected by miscoding of cause of 
death).  Expert B did not think publication bias was an issue. Nor did he think ecologic 
community covariates were an alternative explanation for the mortality effect seen in the 
ACS study, in particular.  
 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert B thought the C-R relationship was largely linear on the basis of observational 
data.  He noted that work by Abramowitz et al. (2003) using flexible exposure-response 
curves with no constraints on the prior form of the distribution showed a largely linear C-
R relationship. 
 
Expert B wanted to characterize his C-R function in a piece-wise linear fashion, 
specifying two C-R functions over the range of annual average PM2.5 concentrations that 
were the focus of the study (4-30 µg/m3), one that applied to concentrations of 4-10 
µg/m3 (hereafter, “Range 1”), and one that applied to concentrations of >10-30 µg/m3 

(hereafter, “Range 2”).  He did so to reflect his greater uncertainty about the shape of the 
concentration response function in the lower concentration range. 

Expert B chose to provide C-R functions that were conditional on the existence of a 
causal relationship.  The elicitation team then combined his conditional distributions with 
his percent likelihood of causality specified in Section 3.8 (98 percent likelihood of a 
causal relationship).  In addition, the two distributions were applied to a distribution of 
population-weighted annual average PM2.5 concentrations in the U.S. from EPA’s 
BenMap model to create a combined distribution (hereafter, “Example Applied 
Distribution”).  He stated that his effect estimates represented primarily the effects of 
long-term exposure (on the order of less than 10 percent attributable to effects of short-
term exposure).  

Expert B specified the same 50th, 75th, 95th and maximum values for both Range 1 and 2.  
Expert B estimated his 50th percentile by adjusting the original ACS relative risks (1.06 
per 10 µg/m3) upward by a factor of two to account for exposure misclassification using 
as justification the Mallick et al. (2002) analysis and the Jerrett et al. (2005) studies.    
The 95th percentile was based on adjusting the ACS cohort study estimates to account for 
the influence of a non-representative population with respect to socioeconomic status 
(SES) (educational attainment), for uncertainty about the true basis of SO2 effect, and for 
some statistical uncertainty.  His 75th percentile was chosen largely as an intermediate 
value between the 50th and 95th percentiles.  Finally, his maximum values for both ranges 
were based on allowing for uncertainties that he had not already taken into account, such 
as measurement error in the monitoring science, unidentified covariates, a larger SES 
adjustment, and model uncertainty.  
 
Expert B specified different values for the minimum, 5th, and 25th percentiles for Ranges 
1 and 2.  Expert B began with the upper range (Range 2) and set his minimum value at 
0.1 percent per 1 µg/m3.  For the 5th percentile, Expert B adjusted the 50th percentile 
downward first by 0.4 to account for an “appropriate” confidence limit.  This took the 
estimate from 1.2 to 0.8.  He then decreased this by 75 percent to account for an SO2 
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effect, ending up with 0.2 percent.  For the 25th percentile in Range 2, he again adjusted 
the median to 0.8 for the confidence limit and then reduced it 37.5 percent (halfway 
between 25 and 50 percent) to account for an SO2 effect, ending up with a value of 0.5.  
For Range 1, he decreased the minimum to show his increased uncertainty about the C-R 
relationship at low concentrations.  He reduced the 5th percentile to account for the fact 
that there may be no acute effects at these concentrations, and the potential flattening out 
of the C-R function for cardiopulmonary deaths.  He reduced the 25th percentile effect 
estimate to account for the potential absence of acute effects at these concentrations, and 
the potential flattening out of the C-R function for cardiopulmonary deaths. 
 
 
Exhibit 1: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
for Range 1 (4 – 10 µg/m3) 

Percentile Percent Change in Mortality 
Elicited Distribution  

Percent Change in Mortality 
Distribution Incorporating 

Causal Likelihood 
(IEc Generated) 

Minimum 0.01 0 
5th 0.10 0.07 
25th 0.20 0.19 
50th 1.2 1.2 
75th 2.1 2.1 
95th 2.6 2.6 
Maximum 2.8 2.8 
 

Exhibit 2: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
for Range 2 (>10 – 30 µg/m3) 

Percentile Percent Change in Mortality 
Elicited Distribution  

Percent Change in Mortality 
Distribution Incorporating 

Causal Likelihood 
(IEc Generated) 

Minimum 0.1 0 
5th 0.2 0.16 
25th 0.5 0.47 
50th 1.2 1.2 
75th 2.1 2.1 
95th 2.6 2.6 
Maximum 2.8 2.8 
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Exhibit 3: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
After Incorporating Causality and Applying the C-R functions to the Population-
Weighted Annual Average PM2.5 Concentration Distribution in the U.S. from 
BenMap - Example Applied Distribution (IEc Generated) 

 

Percentile Percent Change in Mortality  
Minimum 0 
5th 0.12 
25th 0.43 
50th 1.2 
75th 2.1 
95th 2.6 
Maximum 2.8 
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Exhibit 4: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 percent Confidence Intervals for Various Studies to Distributions from Expert B 

 
* = Distribution incorporating causality and applying the C-R functions from Ranges 1 and 2 to a 2002 population-weighted annual average PM2.5 concentration 
distribution in the U.S. from BenMap. 
• = median □ = interquartile range │= 90 percent confidence interval 
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Elicited Distribution – Range 1 
 

 
 
Elicited Distribution – Range 2 
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Range 1 Incorporating Causality - Probability Density Function (PDF) (IEc Generated) 
 

 
 
Range 1 Incorporating Causality - Cumulative Density Function (CDF) (IEc Generated)  
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Range 2 Incorporating Causality – PDF (IEc Generated) 
 

 
 
Range 2 Incorporating Causality – CDF (IEc Generated) 
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Example Applied Distribution – PDF (IEc Generated) 
 

 
 
Example Applied Distribution – CDF (IEc Generated) 
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Interview Summary 
Expert C 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.1 Mechanisms for Effects of Exposure PM2.5 
 
Expert C discussed the biological mechanisms for the effects of long-term and short-term 
exposures separately, focusing first on long-term.  
 
Long-Term Exposures 
 
He thought that the two main causes of death associated with long-term exposures were 
cardiac disease and lung cancer.  In particular, he cited the Pope et al. 2004 paper in 
Circulation as influential in showing that most of the excess mortality due to PM 
exposure was related to cardiac disease.  He described the cardiac mechanism as an 
accelerated aging process brought on by the contribution of the body’s natural defense 
mechanisms to inflammation, to long-term functional changes, and ultimately to changes 
in viability.  He thought that the exact intermediate steps for the mechanism “are pretty 
well undefined” but are believed to involve deposition of the particles into the lung, 
which stimulate mediator release, leading to endothelial inflammation.  He cited the Sun 
et al. (2005) work (in JAMA) and the nine papers in the Mar.-Apr. 2005 issue of 
Inhalation Toxicology describing earlier CAPs inhalation research conducted at NYU.  
These studies showed histological evidence of accelerated arteriosclerotic lesions in 
ApoE-/- mice exposed to concentrated air particles (CAPs) as important evidence for a 
mechanism for cardiac disease. Although the exposures to mice involved high 
concentrations (~100 µg/m3) for 6 hours a day, 5 days a week, he thought that it was the 
cumulative average exposure (on average 15-17 µg/m3) that was important for the effects 
seen.  
 
For lung cancer, he thought that the Pope et al., 2002 study showed a significant excess 
of cancer; this work has been supported by other cohort studies which have shown 
consistent elevated risk, though the others were not statistically significant.  He thought 
the mechanisms here are not certain but may be related to mutagenic or carcinogenic 
particle components and whether they are initiators or promoters.  He noted that there is 
some excess risk for pulmonary disease but since pulmonary disease is less prevalent, the 
total impact on numbers of deaths is smaller than for cardiac disease and cancer.   
 
Short-Term Exposures 
 
For short-term exposures, he thought that PM acted analogously to ozone and could cause 
an irritant response (broncho-constriction and inflammation in the airways resulting from 
stimulation of epithelial cells to release mediators).  He noted that, unlike ozone, particles 
can remain in the lung for a long time and may contribute to chronic as well as acute 
conditions.  He thought that deaths from short-term exposures could occur in people with 
little reserve capacity because underlying pulmonary disease (inability to ventilate 
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effectively) can contribute to cardiac deaths.  He also cited evidence from Annette Peters’ 
epidemiological work and from animal studies showing declines in heart rate variability, 
a factor in viability, which could be leading to acute cardiac deaths. 
 
3.2 Conceptual Framework for Mortality Effects of Short-Term and Long-Term 
PM2.5 Exposures 
 
Expert C generally found the Kunzli framework very useful and the definitions of the 
categories of death relevant, though he thought it could be enhanced to include different 
causes of death.  He would want to change the size of the ovals to show effects of long-
term exposure to be much greater than the effects of short-term exposure.   
 
3.3 The Role of Epidemiological Study Design in Characterizing the Total Impacts 
of PM2.5 Exposures on Mortality 
 
Expert C thought the cohort studies are the best way to estimate total mortality, 
represented by Categories B (long-term effects) and A (mixed effects) in the Kunzli 
framework.  He though total short-term effects are best captured by the time-series 
studies with lags of up to 40 days (e.g., as shown by Joel Schwartz and his colleagues). 
 
The intervention studies (Sugiri et al., 2005; Oglesby et al., 2005; Avol et al., 2001; 
Clancy et al., 2002; and Hedley et al., 2002) suggest an intermediate effect on daily or 
longer-term functional changes and mortality.   He noted that the Clancy et al. study saw 
reductions in both respiratory and cardiac deaths; the Avol et al. study showed changes in 
lung growth related to changes in PM exposures.  He did not have a clear sense of what 
the dominant mechanisms were for these changes, although findings of inflammation and 
atherosclerosis development in the Sun et al (2005) six month mouse study (discussed 
earlier) may provide part of the explanation.  He thought the composition of the particles 
may turn out to be relevant and discussed unpublished work suggesting the importance of 
nickel and vanadium in the mortality changes observed in intervention studies. 
  
3.4 Epidemiological Evidence for the Impact of Exposures to PM2.5 on Mortality 
 
Expert C thought an ideal study for characterizing the U.S. concentration-response (C-R) 
function for PM2.5 and mortality would resemble the Six Cities study but with a broader 
range of cities that would be more geographically representative of the U.S.  He would 
want the study to be prospective, to involve a representative sample of the U.S. 
population, to include measurements of multiple air quality parameters (e.g., acid vapors, 
organics, elemental carbon, PM2.5), and to collect data on personal risk factors both on 
enrollment and on follow-up. 
 
Expert C made the argument that ACS (Pope et al., 2002) and Six Cities studies (Dockery 
et al., 1993 (original) Laden et al., 2006 (follow-up)) were essentially a “complementary 
pair of studies which found differences in [the] magnitude [of effects that] can be 
explained. … [We] can decide some of their biases and correct [for] them.” 
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Expert C thought that the ACS study (Pope et al., 2002) was the most useful for 
answering the causal question because it is geographically more representative of the 
whole U.S., though it is “less than ideal” in terms of its measurement of pollutants (use of 
single monitors for broad areas, lack of detail on other pollutants than those included for 
compliance monitoring, lack of information about where members of the cohort lived 
after enrollment), and the non-representativeness of its population with respect to 
socioeconomic status (SES).  He thought the Jerrett et al., 2005 ACS reanalysis in Los 
Angeles (LA) used a more precise measure of individual exposure. 
 
He thought the Six Cities Study had a more representative population with respect to SES 
and better exposure measurements (use of investigator controlled monitoring stations, 
located to be more representative of populations).  However he was concerned that the 
six cities were not geographically representative of the U.S. 
 
Expert C thought the intervention studies were very important but “they’re most useful 
for … plausibility … that the effects of the particles are substantial and real, rather than 
in terms of quantitation.”  His point was that they each use different measures of particle 
pollution, and do not directly address PM2.5.  The Hong Kong study (Hedley et al., 2002) 
looked primarily at SO2, but Expert C views SO2 as a surrogate for fine PM in this study; 
the Dublin study used black smoke and the correlation with PM2.5 was uncertain; and the 
Utah Valley study used PM10 – the results could be corrected for PM2.5 though he was not 
aware that they had been. 
 
Expert C also discussed the Adventist Health and Smog (AHSMOG) and Veteran’s 
studies.  He thought the AHSMOG study was generally supportive of a PM effect though 
he was concerned about the non-representative population and the indirect construction 
of the PM2.5 metric.  He characterized the Veteran’s study as difficult to understand based 
on available publications and he was concerned about its non-representative population. 
 
3.5 Confounding  
 
Focusing on the ACS and Six Cities studies, Expert C discussed a number of theoretically 
influential confounders and then evaluated whether or not he thought they had been dealt 
with adequately in the two studies.  The initial discussion identified the following: 

• Criteria pollutants; 
• Smoking; 
• Occupation; 
• Other pollutants (fresh motor vehicle exhaust, ultrafines, products of incomplete 

combustion, others depending on the source (e.g., wood smoke)); 
• Differential migration; 
• SES factors (e.g., access to health care, financial status); and 
• Secular trends in obesity. 

 
Of these, he thought both the ACS and the Six Cities studies had done a good job of 
exploring the impacts of the first three.  His view was that neither smoking nor 
occupation was influential in biasing the results.  As a result, he thought even the early 
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cross-sectional studies needed to be re-considered.  Nor did he think differences in 
criteria pollutants made a “demonstrable difference.”  "[The time-series data] … show the 
same PM2.5 coefficient across high and low ozone, NO2, SO2 and CO communities.”  
When asked about the SO2 effect shown in the ACS study, Expert C thought that it was 
not likely to be a “true confounder, in that it is a precursor … [with a] significant 
correlation [with fine PM], but that it’s probably not causal.”  Similarly, “[s]ulfate has 
been an extremely good index of fine particles over years, but is it because it's causal or 
because it's a surrogate for something else, like perhaps nickel and vanadium?  Or other 
pollutants from coal [or oil] combustion.”  
 
The remaining issues were ones that he saw as more hypothetical concerns, ones that he 
lacked information to characterize more definitively. 
 
We discussed whether other, currently unmeasured, pollutants might be confounders for 
the PM effect.  Expert C did not think that there was likely to be a differential across 
cities in terms of indoor-generated pollutants.  He thought wood smoke “could be a 
confounder, but probably not in terms of large population influence.”  He thought the 
ACS and Six Cities studies reflect largely urban populations with relatively little wood 
burning.   
 
He thought that a recent series of studies looking at traffic as a risk factor raised the 
question of possible confounding by “fresh” motor vehicle exhaust (which could include 
ultra-fines and/or products of incomplete combustion).  Ultimately, this factor contributed 
to his uncertainty about the PM2.5 effect on mortality (he was uncertain of the direction of 
bias) and he gave this factor a score of 2 (which he equated to plus or minus 20-30 
percent).   
 
Expert C engaged in a discussion of obesity (and with it diabetes) as a risk factor.  During 
this discussion Expert C made comments indicating that it might be a confounder of the 
mortality effect (e.g., higher rates of obesity in low PM2.5 areas, as in the rural south, 
which could lead to an underestimate of the PM2.5 relative risk), and that it could function 
as an effect modifier of the mortality risk estimate ("… if the relative risk is greater in 
obese people, then [the effect estimate] would be understated if we didn't acknowledge 
that obesity was increasing [in the U.S. population].”  He gave obesity a score of 2.   
 
Finally, Expert C discussed differential migration and its impact on the PM-mortality 
effect estimate.  He thought it might bias the estimate toward the null because he thought, 
on average, people might be more likely to move from the “Rust Belt” to the “Sun Belt” 
and therefore from higher to lower exposures.  He cited the Roosli et al. and Schwartz et 
al. papers that suggest that, “it’s the most recent years of exposure which determine 
mortality rates … [and if the population] moved to a cleaner environment more than three 
or four years ago, that would … bias it downward.”  He ultimately thought it would have 
a minimal effect on the PM2.5 relative risk (score = 1 which he characterized as <10 
percent change). 
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3.6 Effect Modification 
 
Expert C discussed two potential effect modifiers, race and SES (as indicated by 
educational attainment).  Race as an effect modifier was discussed extensively; Expert C 
did not think that race, per se, would necessarily predict response to air pollution but that 
it might be a proxy for other risk factors (e.g., SES, access to health care, diet) for early 
mortality.  He noted that the Six Cities and ACS cohorts were largely white.  Expert C 
felt it was largely beyond his expertise to assess the impact of excluding other races from 
these cohorts, although his intuition was that it would tend to bias the PM effect estimate 
downward.  However, given that race was not reported in the Krewski re-analysis of the 
ACS as a significant risk factor, he thought the impact might be minimal (score = 1).   
 
Expert C’s views on the effect of educational attainment (as a proxy for SES factors) on 
the relative risks for PM2.5 were influenced by and expert's discussion at the pre-
elicitation workshop, in which he presented estimates showing that different approaches 
for adjusting for educational attainment increased the relative risks by 30-50 percent.  
Expert C consequently thought this factor merited a score of 3. 
 
3.7 Exposure Issues 
 
Expert C initially raised several exposure issues that might impact the PM2.5-mortality 
effect estimate: 

• Exposure measurement error; 
• Compositional variation across the country; 
• The time course of exposure, relevant exposure period for the mortality effect; 

and 
• Air conditioning usage. 
 

Expert C thought exposure measurement error, resulting from use of single compliance 
monitors for a large population was an important potential source of bias for the ACS 
study.  He thought the Six Cities Study did a better job of exposure measurement.  
Although he thought the Jerrett et al. (2005) study’s improvement in exposure 
measurement was at least partly responsible for the increased PM2.5-mortality effect 
estimate relative to the original ACS study, he was not certain that it was all attributable 
to improved exposure metrics.  He thought a difference in components of the PM2.5 in the 
Los Angeles area might also have played an important role.  He scored the exposure 
measurement error issue a 3.   
 
Expert C cited the National Morbidity, Mortality and Air Pollution Study (NMMAPS) 
publications with daily mortality showing that the mortality coefficients vary by region of 
the country (e.g., higher in the northeast) which suggests to him a role for the 
composition of PM2.5.  For example, he thought that there is more acidic aerosol in the 
northeast than in the rest of the country.  However, he recognized that this “doesn't 
necessarily mean it has an influence on annual mortality” although he thought the Jerrett 
et al. paper might suggest, in part, the influence of more toxic PM2.5 in southern 
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California.   For the Six Cities Study, he argued that the PM mixture “is not that different 
from a lot of the U.S. and Europe, and therefore it’s a reasonable estimate for … the U.S. 
effect … There probably is some bias, but it’s indeterminate.” 
 
Expert C also acknowledged that the relevant period exposure for estimating the PM2.5- 
mortality effect was not known.  He thought the intervention studies, as in Hong Kong, 
suggest that more recent exposure is more relevant to mortality risk, rather than the 
previous 20-40 years, although he found that judgment somewhat counterintuitive. He 
indicated that one rationale might be that the mortality risk is higher among the older, 
frailer population, than in the young.   
 
Noting unpublished work [by George Thurston] showing higher effect estimates between 
areas where air conditioning use is low (e.g., San Francisco) compared to where air 
conditioning use is more prevalent (e.g., Houston), Expert C thought air conditioning 
could be an important factor in determining effect size by reducing the correlation 
between central site monitoring data and personal exposures.  Furthermore, he noted that 
use of air conditioning has been increasing nationwide over time.  He thought it might be 
influential in the ACS study and could be reducing the PM effect in southern cities.  
Expert C expressed the view that air conditioning would have led, therefore, to a negative 
bias in the overall ACS effect estimate as compared to a true national PM effect.  But it 
appears that his “true national effect” in this case was for a hypothetical U.S. population 
that did not use air conditioning.  Expert C was not sure that the distribution of air 
conditioning use in the ACS study was un-representative of the US distribution of air 
conditioning usage.  Thus the issue of whether the ACS effect estimate was biased in 
relation to the actual U.S. adult population remained unclear.  He went on to suggest that 
air conditioning was likely to be less prevalent among the poor and that, because the ACS 
study was non-representative of the U.S. with respect to educational attainment, air 
conditioning use and its influence on exposure may underlie some of the effect 
modification by educational attainment observed there. For the Six Cities study he 
thought that there was minimal bias but that it was in the direction of overestimating the 
mortality risk in the U.S. since there is probably less air conditioning use in those six 
cities compared to the U.S.   
 
3.8 Causality 
 
Expert C argued that both animal studies and human epidemiological data are important 
for establishing plausibility of the PM2.5/mortality association. The recent experiments 
(discussed under mechanisms) with the atherosclerotic mouse model (the ApoE-/- mouse) 
showing accelerated development of atherosclerosis in mice exposed to CAPs as well as 
“prompt and substantial changes in heart rate variability and heart rate” add a “new 
increment of plausibility for particles being causally related to cardiac disease endpoints.”  
For epidemiological data, “the best evidence is the so-called ‘found’ experiments, where 
there have been sudden changes in pollution [Dublin, Hong Kong, European studies of 
children showing changes in respiratory function]” corresponding to changes in 
mortality.  Expert C felt that the fact that studies all around the world have demonstrated 
an excess daily mortality associated with fine particles, an association that has not been 
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successfully challenged, establishes plausibility.  He thought that the ACS cohort, Six 
Cities cohort, the Netherlands cohort (Hoek et al., 2002), AHSMOG, and even the 
Veterans cohort all “provide essentially the same message” for annual mortality. 
 
He thought both relationships with short-term and long-term exposures were very likely 
to be causal though he thought it was stronger for long-term because of the greater 
amount of mortality associated with long-term exposures.  He was certain in both cases 
that the relationships were likely to be causal, comparable to his certainty that smoking 
increases the risk of mortality.   
 
In developing his final uncertainty distribution, he ultimately settled on 99 percent 
likelihood of a causal relationship, which he felt accommodated his views on the strength 
of the evidence and was consistent with the probabilistic distribution of effect estimates 
he specified. 
 
3.9 Thresholds 
 
Expert C thought cohort studies based on large, representative populations, not clinical or 
animal studies would, in theory, be most suitable for detecting a threshold if one existed, 
but that it would require such a large population and so much clinical follow-up that it 
would be prohibitive. 
 
While Expert C thought that there are “clearly” thresholds for individuals, he would not 
expect to see a population threshold, even if one existed, given the population variability 
in sensitivity (due to genetic differences or pre-existing conditions, for example), in the 
general population of humans.  He did not think there was a conceptual basis for arguing 
that a population threshold might exist in the 4-30 µg/m3 range for this study.  Although 
he noted that the ACS study was directly informative about exposures only down to 
around 10 µg/m3, and that a “modest extrapolation, even down as far as 4, is not 
unreasonable…[compared to] orders of magnitude as you do in carcinogen risk 
assessment.”   
 
His opinion on thresholds did not vary for short-term and long-term exposures.  He did 
not elect to incorporate a threshold into his C-R function. 
 
3.10 Other Influential Factors 
 
As discussed to some extent earlier, Expert C thought that PM composition was likely to 
be influential.  He thought the operating assumption of the protocol was that 
“composition made no difference, but that clearly can’t be correct.  Not that I can tell you 
in specific terms.”  He stated that recent studies have shown that composition might be 
influential on mortality estimates.  He thought that future regulatory scenarios would 
likely be designed to deal with source-related or individual components as data improves. 
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PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert C chose to base his judgments on a linear, non-threshold (log concentration, linear 
response) function over the entire range of concentrations included in the study (4-30 
µg/m3).  “I'm not absolutely sure that it is truly linear, but the linear approximation is the 
best estimate that can be made, in my judgment at this time.  Clearly it no longer is linear 
as you get to much higher concentrations.”  He cited the Pope et al. (2002), and Laden et 
al. (2006) comparison of the original and extended relationships as influential.  Based on 
our earlier discussion, the likelihood of a causal relationship is assumed to be 99 percent. 

Although we began by trying to establish the maximum or upper bound for the PM2.5-
mortality effect, Expert C found beginning with the extremes very difficult.  He asked to 
start with a midpoint and work out to the extremes considering the uncertainties we had 
discussed. 

He approached his estimation of the midpoint in two ways; one beginning with the 
central estimate from the Six Cities study (Dockery et al., 1993) and the other beginning 
with the Pope et al. (2002) ACS study.  He began with the estimate of 13 percent per 
10µg/m3 from the original Six-Cities study rather than the ACS study, whose estimate he 
thought was low given the non-representative population and degree of exposure 
misclassification.  He was concerned that the Six Cities study might be biased a little high 
relative to a national estimate given its focus on the northeast where he thought the 
toxicity of PM might be greater and because of likely less use of air conditioning.  But 
after some discussion of these issues, he did not consider them large enough to change his 
estimate, so he chose to maintain his central estimate at around 13 percent based on the 
Six Cities study. 

As an alternative approach to deriving the median estimate, based on the ACS study 
estimate of 6.2 percent per 10µg/m3, he argued that it should be increased to about 9 
percent as a crude adjustment for educational attainment as discussed in the workshop.   
Adjusting further for exposure misclassification, he arrived at about 13 percent again, 
noting that although the Jerrett et al. (2005) study reported a measure of 17 percent, he 
thought that composition played some role in that effect measure. 

Considering both studies and the inexact rationale for various adjustments, he settled on a 
value of 12 percent per 10µg/m3 for his 50th percentile. 

He then worked on developing an upper 95th percentile, which he estimated by not quite 
doubling his median estimate to about 20 percent.  These were converted to values per 
1µg/m3 change in PM2.5.  He then asked that a Gaussian distribution be fit to these two 
percentiles, and the elicitation team generated the remaining percentiles of his uncertainty 
distribution using Crystal Ball™.  He allowed the distribution to be truncated at zero, 
leaving about 1 percent probability of a non-causal relationship.  He felt this was largely 
trivial and consistent with his views on the strength of the PM2.5-mortality relationship. 
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Expert C chose not to specify a maximum value for his distribution because the Gaussian 
distribution, on which his C-R function distribution was based, has an asymptotic 
maximum.  
 
Comparing his distribution to some of the other studies on which he relied, he felt that 
specifying an upper 95th percentile that was comparable to those based on statistical error 
for the Six Cities Study was justifiable.  “You could be more certain.  No reason why 
weighing all the evidence doesn't shift you to be more or less certain.” 

Exhibit 1: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations  

Percentile Percent Change in 
Mortality  

Minimum 0.0 
5th 0.40 
25th 0.90 
50th 1.2 
75th 1.5 
95th 2.0 
Maximum - 
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Exhibit 2: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 percent Confidence Intervals for Various Studies to Distribution from Expert C 

 

• = median □ = interquartile range │= 90 percent confidence interval 
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Expert C Distribution - Probability Density Function 
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Interview Summary 
Expert D6 

 
Expert D began our discussion by providing a conceptual framework, informed by evidence, for 
explaining the possible relationship between mortality and exposure to fine particles.  He 
essentially described a microenvironmental model in which individuals spend varying amounts 
of time in different microenvironments defined broadly by differing proximity to roadways.  It 
was within this context that Expert D discussed remaining uncertainties in the PM mortality 
relationship. 
 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
A. Epidemiological estimates considered most influential to my decision: 
 
 1.  Six Cities Study  (Dockery et al., 1993; Laden et al., 2006; Krewski et al., 2000) 
  Six single citywide PM2.5 data for first study (‘74-’89) 
  Estimated PM2.5 for follow-up (‘90-‘98) 
  Only white adults 
  PM2.5 ↓ from first to follow-up 
  RR ↓ from first to follow-up (using numbers in Laden) 
   1.7 to 1.3 %/µg  
 
 2.  ACS Study (Pope et al., 1995, 2002; Krewski et al., 2000) 
  50 metropolitan area PM2.5 from zip code for ‘82-‘89 
  Estimated PM2.5 for extension to ‘98 
  Enrolled adults 
  PM2.5 ↓ in all areas, with much greater ↓ for areas over 20 µg/m3 
  RR ↑ from first to follow-up (using numbers in Pope ‘02) 
   0.4 to 0.6 %/µg  
  RR higher if adjusted for education level 
 
 3.  L.A. ACS cohort (Jerrett et al., 2005) 
  L.A. by zip code (267 zip codes interpolated from 23 area monitors) 
  RR was lowered by progressive controls in model 

1.1 %/µg after controlling for the most variables 
  No apparent freeway proximity effect (??) 
 
 4.  Elderly in L.A.  (Enstrom et al., 2005) 

  Two periods: ‘73-‘82, and ‘83-‘02 
  RR ↓ between periods 
   0.4 to 0.0 %/µg 
 

                                                 
6 Expert D provided his own summary.  We have supplemented it, where necessary to provide details for 
comparison with other experts. 
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B.   Epidemiological studies providing useful supporting information: 
 

1. Pope et al., 2004 
  ACS nationwide – cardiovascular 
  RR for CV + diabetes (?) higher in former and current smokers vs. never smokers 
   1.2, 1.3, and 1.9 %/µg, respectively 
 

2. Lipfert et al., 2006 
  Men – VA – nationwide 
  RR was higher for traffic proximity than for PM2.5 
  
 3.  Pope et al. Utah Valley (1989; 1991) 
 
C.  Toxicological support for quantitative estimates of RR for human mortality 
  
 None suitable for quantitative estimates 
 
D. Toxicological support for plausibility and mechanisms (among many) 

 
1.  Utah Valley Studies (reviewed in Ghio, 2004) 
 Coherence of toxicological and epidemiologic studies 
 Inflammation 

Importance of soluble transition metals 
 
2.  Dog model of myocardial ischemia (Wellenius et al., 2003) 
 Boston CAPs @ 345 µg/m3 x 6 hr x 5 d 
 Alterations in ST segment 
 Multivariate analysis > Si 
 
3.  CV effects in ApoE mice (Sun et al., 2005) 

  Regional NY CAPs @ 85 µg/m3 x 6 hr x 5 d x 6 mo 
  Increased HR and atheromatous vascular changes 
 
 4.  LRRI studies 

a.  DOE studies of PM and co-pollutants in engine emissions 
 Both PM and non-PM fractions are important to several effects 
b.  NERC repeated exposures to combustion emissions at relevant levels: 

   Altered cardiac electrophysiology (diesel, gasoline) 
   Oxidative vascular injury (gasoline ± PM) 

Enhanced atheromatous responses (gasoline ± PM) 
Altered systemic immune competence (diesel and wood smoke) 
Altered resistance to respiratory infection (diesel and gasoline) 

 
E.  Slope of exposure-response function 
 
 1.  Best sources of information 
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EPA PM Staff Paper (2005), Figure 3-4, p 3-57 

  Pope and Dockery (2006), Figure 1 
 

2.  Shape and assumptions 
 

  No biologist would believe that the D-R curve is actually linear throughout its length. 
 
Current epidemiological data do not provide enough information to select any other 
than a linear function in the range of current annual concentrations. 
 
If anything, the slope is estimated to steepen in the low range, but the uncertainty 
expands too much in the low range to estimate a non-linear function.  
 

F.  Major Sources of Uncertainty 
 
 1.  Responsibility of co-pollutants for a portion of effects ascribed to PM 
 

Only a few co-pollutants are measured.  Epidemiologists have no way of accurately 
distinguishing effects of pollutants that are not measured.  An indirect assessment can 
be made by assessing “PM” effects in locations having different co-pollutant levels.  
There are some data that may satisfy this strategy for co-pollutants that are typically 
measured (e.g., NAAQS pollutants), but I am not aware of studies that have proposed 
to have done this for unmeasured co-pollutants.  
 
Evidence from toxicological studies, strongly suggests to me (but does not prove) that 
unmeasured co-pollutants are responsible for a portion of effects attributed to PM.  
These effects include inflammation, atherogenic vascular responses, and resistance to 
respiratory infection, and may include immune/allergic effects and developmental 
effects.   
 

This view is based almost exclusively on studies of fresh, or relatively fresh 
traffic emissions.  Because I believe that current evidence points toward 
engine emissions PM as the most toxic PM overall (toxicity x prevalence of 
exposure), the most important exposure to unmeasured co-pollutants occurs 
concurrent with the most important exposure to PM.  This concurrence adds to 
the plausibility that co-pollutants cause a portion of the effects ascribed to 
PM.    
 
Current data do not allow the confident parsing of effects among different 
unmeasured co-pollutants, measured co-pollutants, and PM.  However, based 
on current data, I consider gas and vapor-phase organics (VOCs, SVOCs) to 
be very likely among the culprits.   
 
It is true that many VOC and SVOC species will migrate into the PM 
population with distance from source; moreover, the organics will be changed 
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by oxidation, chemical reactions, etc.  Some portions of this material will 
become more toxic and some will become less toxic.  We don’t know enough 
yet to deal with this in a quantitative manner.  Regardless, it is also true that 
all exposures in close proximity (on-road or near roadways) to engine 
emissions include exposures to these unmeasured non-PM emissions.  There 
will be a declining concentration of these emissions with distance from the 
roadway, which parallels the declining concentration of PM (and especially 
ultrafine PM).  This concurrence of distribution lends itself to ascribing the 
effects of unmeasured co-pollutants to PM. 

 
Credible epidemiologists (e.g., Samet, Krewski) acknowledge that existing 
epidemiological data cannot completely separate effects of PM from co-pollutants 
Credible groups (e.g., NRC committees, HEI) acknowledge need to consider 
exposures as mixtures, reflecting an eroding confidence that one can confidently 
ascribe effects to single pollutants (based on current data), or disentangle effects 
among the hundreds of physical-chemical species that people actually breathe. 
 
Elicitation ground rule assume no change in nature of co-pollutants.  This is 
interpreted to mean that the proportional “silent” contribution of co-pollutants will 
remain the same, and that any overestimate of PM effects due to this factor will 
remain the same. Of course, the nature of both PM and co-pollutants will change. 
 

2.  Accuracy of PM exposure estimates 
 

None of the predominant epidemiological studies actually measured personal 
exposures 

    
Portions of the data are not even direct measures of PM2.5. 

 
It is usually assumed that all personal PM exposure is proportional to, or identical to, 
the average PM concentration at the place of residence. 
 

The most exposure to the most toxic PM is probably in or near traffic, and that 
is likely to differ substantially from exposure at the residences of people living 
more than 100-300 meters from a major roadway.  
 
The most exposure to co-pollutants most likely to add to the effect (silently, 
because they are unmeasured) would also occur on or near roadways. 
 
The “traffic effect” is believable with a fairly high level of confidence.  The 
Lipfert (2005) study, and many others (e.g., multiple studies from the 
Brunekreef group, the Peters MI study, etc.), support the notion that traffic 
emissions are likely to be key to many health effects associated with PM.  
Most of these studies either did not attempt to single out the effects of PM, or 
had low power to do so.  Nonetheless, the importance of proximity to traffic 
has been convincingly demonstrated 
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To the extent that the effects are indeed due to PM, and if most of the most 
important PM exposure (C x T x toxicity) occurs on or near roads and is thus 
underestimated by exposure at residence, and further, if that exposure parallels 
the estimated exposure at the residence in a roughly linear fashion, then the 
“unit risk” has been overestimated because the most important exposure has 
been underestimated.  The proportional change in mortality with decreasing 
PM could still be approximately correct, even if the unit risk, and thus the 
body count, attributed to PM is overestimated. 
 

No epidemiology studies of PM2.5 have been able to deal seriously with PM 
composition; incrimination of traffic PM is almost exclusively by location, not 
composition.  My (unproven) view is that good composition data for personal 
exposure would support my view of the importance of traffic PM. 
 

 3.  Changes in risk with time 
   

Both the 6-cities and ACS studies, as well as the Enstrom study, indicate that unit 
risks have changed with time. 
 
 Risk went down in 6-cites and Enstrom 
 Risk went up in ACS 
 

Regardless of the real, or if the direction has been different in different 
locations, this adds to uncertainty about impact of future changes 

 
The nature of PM2.5 will likely change with time, which could change risk; however, 
the elicitation ground rules preclude this consideration. 

 
 4.  Plausibility (as defined by identification of potential mechanisms) 
 

There is not much of a roadblock now to believing that PM may contribute to the 
effects associated with it by epidemiology – at least superficially.  Findings with time 
are providing increasing, rather than decreasing, mechanistic plausibility.  
 
Experimental exposures of humans tend to support, rather than detract from, 
plausibility.  The problem is that we can’t conduct the studies that would be most 
informative – exposure of the most sensitive people to the most toxic PM, under the 
most hazardous conditions, using the most discriminating endpoints. 
 
Toxicology is providing increasing mechanistic plausibility, but still very little “dose 
plausibility”.  The biggest problem with plausibility today is confidence in high dose 
to low dose extrapolation and confidence in animal model to human extrapolation.  
The former can be fixed by improved study design.  The latter will probably improve, 
but will never be eliminated.  Overall, we have enough confidence in the general 
utility of the models to do informative work - if investigators would extend the dose 
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range downward.  The problem of course, is that when that is done, effects are very 
hard, and sometimes impossible to demonstrate - especially inexpensively (e.g., short 
exposures, simple atmospheres, few measured variables, small groups of animals, 
rapid-response models for chronic human effects, lack of methodical comparisons 
among exposures).  There may be a message here – in fact, it is probably true that 
some (perhaps many) of the effects that are published in the toxicology literature do 
not occur in either animals or humans under realistic exposure regimes.  Of course, 
the alternate outcome is also possible; it could be that repeated exposures of large 
numbers of animals of diverse susceptibility would, in fact, reproduce the 
epidemiological findings under realistic exposure conditions.  
 
Expert D characterized the likelihood of a causal relationship as ranging between 90 
and 100% with a most likely value of 95%.   

 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 

 
G.  My answer:  % change in all cause mortality associated with a 1.0 µg/m3 change in PM 
 

It all boils down to selecting the studies in which I have the most confidence and 
generating a distribution from those results using my biases regarding their likelihood of 
having overestimated or underestimated the actual value.   
 
I pick the 6-cities and ACS bodies of work as the most likely to approximate the truth, 
although both involve uncertainties.  I pick these because: 

 
� Multiple locations in U.S.; 
� Large numbers of people; 
� Credibility of investigators;  
� Repeated analysis with extended follow-ups; and 
� Withstanding lots of scrutiny by other credible analysts. 

  
Other studies add texture to our understanding and expansion of updated methods (e.g., 
more localized exposure estimates, further parsing of the population, better characterization 
of regional differences in PM and response slopes) may yield different results.  However, I 
choose to answer on the basis of existing data, not by imagining where evolving knowledge 
will take us. 

 
I start with a “most likely” value derived by a simplistic average, as shown below.  These 
values have some numerical justification because they are derived from published results, 
and they are the most recent from the two bodies of work that I have selected as most 
informative.  There are arguments from more recent published work for higher values, but I 
avoid going higher for two reasons.  First, the more recent results are not derived from 
studies of comparably large populations in multiple U.S. locations.  Second, and perhaps 
most reflecting my bias, I believe that the effect of PM has been overestimated across the 
entire epidemiological database, for the reasons I state above.  On the other hand, I don’t 
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have sufficient scientific basis for selecting an arbitrary “most likely” value that has no 
basis in published work.  I do not have high confidence in this number. 

 
6-cities (most recent)  1.3 
ACS  (most recent)   0.6 
Mean (most likely value)      0.95 

 
I next provide the following perspectives on the distribution around the above “most likely” 
value: 

 
Both of the 6-Cities and ACS values above must be plausible; i.e., within the bounds 
of 90-95% confidence limits. 

 
If the real value is not the “most likely” value of 0.95, it is more likely below that 
value than above it; thus the distribution of probability must be weighted between the 
“most likely” value and the lower bound of the distribution. I base this on my bias 
that the current data most likely miss-assign at least a portion of the effects of co-
pollutants to PM, and that there is as much, if not more, evidence that the unit risk for 
PM is decreasing with time, rather than increasing.  
 
The lower bound of the actual value could be very low.  On the basis of present 
knowledge, it could not plausibly be zero, but I don’t exclude the possibility that it 
could be near zero.  I arbitrarily select a lower bound of 0.1. 
 
In keeping with my biases regarding current data, I don’t think that the upper bound 
of the actual value could be a great deal higher than the “most likely” value I selected.  
I do not have a solid rationale for picking an upper bound.  I arbitrarily select a value 
of 1.6, which is near, but slightly below, the original 6-cities estimate of 1.7. 

 
I next selected a probability distribution that best fits the above criteria. 

 
I relied on the elicitation staff to provide a range of distribution functions that might 
fit my criteria.  Most standard distributions do not fit the criteria very well.  Although 
my criteria are sufficiently arbitrary that I could have elected to change them to better 
fit a standard distribution function, I did not do so.   

 
All things considered, a simple triangular distribution fit my criteria best, using the 
“most likely” value as the mode and fitting to the upper and lower bounds. 
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Elicited Distribution 
 

 
 
 
Min 5th %ile 25th %ile 50th %ile 75th %ile 95th %ile Max 
0.10 0.35 0.66 0.90 1.1 1.4 1.6 
 
Expert D chose to provide a C-R function that was conditional on the existence of a 
causal relationship.  The elicitation team then combined his conditional distributions with 
his percent likelihood of causality (95% likelihood of a causal relationship).  A 
probability density function (PDF) and a cumulative density function (CDF) of Expert 
D’s distribution incorporating causality as well as the are below:  
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Distribution Incorporating Causality –PDF (IEc Generated) 

 
Distribution Incorporating Causality – CDF (IEc Generated) 
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Percentiles of Distribution Incorporating Causality (IEc Generated): 

Min 5th %ile 25th %ile 50th %ile 75th %ile 95th %ile Max 
0 0 0.62 0.88 1.1 1.4 1.6 
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Exhibit 1: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 % Confidence Intervals for Various Studies to Distributions from Expert D 

 
 

• = median □ = interquartile range │= 90 % confidence interval 
* Estimate for entire follow-up period.
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Interview Summary 
Expert E 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.1 Mechanisms for Effects of Exposure to PM2.5 
 
Expert E discussed the biological mechanisms for short-term and long-term exposures 
together because he thought that it was difficult to separate them, since the physiology is 
not well understood enough to do so.  He first discussed cardiovascular disease as a cause 
of death from particulate matter (PM).  He thought the main mechanisms related to this 
cause of death were oxidative stress and inflammation leading to atherosclerosis, changes 
in autonomic function, and arterial reactivity.  He also thought chronic obstructive 
pulmonary disease (COPD) and lung cancer could be potential causes of death.  
 
Cardiovascular Disease 
 

He first discussed a series of recent studies that he thought lent biological plausibility for 
a relationship between particle exposure, oxidative stress and inflammation, and 
ultimately, atherosclerosis and plaque instability.  He cited an animal study by Gurgueira 
et al. (2002) that involved exposing rats to concentrated ambient particles (CAPs) and 
showed increases in reactive oxygen species in the lungs and heart.  He cited another 
study by Evelson & Gonzalez-Flecha (2000) that placed animals who had been exposed 
to typical ambient particulate levels (~11 µg/m3) in filtered chambers, thereby removing 
their PM exposure, and found that the reactive oxygen species levels decreased.  In 
addition, he cited in vitro and in vivo studies showing that “part of [the body’s] defense 
mechanism against oxidative stress, seem to modify the effects of particles [i.e., reduction 
of pro-inflammatory cytokines, lung inflammation]” (Gurgueira et al., 2004; Rhoden et 
al., 2004).  He indicated that “to me, that makes endothelial dysfunction plausible; it 
makes myocardial infarction plausible; it makes arrhythmias plausible.”  He thought that 
a study that found in populations with lower defenses against reactive oxygen species 
(e.g., individuals with genetic polymorphisms of genes that impair the ability to defend 
against oxidative stress and obese individuals), there are higher effects from PM 
(Schwartz et al., 2005) further supported the reactive oxygen species theory. 
 
Expert E thought that recent work by Kunzli et al. showing a relationship between PM 
exposure and intima-media thickness suggests another connection to oxidative stress and 
a risk factor for cardiac mortality.  He indicated that there is evidence from studies in rats 
that suggests that PM–related oxidative stress contributes to inflammation in the 
endothelium (the lining of the arteries), which could lead to atherosclerosis (Rhoden et 
al., 2004).  As further evidence of PM’s inflammatory role, he cited a CAP study in rats 
by Dvonch et al. (2004) that showed plasma asymmetric dimethylarginine (ADMA) 
levels to be significantly elevated in rats exposed to CAPs versus those exposed to 
filtered air.  
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Expert E indicated that recent studies of brachial artery reactivity, a measure of the ability 
of the arteries to dilate in response the body’s demand for blood flow, suggests a 
connection between both long- and short-term exposures with cardiac mortality.  The 
more “stiff and impaired the arteries get,” the less responsive they can become.  A recent 
study in Circulation (O’Neill et al., 2005) found decreases in brachial artery reactivity 
related to the previous couple of day’s air pollution (both black carbon and sulfates).  He 
indicated that the percent increase in arterial dilation was less in diabetics and individuals 
with coronary artery disease.  
 
Expert E added that studies by Van Eeden et al. exposed animals with atherosclerosis to 
PM and found that short-term exposures lead to decreased stability of plaques.  He 
thought that this, coupled with thickening of the arteries, could increase the risk of a 
myocardial infarction.  On a related note, he indicated that there was increasing evidence 
for associations between ischemic stroke and PM.  He said that there were multiple 
studies done in Korea where there is a higher incidence of stroke than in the U.S., so 
there is more power to see associations in that population.  He cited studies by Zeka et al.  
(2005), Wellenius et al. (2005), and Dominici et al. (2006), all of which found significant 
associations between PM and stroke.  “Ischemic stroke is the same thing as a heart attack, 
only in the brain.  Something’s blocking some arteries, say a plaque got ruptured, and it 
cuts off the supply of blood to some of the brain tissue.” 
 
He also thought that both animal and human studies have shown that PM could cause 
changes in heart rate variability (HRV). In animals PM seems to increase HRV (rather 
than decrease, as in humans), but he thought there was evidence that it occurs through the 
inflammatory pathway described above; when animals are simultaneously given N-
acetylcysteine, a precursor to the anti-oxidant glutathione, no changes in HRV are 
observed.    He indicated that he thought the changes in HRV could be connected to lung 
inflammation, in that HRV is controlled by the autonomic nervous system, which has 
nerve endings in the lungs that feed back to the control of the heart.   
 
COPD 
 
Expert E thought that, “the fact that particles are associated with increased reactive 
oxygen species in the lungs seems to make sense for COPD.  COPD is chronic lung 
inflammation, and if you have more inflammation going on in the lung, you’re going to 
tend to get mucus hypersecretion.  You’re going to tend to get structural damage.  And 
so, generating reactive oxygen species, increasing inflammatory cells and cytokines, it all 
seems like it would help contribute to develop COPD.”  He cited studies that have shown 
epidemiological associations between particles and COPD, including the Adventist 
Health and Smog (AHSMOG) study, a 1993 study by Schwartz examining National 
Health And Nutrition Examination Study (NHANES) data, and a Chinese study.  He also 
mentioned the Children’s Health Study that found when children moved to a less polluted 
area, their lung function growth accelerated and when they moved to a more polluted 
area, their lung function decreased (Avol et al., 2001).  In addition, he cited a study by 
Paolo Saldiva and John Godleski (2002) that showed that the capillary walls in the lungs 
of the animals that were exposed to CAPs were thicker than those that were unexposed. 
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Lung Cancer 

Expert E discussed lung cancer as a potential cause of mortality related to PM.  He 
indicated that the cohort studies show increased relative risks with lung cancer mortality, 
but with large standard errors.  He also indicated that, “there is a long history of studies 
showing that there’s an urban-rural gradient in lung cancer among non-smokers, which 
[could be due to] … air pollution.”  He also mentioned studies looking at measures of air 
pollution in cities that looked at the distance from the inner city and from industrial zones 
in the city and risk (Barbone et al., 1995; Biggeri et al., 1996).  He thought that the 
evidence was pointing towards the traffic particles and diesel exhaust as causal agents of 
lung cancer.  He also thought that, “inflammation is definitely a promoter.  So, you would 
think that even when other things are causing the fundamental mutations, that in the 
presence of chronic lung inflammation and oxidative stress, it’s going to develop faster.”    

3.2. Conceptual Framework for Mortality Effects of Short-Term and Long-Term 
PM2.5 Exposures 
 
Expert E generally thought the Künzli diagram was a good conceptualization of the 
relationship between long- and short-term exposures.  “I think it’s a fine conceptual view 
to think about how air pollution affects mortality.  What’s less clear is whether there are 
regression coefficients that come out of epidemiological studies that … relate to 
[individual categories] or whether they’re all mixed.”  In reality, he thought it was 
difficult to see a clear distinction between categories (A) and (C) because “there’s no one 
who’s completely unexposed.”  He thought one concept not captured by the diagram is 
the possibility that long-term exposures to PM could modify the effects of short-term 
exposures.  In theory, one might expect that individuals who are chronically exposed to 
high levels of PM would be more susceptible to short-term effects than those with lower 
long-term exposures.  Paradoxically, the empirical evidence to-date points towards bigger 
short-term PM effects in cities with lower long-term PM exposures. 
 
3.3. Role of Epidemiologic Study Design in Characterizing the Total Impacts of 
PM2.5 Exposures on Mortality 
 
Expert E thought that cohort studies looking at changes in air pollution over time were 
the most directly relevant for measuring the mortality effects of changes in annual 
average PM2.5 concentrations.  He thought that the Six Cities follow-up (Laden et al., 
2006) is the only such study that has looked directly at mortality changes.  “The general 
pattern that … you see in the cross-sectional studies is buttressed by similar findings for 
other health endpoints, like lung function and chronic respiratory symptoms, where 
similar study designs have been done” (e.g., in Germany (Heinrich et al., 2002) and 
Switzerland (Oglesby et al., 2000)).  He indicated that these types of studies not only 
measure what we are asking for in the elicitation study (risks associated with a change in 
exposure) but also eliminate confounding by factors that vary across cities. However he 
noted the weakness is that potential confounding can still exist if some risk factors 
changed from one period to another. 
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He thought the next best study design for answering the question posed by the protocol 
was cross-sectional cohort studies.  This study design is less optimal than the previous 
studies because it requires making the inference that differences in mortality between 
cities with high and low exposure also translate into similar mortality changes given 
temporal declines in air pollution.  He thought the Laden et al. study (2006), having both 
temporal and cross-sectional designs, provided evidence that this was a reasonable 
inference.   
 
He thought that neither the cohort studies with temporal changes in air pollution nor 
cross-sectional studies would capture deaths “brought forward by a relatively short period 
of time … but if the people who die today would have lived three years had they not had 
their heart attack today, then I would think that the cohort study would … capture that.”   
 
When asked about the Utah Valley (Pope et al., 1996) and Dublin (Clancy et al., 2002) 
“intervention” studies, Expert E’s view was that they were supporting information but did 
not provide the coefficients relevant to estimating the impact of long-term changes in 
PM.  He indicated that the Utah Valley study included a dummy variable for year the 
steel mill closed; “the fact that it was significant tells you that we’re not just looking at 
short-term harvesting and that if you change annual average pollution levels, something 
happens, but it doesn’t tell you what happens to the equilibrium mortality rate after you 
change pollution for a long time.”  The Dublin study looks at a longer period of time and 
so gives you a “more useful coefficient,” but “unlike the cohort studies,” lacked control 
for risk factors that might change over time. 
 
He then mentioned time-series studies with long distributed lags (1-2 months).  He 
thought that these did not provide useful quantitative coefficients to estimate the effects 
of long-term exposure, but show that “acute effects aren’t all short-term harvesting … 
that they persist over months.”  Finally, Expert E discussed time-series studies with short 
lags (1-2 days).  He thought that these provide “qualitative support” for the hypothesis 
that “air pollution can kill people” but because they do not capture “any longer-term 
effects,” and therefore, the coefficients are underestimating the total mortality effects.   
 
Expert E’s views on the mortality effects captured by each study design are shown in the 
table below: 
 
Study Design Type of Effects Captured (e.g., short-

term, long-term, or both) 
Cohort studies looking at changes over time  Long-term 
Cross-sectional cohort studies Long-term 

Intervention studies (Utah Valley, Dublin) Supporting evidence  
(Intermediate 1+ years) 

Time-series studies with long distributed lags Intermediate (1-2 months) 

Time-series studies with short lags (1-2 days) Short-term 
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3.4. Epidemiologic Evidence for the Impact of Exposures to PM on Mortality 
 
Expert E thought that the following characteristics would be part of an ideal 
epidemiologic study to characterize the PM2.5-mortality relationship in the U.S. 
population: 
 

• Examines changes in long-term exposure to PM in multiple locations with 
different magnitude of changes, “so that your delta exposure is variable”; 

• Controls for potential confounding; 
• Intermediate time scale (“more than a year or so, but less than 20 years, where 

there are fewer things that might have changed over time”); 
• Representative geographic sampling of the U.S.; 
• Information about individual risk factors and modifiers of exposure (e.g., window 

air conditioning); 
• Population that is representative of the general U.S. population (e.g., follow-up on 

NHANES); and 
• Collects information on genotype to understand mechanisms and susceptibility. 

 
When asked to review the epidemiologic studies that have been most informative about 
the percent change in all-cause mortality related to a reduction in annual average ambient 
PM2.5 concentrations, Expert E discussed the following studies: 
 

Study 
(author, 
date) 

Key findings 
 

Strengths  Limitations 

Six Cities 
Follow-up 
(Laden et al., 
2006) 

Significant association 
of change in long-term 
exposure with change 
in risk of dying in the 
cohort 

• Directly addresses question posed 
by the protocol  

• Eliminates across cities 
confounding by design 

• Less exposure misclassification 
than cross-sectional cohort studies 

 

• Potential confounding by 
factors that may have 
changed over time within 
the cities 

• Not geographically 
representative (does not 
include west coast) 

American 
Cancer Society 
(ACS) Los 
Angeles (Jerrett 
et al., 2005) 
 
 

Examined zip code 
levels exposure 
estimates and found a 
larger slope than 
original ACS study 

• Better measure of exposure than 
original analysis 

• Only included Los 
Angeles, which has a 
different PM mix than the 
rest of the U.S. (higher 
fraction of secondary 
organic aerosol and 
nitrates – traffic related) 

The Netherlands 
Cohort study 
(Hoek et al., 
2002) 

Examined mortality 
effects of traffic 
particles using 
geocoding to enhance 
exposure assessment.  
Found larger 
coefficients than the 
original Six Cities 
study. 

• Better measure of exposure than 
the ACS or Six Cities studies 

• Uses black smoke and is a 
measure of traffic 
particles, rather than 
PM2.5  

• The Netherlands is 
homogenous for non-
traffic particles 

 

Willis et al., 
2003 

Used the ACS data but 
restricted it to people 

• Better measure of exposure than 
the original ACS analysis 

• Did not provide results for 
PM2.5 (only sulfates) 
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Study 
(author, 
date) 

Key findings 
 

Strengths  Limitations 

who lived in the same 
county as the monitor.  
Coefficient for sulfates 
increased two-fold. 

AHSMOG Qualitatively sees 
signals with mortality 
and particles as the 
mortality in the cohort 
has increased over time 

• Provides qualitative support for 
mortality effects of PM 

• Low mortality (healthy 
cohort) which leads to 
low statistical power 

• Non-representative 
population 

• Manipulations of data 
decreases the applicability 
of results 

 
Expert E thought the key strength of the Six Cities study is that the population is a 
random sample of the area of study. He thought that this was important because 
epidemiology contrasts mortality experiences of samples in different locations with 
pollution concentration differences. If the sampling scheme produced nonrandom 
samples, then we need to be assured that it did so in a uniform way, so that it is 
reasonable to ask whether pollution contrasts across locations are associated with 
survival.  In the case of the Six Cities study, this is not necessary, as the samples were 
representative.  In the case of the ACS study, the sample was not representative because 
it was a convenience sample with a bias towards high socioeconomic status (SES), and 
possible other biases, as they were recruited by volunteers.  Fortunately, Pope et al. have 
compared the results of the ACS analysis to a result comparing age standardized 
mortality rates by city against the pollution differences by city, and found comparable 
results.  This means that the sample is the same subsample in each location, and the 
relative mortality risks are preserved compared to the general population. Without this, 
we cannot consider it reasonable to look for pollution as an explanation of differences, 
since the differences would reflect sampling differences across community, rather 
differences in risk across community. This supports the use of those two studies. The Six 
Cities study has the added advantage that it was designed to look at air pollution, and 
therefore sampled people in defined neighborhoods of each community, with monitors 
within each neighborhood, and generally within a few miles of each subject.  
 
Given the different aerosol mix in the Jerrett study in Los Angeles (LA) (2005), Expert E 
argued that, “while directionally it suggests that as you reduce exposure error, you get 
higher coefficients, it would be [difficult] to take that coefficient and say that that should 
be applied nationally.”  On the other hand, he thought that work by Willis et al. (2003) 
(published in Toxicology and Environmental Health) on sulfates was supportive evidence 
for the exposure error hypothesis.  This study found that when you include only those 
individuals in the ACS cohort who lived in the same county as the exposure monitor, 
there was a doubling of the sulfate coefficient for all-cause mortality compared to 
including all individuals in the metropolitan-area.  He noted that this study did not 
include the full ACS cohort, but was a more nationally representative sample than the 
Jerrett et al. (2005) study. 
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Expert E was also asked about what reliance he might have on the AHSMOG study, the 
Lipfert et al. series of studies and the recent Enstrom et al. (2005) study.  He indicated 
that he would not want to rely on coefficients from the AHSMOG study to represent the 
U.S. population because that cohort was highly non-representative (i.e., non-smokers, 
healthier dietary patterns).  In addition, he thought the exposure measure was non-
standard, the study size is small, and not many deaths have been observed.  He noted, 
however, that as the number of deaths has increased, the mortality coefficients have 
increased.  He concluded by saying, “I think it's qualitatively supportive.”   

When asked about the cohort studies by Lipfert et al., Expert E indicated that he did not 
give any weight to the results; he felt strongly that the industry funding sources were 
likely to bias the findings and that they are not published in mainstream epidemiologic 
journals (where they would get rigorous peer-review).  In addition, he indicated that the 
Lipfert study differs substantially from the Six Cities study in the sample design issue. It 
is clear that the relative ranking of mortality rates across cities for members of the cohort 
is quite different from the relative ranking of the general population.  For example, 
Lipfert has reported a relatively high mortality rate in Salt Lake City, which in general 
has a low mortality rate compared to other cities. This violation of the principle that the 
sampling frame has to sample the same way in each city means that one cannot contrast 
the community exposure against the mortality experience of biased samples not 
representative of the communities.  A second major concern Expert E mentioned is that 
the cohort was basically recruited from hypertensive subjects and did not control for 
cardiovascular medication.  There is documented wide variability in the aggressiveness of 
the use of cardiovascular medication by region of the country, and by deliberately 
sampling a cohort that maximizes the potential for confounding exposures that are 
defined geographically, it could lead to bias, unless medications are controlled in the 
study.  Hence findings of no association with sulfates, which are driven by the lower than 
average mortality rates in the Northeast in this cohort, could be entirely due to the well 
documented more aggressive use of cardiovascular medications in the Northeast.  

He was not as familiar with the Enstrom et al. (2005) work but had similar concerns as 
for the Lipfert work.  He noted that given that Jerrett has reported almost as much 
variation in PM2.5 exposure within Los Angeles county as exists across the US in the 
ACS study, it is clear that the use of county level averages represents much greater 
exposure misclassification in California (CA) than elsewhere in the US.  For example, 
there is little difference between PM2.5 concentrations in the county north of Boston and 
the county to the south, and there are fairly similar levels in Philadelphia and 
Washington, DC.  Given the topography in CA and the dominance of traffic as opposed 
to long range transported particles, he felt that this study moves in the exact opposite 
direction as that suggested by the Six Cities study, Willis et al., and Jerrett et al.   

3.5 Confounding  
 
In general, Expert E thought that all of the potential confounders he discussed had a 
minimal impact on published effect estimates (less than a 20 percent change) and were 
well-controlled in the studies that he relied upon for his quantitative estimate.  He thought 
a key point in this discussion is that many people first focus on whether or not a factor is 
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correlated with outcome but in order for their to be confounding, the factor also has to 
correlated with exposure. He did not think that there is much evidence that many 
potential confounding factors actually meet this second criterion. His discussion of 
confounders in the ACS and Six Cities cross-sectional studies included the following: 
 

• Age: Expert E thought this could be an important factor if it is not controlled for 
adequately.  He thought that “in general, cities with older populations, other than 
in Arizona and Florida, tend to be older industrial cities, where young people are 
moving out … so it’s plausible that exposure and age are correlated.”  He thought 
this was potentially more of a problem in the Six Cities study than the ACS study.  
He indicated that not controlling for age would result in an overestimate of the 
pollution effect.  He thought that the Six Cities and ACS studies adequately 
controlled for this factor.     

• Smoking: He indicated that “[s]moking is … a pretty good predictor of mortality, 
but there’s not much evidence in these cohort studies of a correlation between 
smoking and exposure … and it didn’t look like, in either the Six Cities study or 
the ACS study, the controlling for smoking did much to the PM effect.”   

• SO2: Expert E indicated that when SO2 was added to the model in the ACS study, 
the particle coefficient changed significantly.  However, he thought it was 
unlikely to be contributing to mortality (“concentrations of S02 in the U.S. are 
extremely low, and 90 percent of it is stripped out in [the] nasal passages, … [it’s] 
a somewhat reactive gas, the indoor-outdoor ratio is small.”)  He thought that 
“SO2 could only be standing for something else, and the most plausible thing it’s 
standing for is particles.  Because SO2 and particles are highly correlated.  I just 
view that as a model that had two different indices of particles in it.” 

• Socioeconomic Status: He thought that socioeconomic status (SES) could be a 
potential confounder in the cross-sectional cohort studies, but not in the “change” 
studies.  He said that most epidemiologic studies control for SES by using a 
variable for education.  He thought that family income might be a useful measure 
to include in the models.  He also thought that examining the census block groups, 
which are “extremely homogeneous on socioeconomic position” would be 
informative. 

• Diet/BMI: Expert E indicated that diet was not included in the Six Cities analysis, 
which was a “major failing” although he noted that it did include alcohol and 
body mass index (BMI), which does a “pretty good job.”  He thought that there 
could be some residual confounding by diet, even after controlling for BMI, but 
he was not sure how it could be correlated with exposure.  

 
In general, he thought that residual confounding by SES and age in the Six Cities and 
ACS studies, if it existed, would be more likely to contribute to over estimates of the 
mortality effect coefficient, but thought it was a minimal impact (score ~1; < 20 percent).  
 
He did not think that occupational history or pre-existing disease were potential 
confounders in the cross-sectional cohort studies.  
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Expert E then discussed potential confounding in the Six Cities follow-up (Laden et al., 
2006).  The first factor he mentioned was smoking, since the study did not record 
smoking status during the most recent follow-up period.  He thought that, most likely, 
people are quitting rather than starting to smoke, and it’s “not obvious that people would 
quit smoking more or less in places with more or less change in air pollution, although 
it’s always possible.”  He thought SES and diet were probably not confounders in this 
study because they would have to change over time.  He indicated that it was possible in 
this type of study design to have confounding if there were changes in medical care and 
life expectancy over time.  He said that the Laden et al. study controlled for a period two 
versus a period one effect, which attempted to capture all of these factors.  Expert E 
pointed out, however, “if the changes were different in the different cities, and those 
differences happened to be correlated with the differences in air pollution, then we have a 
potential for confounding.”  In general, he thought the direction of confounding in the 
Laden et al. paper was uncertain and not very large (i.e., that these factors might cause 
the coefficient to shift by 20 percent one way or another but not by as much as 50 
percent). 
 
3.6 Effect Modification 
 
Expert E began his discussion of effect modification using acute studies which he felt 
provided mainly qualitative insights, particularly about the influence of underlying 
susceptibilities on PM-related mortality (diabetes, obesity, systemic inflammatory 
disease, genetic susceptibility).  He thought short-term studies have shown effect 
modification by diabetes (e.g., hospital admissions, flow-mediated dilation studies: 
Goldberg et al. in Montreal, Rome case-crossover studies), and some evidence of effect 
modification by obesity.  In general, Expert E thought that there are a number of 
biological phenomena affecting susceptibility (including other systemic inflammatory 
diseases such as rheumatoid arthritis) that track with age so that age is a possible 
surrogate for these factors. 
 
Expert E thought that genetic polymorphisms related to susceptibility for developing 
atherosclerosis (e.g., GSTM1-null mutation) were potential effect modifiers.  He noted 
that the existing cohorts did not have genotypes for the population, but that in the future, 
“we’re going to find that there’s actually a fair amount of genetic heterogeneity in the 
population with respect to things that may turn out to modify the effects of PM2.5.”  He 
also indicated that, “there are genetic differences between races” and that one would 
logically expect race to be a surrogate for these, although he acknowledged that short-
term studies have not really detected any evidence of racial differences (Zeka et al., 2006 
and Zanobetti et al., 2000).  He did not think race was something that could be examined 
in the cohort studies given that the Six Cities study cohort, including the Laden et al. 
follow-up, did not include minorities and the ACS cohort underrepresented minorities.  In 
theory, he thought that this would lead to an underestimate in the effect estimates, 
although there was limited evidence that this was occurring.       
 
Expert E discussed potential effect modification by education, which was found 
particularly in the in the ACS study and to a lesser extent in the Six Cities study.  He said 
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he was “a little skeptical” about this factor coming out of the extensive Krewski et al. 
reanalysis (2000) in part because of the multiple comparisons problem but also because 
the Six Cities extended follow-up found effect modification by education for some types 
of mortality and not others.  Still, he thought that it was plausible to some degree because 
“poor people have a lot of stresses … poor diet, … less air conditioning.  So, there are 
both exposure-related differences and host susceptibility-related differences.”  He thought 
that this was more of an issue in the ACS study than the Six Cities study.     
 
Expert E discussed effect modification by air conditioning, citing a paper by Jeremy 
Sarnat (2000) that found “a significant association between personal PM2.5 and outdoor 
PM2.5, in all three groups [low, medium, and high ventilation in the home], with a factor 
of two difference in the slope between the high ventilation and the low ventilation 
group.”  He also indicated that studies in Atlanta often did not find positive associations 
between exposure and ill-health, which he thought was due to air conditioning use 
(studies that were part of the Aerosol Research and Inhalation Epidemiology Study 
(ARIES) and by Paige Talbert’s group).  He thought this was a large effect modifier that 
would have a “factor of two impact on what the true health effects are.”   
 
Expert E thought that underlying disease, such as diabetes or COPD could be an effect 
modifier in the long-term studies.  He thought that those with COPD have difficulty 
breathing and therefore, would be more susceptible to the effects of particles.  In 
addition, he said that those with COPD have “ventilation/perfusion inhomogeneity,” 
meaning that parts of the lung are exposed to larger volumes of air than others.  This 
could lead to enhanced particle deposition in parts of the lung that get higher airflow.  He 
thought the evidence for effect modification from COPD was mixed, which in part could 
be due to the variability in the diagnosis.   
 
The following table summarizes the discussion on potential impacts of effect modifiers: 
 
Study (author date) Effect Modifier Score (1-3)* 
Six Cities SES 

Obesity 
Other susceptibilities 
(diabetes, COPD) 

1 (underestimated RR) 
1 (underestimated RR) 
1 (uncertain whether these 
groups were under or over 
represented in cohort) 

ACS Educational attainment 
Obesity 
Poverty 
Race 

2 (underestimated RR)** 
2 (underestimated RR)** 
2 (underestimated RR)** 
2 (underestimated RR)** 

*  1= minimal, 2= moderate, 3= major 
**Expert E was not sure whether these all had independent effects of similar magnitude.  
He thought they might be correlated and be represented essentially by educational 
attainment (collectively account for ~50 percent underestimate, crudely estimated) 
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3.7. Exposure Issues 
 
Expert E thought that exposure misclassification due to central site versus individual 
exposures was a significant exposure issue.  He indicated that “the gradient in effect size 
estimate from … neighborhood-level measurements, to the county [level] to the metro 
area measurements … suggests that more geographically localized assessment of 
exposure results in a larger effect size estimate.”  He thought the ACS study results were 
likely to be biased downwards due to exposure error, based on the results from Jerrett et 
al. (2005) and Willis et al. (2003), which both showed higher effect estimates than the 
original study with increased spatial resolution of exposure assignment.  While the Jerrett 
study showed some effect estimates that were higher by a factor of three or more 
depending on the model, he acknowledged that other factors like particle composition 
might account for some of the difference.  He thought that the ACS study estimates 
should be increased by a factor of two to account for this issue. 
 
Expert E next discussed differential toxicity of particles.  He thought that the Six Cities 
study was not representative geographically of the U.S. in that it only spanned from 
Topeka to the east. Given that time-series study effects tend to be smaller in the west 
(National Morbidity, Mortality, and Air Pollution Study (NMMAPS)), whereas the Jerrett 
paper found higher cross-sectional effects in LA, he thought uncertainty exists about the 
representativeness of the effect estimates in the Six Cities study.  He was not sure of the 
direction of the uncertainty caused by this issue, but assigned it a score of 2.  He did not 
think that this affected the ACS study, because it included cities all across the U.S.   
 
He thought that another exposure issue was whether the exposure in the cohort studies 
was measured at the appropriate time to see the full mortality effects.  He thought the 
ACS study exposures were somewhat inadequate because they only included a few years 
of data and “that creates some additional uncertainty as to how relevant that exposure was 
to the mortality follow-up.”  He indicated that the Six Cities study’s measure of average 
exposure was significantly better than the ACS study because “for the first follow-up, 
they monitored for most of the time throughout the period …  and therefore presumably, 
[there was] less measurement error, less downward bias in the slope.”  However, for the 
Laden et al. (2006) follow-up period, there were no PM2.5 monitors, and the 
concentrations were actually predicted by a regression model that included PM10 and 
airport visibility.  He still thought this was an improvement over the ACS study in that 
there were continuous exposure estimates throughout the follow-up, but acknowledged 
that direct PM2.5 measurements would have been superior, had they been available for the 
extended follow-up.  He indicated that the use of estimated PM2.5 would probably have 
added random measurement error, which could have caused a downward bias in the 
Laden et al. (2006) estimates.   
 
When asked about differences in the slope over time, Expert E thought it wasn’t 
necessarily just the timing of exposure measurements relative to outcome, but could be 
other factors, such as: 1) “confidence intervals may in fact overlap and may just be 
noise”; 2) differences in particle composition; and 3) air conditioning prevalence 
increases over time.  He indicated that in the Six Cities study, “when [the investigators] 



   

E-12 

looked at difference between period one and period two … [there was] a bigger 
coefficient … for the change.”  He thought “that the Dublin study says that you've got to 
see some of [the mortality effect] next year, and [the Laden study] says you're basically 
seeing all of it within ten years.” 

3.8. Causality 
 
Expert E thought that there was a “web of evidence” supporting a causal relationship.  He 
indicated that there were many different study designs with different strengths and 
weaknesses and that the evidence was consistent across all of them.  He mentioned 
epidemiologic studies, chamber studies, animal studies, and cell culture studies.  He 
indicated that the animal studies (Sun et al., 2005; Van Eeden et al.) show changes in 
oxidative stress, inflammation, destabilization of atherosclerotic plaques, and changes in 
electrocardiogram patterns, all of which contributes to the biological plausibility.  He 
thought the chamber studies in people (though under-powered and over-controlled) 
provided evidence of changes in fibrinogen levels, systemic inflammation, and 
endothelial function. He thought these studies are consistent with adverse effects on 
mortality and with the mechanistic pathways that are suggested by the animal studies.  In 
addition, he mentioned epidemiologic studies on PM and mortality, including time-series, 
cross-sectional cohort, and change cohorts all have different limitations.  “Individual 
studies have individual flaws, but that’s the advantage of different study designs with 
different kinds of vulnerabilities.  You can now build this web and say the web is a lot 
less vulnerable.”  He did not think that there could be another factor to explain the 
consistency across all of the study designs. 
 
Expert E specified a range of the likelihood of a causal relationship of 80 – 99 percent 
with a most likely value of 95 percent.  He set his upper limit at 99 percent because “I’m 
pretty convinced … but nothing’s for certain.”  Maybe “a substantial amount of the effect 
is flowing down pathways that haven’t been identified.”  He noted some inconsistencies 
in studies of inflammatory markers (e.g., C-Reactive Protein) for example.  He noted, 
however that the medical community accepted a causal relationship between smoking 
and cancer long before many of the data gaps (e.g., an animal model) were filled in. 
 
 In order to get at his lower bound and most likely value, he drew an analogy with 
environmental tobacco smoke (ETS).  He thought that, “the evidence for PM is stronger 
than for environmental tobacco smoke” because the evidence for ETS is based mostly on 
case-control studies, which he thought could be biased because of the difficulty in 
selecting appropriate controls.  He also thought that PM was a more randomly assigned 
exposure than ETS.  He thought for ETS and lung cancer, his causal likelihood would 
range between the high 60 percents to the low 90 percents with a most likely value of 80 
percent.  Since he thought the evidence for PM was greater than ETS, he selected his 
minimum based on the most likely value for ETS, and his most likely value for PM based 
on the upper bound for ETS.   
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3.9 Thresholds 
 
Expert E thought that conceptually, the idea of an individual threshold in animal studies 
(i.e., that a specific dose causes death or not) is too deterministic.  He thought that the 
probability of an animal dying from a given dose at a given time follows a Poisson 
distribution.  Therefore, he thought that the fact that an animal died in a study from being 
administered a specific dose was not entirely based upon their individual threshold or 
susceptibility level, but rather was a compilation of several different stochastic factors.  
With regard to a population threshold, he explained that, “in a population that's 
genetically diverse, and diverse with respect to all these effect modifiers that we spoke 
about … I think it's mathematically impossible.  So the probability that something is 
mathematically impossible could happen, is extremely low.  So I think that there isn't a 
threshold in a population.  That doesn't mean the slope can't change.  That doesn't mean 
the probability of dying, on average over the population as a function of dose, has to be 
linear.  But I don't think it's going to be zero for something that at some dose can kill 
you.”   

He mentioned that epidemiologic studies, such as Pope et al., 2002 that plotted the 
concentration-response (C-R) function and suggested a steeper curve at lower levels.  He 
also discussed an expert’s presentation at the pre-elicitation workshop of a model 
averaging approach, the results of which put most of the weight on the linear term and the 
overall curve looked linear down to about 5 µg/m3.  Expert E concluded that “in this 
range [4 to 30 µg/m3], it looks pretty linear to me from all the data” and therefore he did 
not chose to incorporate a threshold into his C-R function.   

3.10 Other Influential Factors 
 
Expert E discussed additional sources of uncertainty that were not part of the protocol.  
He did not think that methodology was major issue.  He indicated that “Cox proportional 
hazards models are pretty standard for cohort studies.  There’s actually a lot to be said for 
fitting a parametric survival model, because there’s not huge evidence of a need to go 
non-parametric for the underlying survival curve.  A two-parameter Weibull model is 
pretty flexible to get it fitting any shape you want.”  He also did not think that spatial 
auto-correlation had much impact on the analyses.  Expert E did not think there were any 
other outstanding issues not already covered by the protocol. 
 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert E thought the C-R relationship was linear over the entire range of concentrations 
that were the focus of the study (4-30 µg/m3) based on the current evidence.  He indicated 
that the Pope et al., 2002 and some acute studies suggest that the C-R function is steeper 
at lower levels.  However, he thought that, “the evidence for a deviation from linearity is 
very weak.”   
 
Expert E chose to provide a C-R function that was conditional on the existence of a 
causal relationship.  The elicitation team then combined his conditional distributions with 
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his percent likelihood of causality specified in Section 3.8 (95 percent likelihood of a 
causal relationship).    
 
Expert E began with the 50th percentile value because he felt it offered the advantage of 
thinking about different studies and integrating them.  He based his estimate largely on 
three studies: the change estimate from the Six Cities extended follow-up by Laden et al. 
(2006) of 3 percent per 1 µg/m3; the Six Cities cross-sectional cohort study (about 1.5 
percent per µg/m3); and the ACS study (0.6 percent per µg/m3).  He adjusted the ACS 
estimate first by doubling to account for exposure misclassification, to get 1.2 percent.  
He based the doubling on the paper by Willis et al., 2003 that found coefficients for 
sulfate from the ACS data that were twice as high as the original analysis with greater 
spatial resolution of exposure assignment (he assumed that the exposure error in PM2.5 
would be at least as high as with sulfate).  He then increased the ACS estimate 50 percent 
more (based on Pope’s estimates at the pre-elicitation workshop) to 1.8 percent to 
account for under-representation of low SES, diabetes and obesity within the ACS study 
population. He then indicated that qualitatively, the Jerrett et al., 2005 estimate and the 
Hoek et al., 2002 study estimates support higher estimates with finer geographic 
resolution.  He took all of this information and combined it roughly into an “average” 
estimate of 2 percent for the 50th percentile. 
 
To get at the distribution about the median estimate, Expert E proceeded by thinking 
about how the variance between studies and within studies might be accounted for in 
coming up with an overall distribution.  He reasoned that the overall variance would be 
the sum of stochastic within-study variance and the variance due to heterogeneity across 
studies. He further reasoned that these two variances were roughly equal in magnitude. 
For the stochastic portion of the variance, he indicated that the variance of a meta-
analysis estimate is the sum of 1 over the weights.  The weights in turn are 1 over the 
individual within-study variances.  Assuming that the within-study variances were all the 
same, and if there were five studies contributing to his estimate, he calculated that the 
variance of the average is “going to be roughly half the variance of the typical study.”  
Based on his earlier assumption that the heterogeneity variance is about the same size as 
a typical within-study variance, it follows that the total variance is about 1.5 times the 
typical within-study variance (1 part for the heterogeneity variance and 0.5 part for the 
meta-analytic stochastic variance).  Taking the square root, he came up with an estimate 
of roughly 1.3 (times the typical within-study SE) for the standard error around his 
central effect estimate. He then discussed the concept that since he had increased the 
estimate to correct for measurement error, he would need to inflate the standard error 
further because “I’ve added some additional uncertainty by doing this correction factor.  
And so, the standard error of my now unbiased estimate of beta is bigger than the 
standard error of the biased estimate, using the exposure that was measured with error.”  
He estimated that this would inflate the standard error by an additional 30 percent.  But 
this applies only to the stochastic “within-study” standard error (0.3).  Multiplying that by 
1.3 to account for this additional source of uncertainty yielded a new stochastic error of 
0.4, and a total SE of 1.4.  
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After combining these estimates of variance, he concluded “we might want to take our 
typical standard error from these studies and multiply it by 1.4 to generate an estimated 
range of uncertainty.”  He decided to use the Pope et al., 2002 standard error to represent 
a “typical” standard error from a study.  Therefore, he took the standard error from the 
Pope study (0.0023) and multiplied it by 1.4 to get 0.32 percent.  He then adjusted the 
standard error further to take into consideration the adjustment for under-representation 
of lower education in the ACS cohort by multiplying the standard error from Pope by 1.5, 
instead of 1.4 to get 0.345 percent.   
 
Expert E then stipulated that a normal curve be fit to a distribution with a 50th percentile 
at 2 and a SE of 0.345.  After the elicitation team plotted this curve, he decided that the 
estimate from Laden et al., 2006 was not receiving enough probability weight.  
Therefore, he altered the normal distribution so that the 50th percentile was at 2, and a 
95th percentile was at 3. When asked to reconcile placing the Laden change estimate at 
the 95 percentile given how directly he thought it addressed the question, Expert E 
explained that he had some concerns about the size of the estimate relative to all the other 
studies.  The interquartile range was estimated from the distribution. He truncated his 
distribution at zero but did not specify a maximum value.  
 
 
Exhibit 1: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
for Expert E 

Percentile Percent Change in Mortality 
Elicited Distribution 

Percent Change in Mortality 
Distribution Incorporating 

Causal Likelihood (IEc 
Generated) 

Minimum 0 0 
5th 1.0 0 
25th 1.6 1.5 
50th 2.0 2.0 
75th 2.4 2.4 
95th 3.0 3.0 
Maximum - - 
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Exhibit 2: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 Percent Confidence Intervals for Various Studies to Distributions from Expert E 

 
• = median □ = interquartile range │= 90 percent confidence interval 
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Elicited Distribution 
 

 
 
Distribution Incorporating Causality - Probability Density Function (IEc Generated) 
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Distribution Incorporating Causality - Cumulative Density Function (IEc Generated) 
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U.S. EPA EXPERT ELICITATION STUDY OF THE CONCENTRATION-RESPONSE 
RELATIONSHIP BETWEEN ANNUAL AVERAGE PM2.5 EXPOSURE AND 

MORTALITY 
 

Modification to Expert Judgments 
 

Expert E 
 

 
Date: July 7, 2006 
 
 
Section of Protocol Affected (Section Number and/or Title): 
 
 
Causality—dose response 
 
 
 
Description of Change (e.g. to a specific percentile, or to a qualitative opinion or 
statement of belief): 
 
In the post elicitation workshop I was struck by an expert’s statement that the assigning 
of some probability of no effect was really an assigning of a finite probability that there 
was not even a very small effect, that the size and probability interacted. In thinking 
about this, I would like to change my previous assumption that there was a 5 percent 
probability of zero effect to there being a 1 percent probability of there being zero effect. 
I would leave all the other assumptions about dose-response and its uncertainty the same. 
 
 



   

 

 
 
 
 
 
 
 

Expert F  
Interview Summary



   

F-1 

Interview Summary 
Expert F 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.2. Conceptual Framework for Mortality Effects of Short-Term and Long-Term 
PM2.5 Exposures 
 
Expert F wanted to discuss the effects of short-term and long-term exposures separately, 
and chose to begin with Kunzli’s framework as a way of structuring the discussion.  
Expert F generally agreed with the Kunzli framework although he differed on the relative 
magnitude of the effects.  He agreed that most chronic long-term exposure effects fall 
into Category B and that deaths due acute exposures largely fall into Category C.  He 
argued that chronic exposures account for the majority of effects; he estimated the ratio 
of long-term to short-term effects to be about 3:1.  Expert F thought that Category A, 
where air pollution is both the underlying cause of frailty and the acute cause of death 
was likely to be a much smaller percentage (e.g., around 3 percent of all long-term 
effects, 10 percent of short-term effects).  This judgment was based on a view that the 
“acute effects … are largely independent of the long-term [effects]” and that the majority 
of individuals who get sick over the long-term are not getting sick due to air pollution, 
and that therefore the joint probability of both B and A is likely to be very small. 
 
In essence, Expert F viewed “estimates from the long-term studies and estimates from the 
short-term studies to be basically, not completely … additive.”  In other words, he 
thought the long-term studies do not capture all of the short-term effects, partly because 
of the statistical argument given above but also because of the underlying mechanisms, 
and the fact that the life-shortening of the acute PM exposure effects was likely much 
shorter than for the effects of long-term exposure. 
 
3.1 Mechanisms for Effects from Exposure to PM2.5 
 
Expert F thought that the mechanisms for the effects of short-term and long-term 
exposures were  “relatively” independent.  He began with a discussion of long-term 
exposures. 
 
Long-Term Exposures 
 
In order of contribution to overall deaths from PM2.5, he discussed deaths from 
cardiovascular disease, respiratory disease, and cancer.  He saw the lung as being 
primarily the “portal” through which other systemic effects occur, rather than the primary 
site for most of the mortality effects. 
 
Expert F thought the mechanistic pathway for cardiovascular disease involved chronic 
lung inflammation, leading to release of cytokines and other indicators of oxidative 
stress, which lead to increased plaque formation in the vascular system, which can 
ultimately increase the likelihood of thrombosis and death.  He cited the Sun et al. (2005) 
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paper in atherosclerotic mice (presented at the pre-elicitation workshop) as influential in 
providing evidence for this pathway.  He also thought animal studies by Costa and 
Kodavanti, (2003) and other work done at EPA showing the oxidative stress and damage 
to tissues caused by exposure to acids and transition metals were also supportive.  He 
argued that such studies point to the importance of fossil fuel combustion as a “dominant 
source of the problem.”   
 
Impact on the respiratory system was the second cause of death Expert F thought could 
be associated with air pollution, although more weakly.  Expert F suggested that the 
overall mechanism involves both direct damage to the lung and impacts on lung 
development that in turn contribute to increased risks of respiratory infections.  He 
thought damage can occur via different routes; particles initiate chronic inflammation 
which itself can damage lung tissue (Ghio et al., 2000) and macrophages that take up 
particles may then die releasing enzymes that can cause scarring in the lung.  He cited a 
study by Plopper and Fanucchi (2000) that showed altered immune defenses in animals 
where the lungs did not develop both physically (e.g., development of the alveoli and size 
of airways) and immunologically.  He pointed to some epidemiological evidence of 
increases in death from influenza and pneumonia related to air pollution as supportive of 
this mechanism.  In general, he noted that there are fewer deaths from respiratory disease, 
so the statistical power is weaker to assess this association.  
 
The third cause of death Expert F discussed was lung cancer, which has been associated 
with PM2.5 in epidemiological studies (Pope et al., 2002; Jerrett, 2005).  He did not think 
that the same degree of mechanistic evidence has been established in animals for lung 
cancer as it has for cardiac and respiratory effects.  His argument for the mechanism was 
largely based on general cancer principles linking together pieces of evidence; particles 
contain known carcinogens (e.g., benzo[a]pyrene and other organics) which have been 
shown to be mutagenic in Ames-type assays and which act as initiators; metals and sulfur 
can then act as promoters by contributing to oxidative stress and cell damage and cell 
turnover, as shown in animal studies.  He did not know of any long-term animal studies 
that have addressed the question of the carcinogenicity of inhaled particles. 
 
Short-Term Exposures 
 
Expert F expressed the opinion that the primary causes of death associated with short-
term exposures to PM2.5 were related to cardiac and respiratory mechanisms.  He thought 
the mechanisms for cardiac deaths included not only ischemic heart attacks (as for long-
term) but also effects related to arrhythmias or changes in heart rate variability (HRV).  
Expert F also discussed evidence that PM exposures lead to acute changes in blood 
coagulation (Devlin et al., 2004) leading to increased risk of coronary thrombosis, and to 
increases in C-reactive protein (CRP) (Peters et al., 2001; Ruckerl et al., 2006).   He cited 
work by Annette Peters (2000, 2001), a study by Robert Devlin (2003) in elderly subjects 
exposed to CAPs, and a study by William Penn Watkinson (2000) in animals as 
influential evidence of the impact of PM on reducing HRV.  Expert F speculated that the 
impact on the autonomic nervous system might be mediated by the oxidative stress and 
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release of fibrinogen (Schwartz et al., 2001 National Health and Nutrition Examination 
Survey (NHANES) study) and of CRP (Seaton, 1999; Riediker et al., 2004).   
 
Expert F thought the arguments for respiratory-related deaths was more compelling for 
short-term exposures to PM than for long-term exposures.  He cited studies by Gilmour et 
al. (2002) and Zelikoff et al. (2003), which showed increased mortality rates in animals 
exposed to both streptococcus and particles compared to those in animals exposed to 
streptococcus alone.  The rate of inactivation of the bacterium was also reduced 
suggesting impairment of the immune system by exposure to high levels of particles.  
Expert F thought acute inflammation by high exposures to particles was a separate 
mechanism contributing to respiratory-related deaths, primarily in individuals suffering 
from asthma or other chronic respiratory diseases.   Expert F did not think cancer was a 
cause of death related to short-term exposures, but indicated that cancer patients could be 
more susceptible to effects from acute exposures to particles.  
 
However, he noted the biggest (but not unusual or prohibitive) limitation in the evidence 
for the mechanistic pathways is that much of it relies on animal studies; the mechanisms 
are shown to be biologically plausible, but cannot be absolutely proven in human subjects 
because of the practical limitations on such human studies. 
 
3.3 The Role of Epidemiological Study Design in Characterizing the Total Impacts 
of PM2.5 Exposures on Mortality 
 
Expert F thought that prospective cohort studies represent a “gold standard” for 
estimating the effects of long-term exposures.  These were closely followed, in his view, 
by the cross-sectional cohort study designs, which he thought provided qualitative 
support for the quantitative effect estimates reported in prospective cohort studies.  In 
both types of studies, he estimated that roughly 97 percent of the mortality reported was 
due to long-term exposures with the remaining 3 percent attributable to cumulative short-
term exposure effects.    
 
For estimating the mortality effects of short-term exposures to PM2.5, he thought the time-
series and case-crossover designs were most useful.  He thought the panel studies were 
important for demonstrating that the effects that are observed in population studies are 
also observed on an individual level. 
 
When asked about intervention studies or “natural experiments” (such as Pope’s Utah 
Valley study, the Clancy study in Dublin, and the Hedley Hong Kong study), he thought 
that they were not as directly appropriate to the quantification of mortality effects, though 
they do speak to the issue of cessation lag; such studies suffer from questions about 
temporal confounding (i.e., changes in other factors that could also affect mortality).  
 
3.4 Epidemiological Evidence for the Impact of Exposures to PM2.5 on Mortality  
 
Expert F’s ideal epidemiologic study included the following attributes: 
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• Representative of the U.S. 
o Appropriate sampling to include important subgroups (e.g., age, race, 

education level, socioeconomic status (SES)); and 
o Geographically. 

• Collection of individual level data at both beginning and follow-up (e.g., personal 
risk factors related to cardiac, respiratory disease, and lung cancer). 

• Exposure assessment 
o Representative of lower and higher exposures; 
o Personal exposures to outdoor PM2.5, not personal exposure overall; and 
o Includes information on mobility. 

 
The specific studies that Expert F thought would be most informative for his quantitative 
estimates were the extended American Cancer Society (ACS) cohort studies (Pope et al., 
2002 & 2004), the reanalysis in Los Angeles (LA) (Jerrett et al., 2005), and the original 
Six Cities cohort study (Dockery et al., 1993) as well as the follow-up (Laden et al., 
2006).  He thought the strengths of the ACS studies included their large study population 
that is inclusive of an age range relevant to the elicitation, more nationally representative, 
detailed individual level data on risk factors, and exposure measurements at the 
beginning and end of study that were well correlated.  Expert F noted that limitations of 
the ACS studies related primarily to effect modification by education and exposure 
misclassification (this topic is discussed in greater detail below).  He indicated that 
strengths of the Six Cities study were that it was specifically designed for investigating 
the relationship between air pollution and health, that its exposure estimates did not rely 
on central site monitors only (they have some personal-level monitoring), inclusion of 
more co-pollutant information, data on potential confounders, and a population that is 
more representative of the general U.S. population (regarding educational level, 
industrial, and non-industrial America).  He thought its limitations included relatively 
small sample size, restriction to the eastern half of the U.S. (i.e., no representation of the 
west, especially California), and non-representative racial composition (mostly white).   
 
Expert F thought the Jerrett (2005) study of the LA component of the ACS study 
improved measures of exposure within LA and, by focusing on one metropolitan 
statistical area (MSA), eliminated some of the issues with between-city comparisons that 
existed in the parent study.  He thought potential limitations of the Jerrett analysis were 
that it is representative only of one city, that spatial correlations might exist between SES 
variables and more polluted parts of LA, and that there may be within-MSA mobility 
impacts on exposure.  He argued that the Jerrett study essentially trades one exposure 
measurement problem for another, yet the fact that it finds similar results provides 
evidence that the PM2.5 mortality association is robust.  He thought the Laden 2006 
follow-up to the Six Cities study has similar strengths and weaknesses of the original Six 
Cities study, though it has the benefit of longer follow-up period. 
 
Finally, Expert F noted that the ecological studies (e.g., Ozkaynak and Thurston; Evans, 
Tosteson, and Kinney, 1984) showing an air pollution effect on mortality have been 
recently exonerated by all the subsequent cohort studies.  He thought the concerns about 
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confounding that were raised about the ecological studies have not turned out to be 
substantiated. 
 
Expert F briefly discussed papers that he felt were less conclusive about the relationship 
between PM2.5 and mortality, such as the Lipfert studies and the Enstrom (2005) study, 
neither of which Expert F wanted to place much emphasis on.  He basically argued that, 
although Lipfert's later study found results similar to some of the studies above when he 
used more comparable measures of exposure, his studies lack credibility given the 
funding source (Electric Power Research Institute (EPRI)), and that the papers were not 
published in a journal where they were likely to be peer-reviewed by epidemiologists 
(e.g., Inhalation Toxicology and Atmospheric Environment).  He had similar concerns 
about the Enstrom (2005) paper in Inhalation Toxicology.   Although not fully familiar 
with this study, he had concerns with the way exposure was measured (at point of 
residence as opposed to an area average), the highly educated population, and large loss 
to follow-up.  He thought if one assumes that women spend more time at home than men, 
then the exposure error might not be so great and might explain why they saw effects in 
women but not men. 
 
When asked about evidence provided by Moolgavkar papers against the hypothesis of a 
PM-mortality effect, he stated simply that he did not believe the work was credible. 
 
Although Expert F initially thought his estimates of the total mortality effect would have 
to include some additional increment from the short-term studies, he ultimately decided 
to rely only on the cohort studies.  He felt that it was difficult to know what the protocol 
question was really asking for.  Nevertheless, he argued that even though strategies to 
reduce the annual average PM2.5 concentration could affect peaks as well, annual average 
measures of mortality would not pick up much acute mortality and that any additional 
contribution from acute mortality to the cohort estimates would be small, relative to the 
chronic exposure reduction benefits. 
 
3.5 Confounding 
 
As a backdrop to the discussion on confounding, Expert F discussed the results of an 
analysis conducted by Zidek et al. (1996) entitled, “Causality, measurement error, and 
multi-colinearity in epidemiology” in Envirometrics.  He indicated that the study 
basically found that if both the predictor variable and the outcome variable are measured 
with error, the impact of confounding is diminished.  In order to have substantial 
influence on the regression estimates by a confounder, the degree of correlation between 
the confounder and the predictor variable had to be very high (e.g., around 0.9).  Expert 
F’s conclusion was that although confounding is something to be concerned about and to 
control for, the fear that modest correlations with confounding variables could fully 
account for effects measured in epidemiological studies does not appear to be warranted. 
 
The few variables that Expert F thought might be of some residual concern in the studies 
he planned to rely on for his quantitative estimates are summarized in the table below: 
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Study Confounders potentially 

leading to overestimate of 
the true RR 

Score (1-3)* 
 

Contextual SES 2 (lower end) ACS 

Gaseous co-pollutants, 
occupational, smoking 

1  

Contextual SES 1 
Occupational 1-2 

Six Cities (original and 
follow-up) 

Gaseous co-pollutants, 
smoking 

1 

Jerrett, 2005 Contextual SES 2 (higher end) 
*  Expert F defined the scores in the following way: 1= <10 percent, 2= 10-15 percent, 3 
= >20 percent 
 
Expert F generally did not think that gaseous co-pollutants (CO, NOx, SO2) were “big 
confounders to the PM effect.”  The reason for this was that “these pollutants are 
correlated because they’re coming from the same sources and not because they cause the 
effect.”  He predicted that, as we begin to investigate exposures by source categories, CO 
and NOx would be related to traffic particles and SO2 would be related primarily to coal 
combustion.  He did not think there were plausible arguments for mechanisms by which 
these co-pollutants could affect mortality over the long-term (he thought CO might have 
a plausible mechanism for affecting mortality during acute exposures).  Although the 
ACS study and subsequent re-analyses found a strong SO2 effect, Expert F did not think 
there is a plausible explanation for how SO2 actually causes the mortality effects (i.e., it 
does not get deep in the lung, does not cause increases in CRP or plaque development).  
He thought it is more likely that SO2 is acting as an effect modifier, by making the 
particles more toxic.  He similarly thought smoking had been well-controlled for in the 
ACS studies (examined using different smoking variable in different models) and Six 
Cities studies though he could not rule out some minor residual confounding.  The 
concern he raised here was as to whether measures of smoking and risk fit the 
proportionality assumptions of the Cox Proportional Hazard model. 
   
He thought there could be some residual confounding by “contextual SES” variables (i.e., 
that there is some correlation between living in a more polluted location and being poor), 
particularly in the ACS study.  He did not think confounding by contextual SES variables 
was likely to be as great in the full ACS study which averaged variables across whole 
metropolitan areas, as in the Jerrett, 2005 study of Los Angeles which looked within a 
particular metropolitan area.  
 
He expected confounding by occupational exposure to be minimal as well in all of these 
studies although it might rise to the level “moderate [2]” for the Six Cities study given the 
statistical influence of Steubenville, originally a highly industrial city, on the mortality 
effect estimate. 
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3.6 Effect Modification 
 
Expert F discussed primarily the ACS and Six cities study in his review of effect 
modification.  He discussed the potential for effect modification by SES status (i.e., as 
indicated by educational attainment in the ACS study), SO2, and smoking.  With the 
exception of SES status in the ACS study and possibly SO2 in the Six Cities study, he 
thought it unlikely that effect modification would have more than a minimal effect on the 
mortality effect estimates: 
 
Study Effect modifiers Score (1-3)* 

SO2  1   (overestimated RR) 

Education (SES) 3  (underestimated RR) 

ACS 

Smoking 1  (uncertain direction of bias) 
SO2 2  (overestimated RR) Six Cities (original and 

follow-up) Smoking 1  (uncertain direction of bias) 
*  Expert F defined the scores in the following way: 1= <10 percent, 2= 10-15 percent, 3 
= >20 percent 
 
Expert F thought the most influential effect modifier was the educational effect observed 
in the ACS study where most of the mortality effect was observed in the portion of the 
cohort with less than a high school education.  Since the ACS cohort was more highly 
educated than the U.S., Expert F thought the relative risks were probably underestimated 
by as much as 50 percent or more in the ACS study (in part based on discussion from the 
pre-elicitation workshop). 
 
He thought effect modification by SO2 might be a larger problem in the Six Cities study 
than in the ACS study.   His argument was that higher mortality has been observed in 
Steubenville in the Six Cities study (as it has been in the Pittsburgh-Steubenville area for 
the ACS study) and that these higher mortality rates may relate to effect modification of 
the SO2 on the PM effect because SO2 adsorption on the surface of PM might well make 
the particles more toxic.  He thought this modification effect might be absent in other 
areas of the country (e.g., Seattle where SO2 levels and coal combustion are lower), 
which are not as well represented in the Six Cities study and, to a lesser extent, in the 
ACS study.  As a result, he thought the relative risks (RRs) might be somewhat 
overestimated in each of these studies.  However, the influential weight of the 
Steubenville data in the Six Cities studies discussed earlier led Expert F to believe that 
effect modification by SO2 might be greater in those studies than for the ACS studies.  He 
did not think this was an issue for the Jerrett study though noted that recent source 
apportionment studies in the LA area have seen increasing evidence of exposure to 
sulfates from cargo ships in the port of LA. 
 
While he thought there might remain some potential for effect modification by smoking 
in the ACS and Six Cities studies, he thought it was likely to be minimal (a score of 1) 
and he was uncertain which way it might influence the effect estimates if at all. 
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3.7 Exposure Issues 
 
The types of measurement error Expert F focused on in his discussion of the ACS and Six 
Cities studies (including the follow-up paper) included the impacts of mobility of the 
population on measures of exposure, central site versus individual site monitors, and 
choice of the appropriate monitoring time period given historical trends in exposures.  In 
general, Expert F thought the ACS study was more affected by exposure measurement 
error, in particular the first two issues listed above than the Six Cities studies: 
 
Study Exposure Issues Score (1-3)* 

Mobility (coupled with 
effect modification by 
education) 

3   (underestimated RR) 

Central site v. individual 
exposures 

2 (underestimated RR) 

ACS 

Historical trends 1 (if use correct time 
period) (underestimated 
RR) 

Six Cities, original  Mobility 1  (underestimated RR) 
Central site v. individual 
exposures 

1 (underestimated RR) Laden et al. (2006) Six 
Cities follow-up 

Estimation method for 
PM2.5 central site value 

1 (underestimated RR) 

*  Expert F defined the scores in the following way: 1= <10 percent, 2= 10-15 percent, 3 
= >20 percent 
 
Expert F thought the issue of mobility of the study population is essentially one of 
measurement error.  If people move after their exposure has been assigned, and their new 
location and exposure is unknown and cannot be adjusted for (as in the ACS study), there 
is more measurement error.  The impact of the error could be different depending 
whether people, on average, moved to a cleaner or a more polluted area, and might differ 
by economic status if people of lower economic status are less likely to move out of the 
study area, as census data suggest.  Expert F thought this factor could be influential in 
underestimating the relative risks for the ACS study, as well as contributing the reported 
effect modification by education level.  
 
Expert F thought the degree to which the central site monitors reflected individual 
ambient or outdoor exposures was the other important source of measurement error for 
the ACS study.  He thought it could contribute to underestimate of the RR in the study; 
he assigned it a score of 2 (“at most”).   He did not think that the Jerrett study provided a 
clean measure of the impact of more precise geographic estimates on the effect estimates 
(i.e., he thought the higher effect estimate in the Jerrett study might also be due in part to 
more spatial confounding by SES). 
 
He discussed the relative importance of outdoor, indoor, and personal exposures as 
exposure metrics.  Basically Expert F believed that outdoor air is what predicts indoor air 
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quality and it is outdoor air that is ultimately of interest for regulatory purposes.  Expert F 
did not consider differential ability of particles to penetrate indoors in different climates 
to be a big issue because he did not think air conditioning was a very efficient way to 
remove particles.  
 
Expert F thought that choice of the exposure period used to estimate mortality effects 
could influence effect estimates, given historical changes in particle concentrations with 
time.  He thought there exists the potential to “underestimate the effect size when you use 
[exposures from] the beginning of the study because you’re overestimating the 
exposure.”  He noted how the reanalysis of the ACS study estimated the mortality effects 
using two exposure periods, early and late in the study, and that the effect estimates were 
higher when the later exposure period was used.  He thought the average of the two 
periods made the most sense. However, he also pointed out that Roosli et al.’s work 
suggests that the last 5-10 years before death are the most influential for the effect 
estimate.  He was not sure how this finding could be reconciled with the mechanisms for 
developing cardiac disease that involve chronic inflammation and accumulation of 
atherosclerotic plaques.  For cancer development, he thought the longer-term exposures 
would be more important.  He concluded that if the correct exposure period were used 
(e.g., using the average of the two exposure periods in the ACS re-analysis study), the 
effect estimates would not be biased or mis-estimated, giving larger estimates than those 
generally used from the ACS study (i.e., using those based on the 1980’s exposures, as 
reported in the manuscripts’ abstracts). 
 
3.8 Causality   
 
Expert F would ideally have the following types of evidence to support a conclusion of a 
causal relationship: 
 

• Specificity (e.g., would like to see an impact on cardiovascular and, with 
sufficient follow-up, lung cancer, but not other causes); 

• Consistency across studies that are done well; 
• Plausible biological mechanisms that are consistent with the epidemiological 

evidence; 
• Concentration-response relationship; 
• Coherence across different types of study designs; and  
• A temporal relationship (as observed in intervention studies). 

 
Expert F’s views on the strength of the causal relationship differed for long-term and 
short-term exposures.  He felt that the likelihood of a causal relationship was 100 percent 
for the effects of long-term exposures; it would take his ideal study, done well and 
showing no relationship between particles and mortality to convince him otherwise.  For 
the effects of short-term exposures, Expert F thought that, under the least optimal 
conditions (if one believed that weather and ozone were confounding the relationship) the 
likelihood of causal relationship for between short-term exposures and mortality was 
about 60 percent.  At best, believing all other relevant factors to be controlled or analyzed 
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for, he could be 100 percent certain of a causal relationship.  His best estimate was that it 
was highly likely, around 95 percent. 
 
3.9 Thresholds   
 
In theory, Expert F could imagine that a threshold might exist at a natural background 
level (if one could eliminate all fossil fuel combustion).  At the same time, conceptually, 
there exists an “infinite pool” of susceptible individuals, who could be “knocked off” at 
various concentrations. 
 
He thought that the most appropriate types of studies to assess the existence of population 
thresholds would be long-term studies in large populations experiencing a wide range of 
pollutant levels.  They should look at indicators of disease development (e.g., intima-
media thickness (IMT) of arteries, as in Kunzli’s latest work).  He thought toxicological 
studies were useful for studying mechanisms, but not for determining population 
thresholds or effect estimates. 
 
He did not think that a threshold is detectable in any of the epidemiological studies 
currently available.  He did not want to incorporate a threshold into his characterization 
of the concentration-response (C-R) relationship. 
 
3.10 Other Influential Factors 
 
Expert F briefly discussed other factors that were of residual concern to him.  He 
mentioned again some uncertainty about how well the Cox proportional hazards model 
deals with potential confounding by smoking.   
 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert F chose to characterize the C-R function as piece-wise linear across the range of 
annual average PM2.5 concentrations that were the focus of the study (4-30 ug/m3).  He 
estimated a distribution for the first slope that applied to concentrations of 4-7 ug/m3 

(hereafter, “Range 1”), and one that applied to concentrations of >7-30 ug/m3 (hereafter, 
“Range 2”).  Although he indicated that there was not enough data to specify other than 
one linear range, he thought that there was probably more uncertainty about the slope in 
the lower portion of the range (i.e., below the range of observed PM2.5 data in the ACS 
study). 
 
For purposes of comparison to other experts who specified a single distribution for the 
whole PM range for this study, the elicitation team simulated a combined distribution 
(hereafter, “Example Applied Distribution”) by linking his two distributions via a 2002 
distribution of population-weighted annual average PM2.5 concentrations in the U.S. from 
EPA’s BenMap model.  
 
Expert F began by specifying the percentiles for Range 2 (note all values were initially 
given per 10 µg/m3 change in PM2.5 and converted later to a 1 µg/m3 change).  His 
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minimum value was based on an estimate that lay between the effect estimates from the 
ACS earlier and later exposure periods (around 6 percent).  His 5th percentile was based 
on an estimate from the ACS study for those with less than a high school education 
(around 8 percent - estimated from Figure 4 in Pope et al., 2002).  Expert F’s 50th 
percentile was based initially on estimates from the original Six Cities study (Dockery et 
al., 1993) as well as the (Laden et al., 2006) follow-up (around 14 percent), but he 
adjusted it downward to 12 percent to account for concerns about residual confounding 
by occupation and effect modification by SO2.  
 
Expert F’s 95th percentile was based on an estimate from the Jerrett et al., (2005) (17 
percent per 10 µg/m3 based on the model with 44 individual covariates).   He argued that 
it was appropriate to think of this estimate as an upper 95th percentile because, although 
he thought the Jerrett study estimates represented improvements in exposure 
measurement, he thought they also might still be confounded somewhat by contextual 
SES factors.  To generate his maximum value, he adjusted this estimate upwards by an 
additional 3 percent from his 95 percentile estimate to account for additional uncertainty, 
because he could not see the “true” effect estimate of all anthropogenic PM effects for the 
U.S. being greater than 20-25 percent of total mortality.  Expert F calculated his 
interquartile range by interpolating roughly between the 50th and the 5th percentile values, 
as well as between the 50th and the 95th. 
 
To calculate the percentiles for Range 1, Expert F reduced the percentile values from 
Range 2 by 25 percent to indicate that he thought slope might be lower.  He then made 
adjustments to the 50th, 75th, 95th, and maximum to ensure that the two distributions had 
overlapping interquartile ranges and to express greater uncertainty about the magnitude 
of the slope in the lower range. 
 
He was satisfied that his Example Applied Distribution essentially encompassed the 
distributions from the main studies on which he relied, even though the 90 percent 
confidence intervals were not much wider.  He thought they represented essentially a 
mental meta- analysis and that would reduce, not increase the uncertainty distribution. 
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Exhibit 1: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1 ug/m3 Change in Ambient Annual Average PM2.5 
Concentrations  

Percentile Percent Change 
in Mortality 
(Range 1) 

Percent Change 
in Mortality 
(Range 2) 

Percent Change in 
Mortality -Example 
Applied Distribution 
(IEc Generated) 

Minimum 0.37 0.49 0.37 
5th 0.58 0.77 0.71 
25th 0.73 0.96 0.94 
50th 0.93 1.1 1.1 
75th 1.1 1.4 1.3 
95th 1.4 1.6 1.6 
Maximum 1.7 1.8 1.8 
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Exhibit 2: Percent Change in Annual Mortality Associated with a 1 ug/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 Percent Confidence Intervals for Various Studies to Distributions from Expert F 

* = Distribution incorporating causality and applying the C-R functions from Ranges 1 and 2 to a 2002 population-weighted annual average 
PM2.5 concentration distribution in the U.S. from BenMap (IEc Generated). 

• = median □ = interquartile range │= 90 percent confidence interval 
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Elicited Distribution – Range 1 
 

 
 
Elicited Distribution – Range 2 
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Example Applied Distribution - Probability Density Function (IEc Generated) 
 

 
 
Example Applied Distribution - Cumulative Density Function (IEc Generated) 
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Interview Summary 
Expert G 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.1 Mechanisms for Effects of Exposure to PM2.5 
 
Expert G discussed the biological mechanisms for short-term and long-term exposures 
separately, beginning with short-term exposures.  
 
Short-Term Exposures 
 
Expert G primarily discussed two types of effects in the context of short-term exposures 
to PM: cardiovascular effects and acute respiratory infection.   
 
Expert G thought that cardiovascular effects were the “most compelling in terms of [the 
ability of short-term exposures] to cause mortality.”  He focused on “cardiovascular 
dysfunction,” which he defined as involving arrhythmia or other changes in heart 
function, “including changes in the ability of the heart to respond to nervous system 
stimulation.”  He thought that this effect would be more significant in susceptible 
populations such as “[p]eople with pre-existing cardiac or respiratory disease, and 
elderly.”  He thought that a body of evidence provides support for the mechanism 
underlying this cause of death.  “Looking at the overall database … epidemiological 
studies … looking at populations that have changes in certain aspects of EKG, changes in 
heart rhythm, changes in heart rate variability, which suggest effects on the nervous 
system control … [and] I look at the toxicology studies, which have shown similar effects 
… in terms of change in heart rate variability or changes in heart rhythm … this 
consistency between the epidemiology and the toxicology.”  He thought that limitations 
of this database included differences in dosimetry and between ambient exposures and 
controlled experimental exposures.   
 
When asked about how the cardiovascular mechanism for deaths related to PM worked, 
Expert G indicated that there are two hypotheses 1) that the particles “get out of the 
respiratory tract and actually end up in the cardiovascular system”; and 2) “the oxidative 
stress hypothesis … the chemical nature of the particles is such that it causes some sort of 
biochemical effect in the lungs, such as release of certain mediators, like interleukins … 
which will then travel out of the respiratory tract, go systemic, and then affect the heart.”  
He also thought that “pro-inflammatory mediators can cause tissue damage, which can 
alter organ susceptibility to other physiological influences and/or cause structural damage 
… hypothetically that can affect an organ’s ability to responds to nervous system 
stimulation.” But he thought there was “still a gap [in understanding what the] structural, 
biochemical changes within the tissue [are] that result in its inability to respond normally 
to nervous system input.” 
 
Expert G thought the second most important cause of death from short-term exposures is 
acute respiratory infection, such as bronchitis or pneumonia in individuals “already 
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stressed either by age or pre-existing disease” because their defense mechanisms may be 
compromised.  He thought this mechanism was supported by evidence from 
epidemiology as well as toxicology (Zelikoff’s work, studies from NYU). 
 
Expert G also briefly discussed another mechanism for cardiovascular impacts involving 
PM’s impacts on blood coagulation ability.  He noted that there were a few studies that 
seem to support this pathway. When asked about stroke as a potential cause of death from 
short-term exposures, Expert G thought this was related to this cardiovascular mechanism 
in that changes in blood coagulation ability could also cause strokes.   
 
Long-Term Exposures 
 
Expert G indicated that he viewed effects from long-term exposures as “increasing 
biological stress levels on a long-term basis … [s]o you have cumulative damage over the 
years … [which] appears to reduce life span.”  “The effects on organs, especially the 
heart and perhaps the lung as well, may be similar to aging, in that the additional stress 
induced by sub-clinical release of pro-inflammatory mediators could result in the 
inability to handle additional stress to a certain point, and that would cause death either 
by heart attack or maybe lung disease.”  He discussed the Children’s Health study in 
California that “infers that [children] have compromised lung function development,” and 
reasoned that it might contribute to increased risk of mortality in adulthood.  
 
For cardiovascular disease, Expert G discussed the Sun et al. (2005) study experiments at 
NYU with the apoE-/- atherosclerotic mouse model.   While he noted that this research 
showed that PM accelerates the development of atherosclerosis, his critique of this work 
was that the apoE-/- mouse is a sensitive model and he questioned how representative it 
might be of human experience.  Expert G also discussed Künzli et al. (2005) study that 
found changes in intima-media thickness of the carotid arteries associated with PM.  He 
thought that this could be related to “inflammatory effects causing damage to the wall, 
which then gets repaired by fibrotic tissue, which is thicker than normal tissue.”    
 
Overall, Expert G thought the body of evidence was more complete for short-term 
exposures than for long-term exposures: “I think that ... there is a coherence between the 
epidemiology and the controlled exposure studies, which include human clinical and the 
tox, in terms of acute responses to PM mechanisms, potential mechanisms, that would 
explain mortality.   [For] long-term exposures … there is a lack of chronic studies in 
controlled exposure. [The Sun et al. study] at NYU is … the longest-term controlled 
exposure study and is showing responses that could explain long-term exposure effects.  
But ... it's still only a six month study … [T]he results are consistent with what one would 
think would be going on in the population exposed chronically, but the data set isn't as 
strong as it is for the acute, yet.” 
 
Expert G discussed lung cancer as a potential cause of death from long-term exposures.  
He thought that there was some epidemiological support for this.  For a plausible 
mechanism, he drew a parallel to chronic cigarette smoking.  He thought PM contains 
carcinogens and the combination of years of exposure to the carcinogens and a genetic 
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pre-disposition to cancer make it plausible that PM could cause cancer.  However, he 
noted that cancer did not appear to be the largest risk associated with PM. 
 
3.2. Conceptual Framework for Mortality Effects of Short-Term and Long-Term 
PM2.5 Exposures 
 
Expert G thought the Künzli diagram was a good conceptualization of the relationship 
between long- and short-term exposures.  He elaborated on the definition of Category B, 
long-term effects, to say that he thought that the long-term effects of air pollution could 
result, not just from long-term average exposures as is commonly assumed, but from 
long-term exposures to a series of peak PM levels, “but the effects my be different and 
affect different people.”  In the peak model, short-term peak exposures could lead to sub-
clinical development of disease over time. “Some of those peaks might also kill people 
… Quantitating the overlap [between the categories] is the question.”   
 
3.3. Role of Epidemiologic Study Design in Characterizing the Total Impacts of 
PM2.5 Exposures on Mortality 
 
Expert G’s views on the mortality effects captured by each study design are shown in the 
table below: 

 
Study Design Type of Effects Captured (e.g., short-

term, long-term, or both) 
Cohort Studies Long-term and some short-term (Categories B 

and A, respectively)  
Intervention Studies Short-term and mixed (Categories A and C) 
Time-Series Studies Short-term and mixed (Categories A and C) 

 

Expert G thought that he would most want to rely on the cohort studies for quantifying 
the effects of long-term exposures.  He led an extensive discussion to assess to what 
extent the cohort design could distinguish whether increased mortality from long-term 
exposures was due to average levels or to a series of peaks.  He ultimately concluded that 
they could not make such a distinction.  After initially thinking cohort studies would pick 
up purely short-term effects (C), he concluded that they would not necessarily pick them 
all up. 

Expert G thought the intervention studies were an important “component of a portfolio of 
epidemiology studies used to develop some sort of quantitative risk assessment.”  He 
indicated that they show the effect of an intervention and ideally, if the difference in 
components were known, it might be possible to understand more about which 
components of the PM are producing the change in mortality.  He thought they would 
largely capture short-term effects. 
 
Expert G thought time-series studies would largely capture the effects of short-term or 
acute exposures.  Ultimately, Expert G thought estimating the mortality effects of 
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changes in annual average PM2.5 concentrations might require a combination of results 
from cohort, intervention and time-series design.  He found it difficult, however, to 
determine what the basis might be for the relationship between the magnitudes of the 
effect estimates seen using different study designs and thus, was unsure of how they 
should be combined.  

3.4. Epidemiologic Evidence for the Impact of Exposures to PM on Mortality 
 
Expert G’s ideal study is one that would allow him answer the question he had raised in 
section 3.3, “what's the relationship between acute versus long-term exposure in terms of 
mortality?”  At this point, he was not considering the representativeness of the study. 
 
Expert G thought that to characterize the total mortality effects from long-term and short-
term exposures, he would want to conduct a cohort and time-series study in the same 
population, to “control for … genetic differences” between populations.  He would 
conduct the studies in the same three cities, one with a low PM level that’s constant, one 
with a high PM level that has peaks, and one with an intermediate level.  Ideally, all three 
cities would have PM with similar physical and chemical properties to avoid the 
difficulty of comparing across studies in areas with different PM component mixtures.  In 
terms of exposure measurement, he would want the placement of monitors and types of 
measurements to reflect what the study population is being exposed to.     
 
When asked to review the epidemiologic studies that have been most informative about 
the percent change in all-cause mortality related to a reduction in annual average ambient 
PM2.5 concentrations, Expert G first indicated that a limitation of PM/mortality 
epidemiologic studies in general is that PM is correlated with other pollutants, and 
therefore the investigators “can’t separate out the PM [effect].”   
 
Expert G thought that the American Cancer Society (ACS) study by Pope et al., the Six 
Cities study (Dockery et al., 1993) as well as the Krewski et al. (2000) reanalyses of these 
studies were the most informative for his quantitative estimates.  He also discussed 
intervention studies (Utah Valley (Pope et al., 1996); Hong Kong (Hedley et al., 2002)) 
but thought these were more important for determining effects of different PM 
components, rather than for quantifying mortality effects in the U.S.   
 
Expert G indicated that the strengths of the ACS study were its large population size, 
geographical distribution of the population, and its examination of the effect of co-
pollutants.  He thought the limitations were uncertainty related to the “monitoring sites 
versus where the population is” as well as downward bias due to effect modification by 
education and race.  He thought the Six Cities had more representative exposure 
monitoring but was less geographically representative. 
 
3.5 Confounding  
 
Expert G chose to discuss confounders that affect the cohort studies generically, rather 
than describing the effect on individual studies. 
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Expert G first discussed confounding by gaseous co-pollutants, in particular ozone, NO2, 
SO2, and semi-volatile organics.  He thought the gaseous co-pollutants were problematic 
because they are often correlated with PM and they “move like PM,” making them 
difficult to control.  However, he acknowledged that “[i]t’s an open issue as to what role 
the gaseous co-pollutants do have in PM toxicology, if any.”  He expressed the view that 
SO2 could be a surrogate for PM.  He thought that correlation of PM with gaseous co-
pollutants could cause the published effect estimates to be overestimated, and assigned 
this confounder a score of 3. He cited a similar problem with semi-volatile organics that 
can adsorb to particles making difficult to isolate the PM effect. 
 
He then discussed other potential confounders that could affect study estimates.  He 
thought that weather could be an issue in short-term studies because it “clearly will 
increase mortality in certain populations” and “PM does tend to go up when it’s hot.”  
However, he thought that this had been reasonably controlled in the epidemiologic 
studies.  
 
He thought socioeconomic status (SES) could be a confounder, indicating that those 
living in inner cities could have higher exposures and lower SES. A related issue he 
raised was urban stress (e.g., related to living in close quarters, noise, job/money 
problems), which could reduce immune competence, could also be greater in inner cities.  
He was uncertain about whether it had been dealt with in epidemiologic studies using 
education as a proxy.  He assigned SES a score of 2.  In addition, he thought pre-existing 
health status could be a confounder as also assigned it a score of 2.    
 
Expert G thought smoking, alcohol, and diet were well-controlled in the cohort studies.     

 
3.6 Effect Modification 
 
Expert G discussed potential effect modification in the ACS study (Pope et al., 2002).  
After extensive discussions, he stated that he thought that this study population 
underrepresented non-whites, low educational attainment, and low SES although he 
thought educational attainment might be capturing the other two factors to some degree.  
Therefore, he thought that the published effect estimates might be biased downwards.   
 
Expert G thought that ozone could potentially be an effect modifier, in that those exposed 
to both PM and ozone would have higher mortality than PM alone.  However, he could 
not cite specific evidence from the ACS study to support ozone as an effect modifier.  He 
was not sure how much adjustment should be made, if any, to the published relative risk 
estimates, or whether any differences might already be captured in the statistical 
uncertainty of the estimates or whether he might need to expand the confidence interval. 
 
3.7. Exposure Issues 
 
Expert G thought that the differences in exposures measured by central monitors and 
actual exposures to the study population could be a major (score = 3) source of 
uncertainty.  He thought that local sources, such as traffic or point sources could cause 
individual exposures to differ from exposure measured at a regional central site.  He 
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thought that this could bias the results in either direction, depending on the placement of 
the central site and the types of local sources.  He also thought that there could be 
differences in PM composition at the central site and individual exposures.  Therefore, he 
concluded that a greater number of monitors or more representative monitors would 
improve study estimates.  He thought that this could be a major factor, however, he did 
not feel that he had sufficient data to determine how this would affect the published 
relative risks.  Although he was not familiar with the details of the Jerrett et al. (2005) LA 
study, for example, he generally thought that its findings might not necessarily be 
representative of findings in other parts of the country. 
 
Expert G discussed the issue of whether the studies had measured the exposure period 
relevant to the mortality effects observed.  He thought that using historical exposure 
estimates could cause an overestimate in the mortality effect.  He also indicated that he 
was unsure of what the relevant exposure period should be, which contributed to overall 
uncertainty in the effect estimates, but to a lesser extent (score = 1). 
 
3.8. Causality 
 
When asked what type of evidence he relied upon to evaluate the strength of the causal 
relationship between PM and mortality, Expert G answered, 1) “reliable epidemiological 
studies having minimal confounders and be able to adjust for any confounders or effect 
modifiers and other factors to the best of their ability; … [2)] biological plausibility, 
meaning are there reasonable or believable mechanisms that could underlie the causes of 
death reported in the epidemiologic studies?”; and 3) coherence between epidemiology 
and toxicology, which includes both human controlled studies and animal studies as well 
as in vitro studies. “And even if there’s a dosimetry issue between … the epidemiology 
and the controlled exposure … as long as there’s a mechanism [to explain] how the PM 
could be doing this in human.”  He indicated that he did not view epidemiology as causal, 
but rather a “statistical relationship.” 
 
Expert G thought that the current state of science “strongly suggests a causal relationship 
between PM exposure … and increased mortality.” This position represents a change in 
his views since the first Irvine colloquium in 1994 when the relationship had only been 
based on epidemiology and had little credibility in his view.  He indicated that he put 
most weight on recent toxicological studies using concentrated ambient particles (CAPs), 
such as those published by Godleski et al. at Harvard, Devlin’s group at EPA, and sub-
chronic studies from New York University (NYU) by Lippmann and Chen.  He indicated 
that the exposure levels are higher than ambient levels, but not by as much. 
 
Expert G chose to discuss causality separately for short-term and long-term exposures 
because “I have more confidence in the short-term than in the long-term.”  Expert G 
thought that the likelihood of a causal relationship between PM and mortality for short-
term exposures fell between 50 and 80 percent, with a most likely value of 70 percent.  
For long-term exposures, he did not feel comfortable providing a range of values because 
“at some point, I think the chronic turns into acute.  I think the acute effects may override 
the chronic if levels are above a certain concentration,” but provided a most likely value 
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of 60 percent.  When asked what evidence he would need to make him 100 percent 
certain, he suggested that we would like to have more controlled exposure studies 
conducted at ambient concentrations, perhaps in sensitive animals, that demonstrated 
effects on mortality.  He used smoking and its impact on heart disease and lung cancer as 
an example of a relationship that was 100 percent likely or causal.  
 
When asked for an overall likelihood of causality for a change in annual average PM 
exposures, Expert G specified a most likely value of 70 percent, based on the “whole 
dataset together.”  He later provided a range of values around this estimate from 60 to 80 
percent reflecting his uncertainty in the relative contribution of short-term and long-term 
exposures to overall mortality.   
 
Expert G’s discussion of the likelihood of a causal relationship was somewhat 
complicated by his belief that the strength of the causal relationship might differ within 
the range of 4-30 µg/m3 and by the sense that the likelihood of a change in mortality 
might differ if one asked about a larger incremental change in PM concentration than 1 
µg/m3. 
 
3.9 Thresholds 
 
Expert G first discussed what evidence he would like to have to determine whether there 
is a threshold in the PM/mortality relationship.  “You can do epidemiological studies, 
which can show an exposure-response relationship at different exposures, and then 
develop a dose-response curve as low as you can go.  And you can look at animal and/or 
human controlled exposure studies to see with specific materials or … CAPs, to look at 
the dose-response there.  So … for the population study, it needs to be a big enough 
group … to be representative of reality … [to include the] hypersensitive and 
hyposensitive [individuals].”  He thought that animal studies could be informative “as to 
sensitivity of different populations to PM in sensitive groups within the population, and 
slopes of dose-response curves, but they probably won’t be able to determine whether in 
reality there is a threshold for human populations exposed to ambient air.” 

On a conceptual basis, Expert G thought that “if there’s some damage that the body is 
always able to repair, the repair mechanisms will come into play to fix things … what’s 
disturbing from a mechanistic standpoint is that no matter how low you go, that there 
doesn’t seem to be the ability to repair whatever is going on, to the extent that it mitigates 
any mortality.”   

When asked if his views on threshold differed for long-term and short-term exposures, 
Expert G thought there could be different thresholds.  He felt there was a greater 
likelihood that there is no threshold for long-term effects than short-term effects “because 
… repeated … sub-clinical damage by PM, which could occur at low concentrations, 
would just build up and be cumulative … [w]hile for short-term exposure, I found it hard 
to believe, say, 2 µg/m3 is going to kill somebody … So, conceptually, the no-threshold 
model makes sense to me for the long-term.  There probably would be a threshold for the 
short-term.” 



   

G-8 

He did not think that thresholds have been detected in epidemiologic studies, for example 
the ACS and Six Cities studies.  “In the tox studies there are thresholds, but … [y]ou 
can’t directly apply the toxicology studies to the epidemiology.”   Expert G did not elect 
to incorporate a threshold into his concentration-response (C-R) function. 

 3.10 Other Influential Factors 
 
Expert G discussed additional sources of uncertainty that were not part of the protocol.  
When asked whether he thought that there was any publication or investigator bias, he 
answered that he thought that some investigators were biased, but he did not think that 
this affected the studies that he relied upon for his quantitative estimates.  Expert G did 
not think there were any other outstanding issues not already covered by the protocol. 
 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert G thought the C-R relationship was linear over the entire range of concentrations 
that were the focus of the study (4-30 µg/m3).  He elected to provide a C-R function that 
was conditional on the existence of a causal relationship.  The elicitation team then 
combined his most likely causal likelihood (70 percent) with the conditional C-R 
function.   

 Expert G began by specifying his maximum.  He specified a value of 1.5 percent based 
on a rough interpolation between the upper confidence intervals on the ACS and Six 
Cities studies, weighted on their respective strengths and weaknesses.  He then specified 
a 95th percentile value of 1.3.  He chose a value relatively close to his maximal value, 
because he assumed that the C-R function was normally distributed and that the max and 
95th percentile would be close together.  Expert G then specified a 50th percentile value of 
1.0 percent based on his view that the Six Cities estimate is biased upward due to 
confounding by co-pollutants and the ACS study was biased low due to effect 
modification of education and race.  Although the issue of exposure misclassification was 
again discussed, Expert G remained unconvinced that the evidence supported a need for 
additional adjustment of the effect estimate. He suggested it be discussed at the post-
elicitation workshop. 

He then had the elicitation team fit the 50th and 95th percentiles to a normal distribution in 
Crystal Ball™ to determine his 5th, 25th, and 75th percentiles.  Expert G did not specify a 
minimum value. This distribution, which is conditional on the assumption of a causal 
relationship, is shown in the first column below.  The second distribution is the 
probabilistic combination of the first with Expert G’s likelihood of a causal relationship. 
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Exhibit 1: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations  

Percentile Percent Change in Mortality 
Elicited Distribution 

Percent Change in Mortality 
Distribution Incorporating 

Causal Likelihood (IEc 
Generated) 

Minimum - 0 
5th 0.70 0 
25th 0.88 0 
50th 1.0 0.90 
75th 1.1 1.1 
95th 1.3 1.3 
Maximum 1.5 1.5 
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Exhibit 2: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 Percent Confidence Intervals for Various Studies to Distributions from Expert G 

 
• = median □ = interquartile range │= 90 percent confidence interval 
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Elicited Distribution 
 

 
 
Distribution Incorporating Causality - Probability Density Function (IEc Generated) 
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Distribution Incorporating Causality - Cumulative Density Function (IEc Generated) 
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U.S. EPA EXPERT ELICITATION STUDY OF THE CONCENTRATION-RESPONSE 
RELATIONSHIP BETWEEN ANNUAL AVERAGE PM2.5 EXPOSURE AND 

MORTALITY 
 

Modification to Expert Judgments 
 

Expert G 
 

 
Date: 7/11/06 
 
 
Section of Protocol Affected (Section Number and/or Title): 
 
Part 4 – Elicitation of Quantitative Judgments 
 
 
 
 
Description of Change (e.g. to a specific percentile, or to a qualitative opinion or 
statement of belief): 
 
The causality factor should be disassociated from the final numbers I gave you. 
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Interview Summary 
Expert H 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.1 Mechanisms for Effects of Exposure to PM2.5 
 
Expert H discussed the biological mechanisms for short-term and long-term exposures 
separately, but he acknowledged that, “they may overlap.”   
 
Long-Term Exposures 
 
He began by discussing causes of death from long-term exposures, indicating that the 
main causes of death were cardiovascular disease, respiratory disease, and lung cancer.   
 
Expert H first discussed possible mechanisms for cardiovascular deaths related to PM.  
He thought that particles could cause systemic inflammation leading to increased arterial 
intima-media thickness (IMT) and atherosclerosis.  He cited a combination of studies to 
support this theory, including an animal study by Sun et al. (2005), an epidemiologic 
study by Kunzli et al. (2005) of PM2.5 and carotid artery IMT, and a study of 
environmental tobacco smoke (ETS) and IMT by Howard et al. (1990).  He noted that 
before the Sun et al (2005) study, “I didn't see a very strong connection … between 
toxicological evidence and cardiovascular long-term mortality because many of the 
toxicological, human studies appeared to be more about acute response.”  Expert H 
mentioned that one complication with the Sun et al. study was that detection of increased 
IMT in mice with high fat diet suggests a major effect modifier and he wasn’t sure the 
ACS or Six Cities studies had really looked at diet (other than using body mass index 
(BMI) as an indicator). 

Expert H also thought that chronic exposures to PM could cause respiratory deaths, “even 
though it’s not a major fraction of [overall] mortality.”  He cited a study by Ghio et al. 
(2000) that examined humans exposed to concentrated particles and found respiratory 
inflammation indicated by increased blood fibrinogen.  He thought that chronic lung 
inflammation could eventually lead to respiratory mortality.  He noted, however, that, 
“respiratory mortality is not … showing up [strongly] in long-term epi studies.”  He 
thought this could be due to the small numbers of deaths attributed to respiratory disease 
or that PM could be related only to short-term respiratory mortality. 

He also thought it was plausible that particles could cause lung cancer although he did 
not think there were specific studies connecting PM2.5 to lung cancer, except perhaps 
Pope et al. (2002).  He drew an analogy to cigarette smoking and lung cancer, indicating 
that it was “conceivable … that combustion-related PM2.5 may be as toxic or even more 
toxic than cigarette smoke.”  However, he also acknowledged that he was uncertain about 
how similar PM2.5 is to cigarette smoke.  He thought that occupational studies have also 
shown positive associations between lung cancer and exposure to diesel exhaust, 
although he was less clear about this. 
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Short-Term Exposures 
 
Expert H thought that short-term exposures to PM were related mostly to cardiovascular 
deaths, specifically with outcomes such as heart failure, myocardial infarction (MI), and 
arrhythmia.  He cited the defibrillator study by Peters et al. (2000), studies linking 
changes in heart rate variability (HRV) to changes in PM (e.g., Gold et al., 2000), and 
studies on increased blood viscosity by Peters et al. (1997).  He thought that the strength 
of these studies was that they use human subjects; however, he thought their limitation 
was that the findings were not always specific to PM2.5.  For example, in the Peters 
(2000) he thought that the strongest association was with NO2 or perhaps black smoke, 
which he still thought was indicative of PM2.5.  Similarly, he thought the Dockery et al. 
(2005) follow-up of that study also showed associations with sulfates, CO and SO2, 
implicating both stationary and traffic-related sources.  He thought the HRV studies were 
“less convincing” than the defibrillator studies because they had less consistent results. 
 
3.2. Conceptual Framework for Mortality Effects of Short-Term and Long-Term 
PM2.5 Exposures 
 
Expert H thought the Künzli diagram was a good conceptualization of the relationship 
between long- and short-term exposures.  He thought that cohort studies would capture 
categories A, B and C but that not all of the short-term effects were captured by the 
cohort studies.  In particular, he thought that, “cohort stud[ies] can miss some of 
[Category] C, and that is the small … portion of the short-term association that [could 
potentially account for] harvesting.”  He considered harvesting to include deaths pushed 
forward by just a few days and that it may be concentration dependent. 
 
Although the notion of harvesting was conceptually appealing, he did not think that there 
was evidence in the literature to support it.  He cited an analysis by Zeger et al. (1999) 
that simulated the potential effect of harvesting on a dataset.  Zeger et al. then analyzed 
actual data and could not demonstrate the harvesting effects he anticipated.  In addition, 
he indicated that papers by Joel Schwartz (2000) found increasing coefficient size with 
longer time window, which “is the opposite of [the] harvesting situation.”   
 
3.3. Role of Epidemiologic Study Design in Characterizing the Total Impacts of 
PM2.5 Exposures on Mortality 
 
Expert H’s views on the types of mortality effects captured using different study designs 
is summarized in the table below. 
 
Study Design Type of Effects Captured (e.g., short-

term, long-term, or both) 
Cohort Studies Long-term and short-term minus harvesting 
Cross-Sectional Studies Long-term, and short-term minus harvesting 

Intervention Studies Short-term and some long-term 

Time-Series Studies  Short-term 
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He thought cross-sectional studies would likely capture similar types of mortality as the 
cohort studies but expressed concerns about their ability to deal with individual level 
confounding. 
 
He stated that time-series and case-crossover studies cover mortality effects of short-term 
exposures only.  However, because he thought the short-term was largely captured by the 
cohort studies, he found the real value of the time-series studies to be their contribution to 
establishing a causal relationship.  He indicated that they have less confounding to deal 
with and demonstrate the temporal relationship between exposure and effect. 
 
When asked about the intervention studies, he thought they captured long-term effects 
but over a shorter period of time than the cohort studies.  He thought of the intervention 
studies as a “special type of time-series study where you are estimating sort of long-term 
trends that usually [are not] estimated in time series [studies],” although he thought they 
had the potential limitation that there may be changes in certain factors that are 
concurrent with the change in air pollution (e.g., in behaviors) that could confound the 
PM/mortality relationship. 
 
3.4. Epidemiologic Evidence for the Impact of Exposures to PM on Mortality 
 
Expert H thought that the following characteristics would be part of an ideal 
epidemiologic study to characterize the PM2.5-mortality relationship in the U.S. 
population: 
 

• Geographically representative of the U.S.; 
• Population that is representative of the general U.S. population with respect to 

race and socioeconomic status (SES); 
• Large sample size; and 
• Exposure assessment/monitor placement appropriate to source types.  “I think … 

[it’s important to] have monitors that can possibly capture several major source 
types.”  

 
When asked to review the epidemiologic studies that have been most informative about 
the percent change in all-cause mortality related to a reduction in annual average ambient 
PM2.5 concentrations, Expert H first discussed the American Cancer Society (ACS) 
cohort study by Pope et al. (2002).  He thought the strengths of this study were the long 
follow-up period, which allowed for a large number of deaths, the use of PM2.5 
monitoring data, large study size, and geographic coverage of the U.S.  He thought the 
main limitation of the study was in the recruitment of subjects and that the population 
was more highly educated than the general U.S. population.  He indicated that the ACS 
cohort had about 12 percent with less than high school education versus 28 percent in Six 
Cities.   
   
He next discussed the Six Cities study (Dockery et al., 1993).  Expert H thought that the 
strengths of this study were that the study authors carefully selected the six cities to 
include a wide range of mean PM exposure levels, that they placed their monitors in 
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central locations and in such a way as to avoid proximity to major point sources.  He also 
thought that, although the limited geographic representation of the study could be seen as 
a limitation, it could also be seen as a strength because it provides “continuous 
geographic coverage of a certain area in the U.S.” and thus  “eliminate[s] factors that can 
actually confound” if they had chosen individual cities from different regions.  He 
thought the Krewski et al. (2000) reanalysis of this paper resolved many of the questions 
surrounding its statistical analysis.   
 
When asked to discuss evidence against a hypothesis of PM related mortality, Expert H 
argued that the debate is more “about good design versus bad design which is different 
from having several [well-designed] studies [with evidence] for and against.”  He briefly 
discussed two papers that he thought were not well-designed, the Adventist Health and 
Smog (AHSMOG) study and the Veterans (VA) study.  He thought the AHSMOG study 
was well designed to look at the population included in that specific cohort (non-smoking 
non-Hispanic white Seventh Day Adventist in California), but not useful for quantifying 
the C-R function for the general U.S. population.  He indicated that the cohort in the 
Veteran's study was too specialized (mild to moderate hypertensives, with a large fraction 
of former and current smokers) to be useful, not just for this elicitation project, but even 
for the general public health research agenda, and in that sense, it was not well designed.   
 
He thought that the information from the intervention studies could be qualitatively 
useful as support for effects responding to a reduction in exposure, but he did not rely on 
them for his quantitative estimates.    
 
3.5 Confounding  
 
Expert H’s review of confounding applied to both the ACS and Six Cities studies.  He 
indicated that in the Krewski et al. (2000) reanalysis of the ACS and Six Cities studies, 
no individual level confounders were found to significantly affect the original 
quantitative estimates.  However, some ecologic or contextual variables did change the 
estimates when included in the models.  In particular, he thought that “population 
change” and spatial auto-correlation could be potential confounders.   
 
He indicated that “population change” occurs because survival times of individuals may 
be more similar in closer distances than those who live farther apart.  This creates spatial 
(positive) autocorrelation.  If this pattern is created by some unmeasured risk factors that 
also coincide with spatial autocorrelation in the PM levels, then confounding may occur.  
However, he thought both the Krewski et al.’s (2000) re-analysis of ACS data and Pope 
et al.’s (2002) extended analysis addressed this issue by fitting spatial smooth functions 
and the results did not change much.  This led him to believe that confounding by this 
factor was small.  He assigned both population change and spatial auto-correlation a 
score of minimal (1) for both the ACS and Six Cities studies because although he thought 
they could be correlated with PM, he could not see how they would be able to cause 
death, and therefore were not true confounders.  Although he also discussed the fact that 
SO2 affected the mortality estimates in the Krewski et al. (2000) analysis, he thought SO2 
was actually a precursor of, and thus a surrogate for PM2.5, rather than a confounder. 
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On a more speculative basis, Expert H also thought that high fat diet and environmental 
tobacco smoke (ETS) could be potential confounders that would lead to an overestimate 
of the PM effect in the ACS study.  He assigned a both a score of minimal (1) given his 
perceived lack of strong evidence.  
 
Expert H also discussed the potential for residual confounding in the Jerrett et al. (2005) 
paper.  He speculated that the Jerrett et al. study might be affected by residual 
confounding because “I see additional uncertainty in the Jerrett et al study, in comparison 
to the Krewski et al. (2000) re-analysis or the Pope et al. (2002).”  He provided the 
following rationale:    
 

(1) The geographic scale in the Jerrett et al study is much smaller than that for the 
nationwide ACS studies, and while this scale has the advantage of examining the 
within-city variation of PM2.5, judging from Figure 1 in the Jerrett et al study, 
there appears to be strong spatial autocorrelation in the PM2.5 data in this locale at 
this scale; 

(2) Jerrett et al noted that in models with only individual covariates and PM2.5, some 
residual spatial autocorrelation was present, but inclusions of ecologic 
(contextual) variables eliminated residual spatial autocorrelation.  To me, this 
suggests that the ecologic variables do have spatial autocorrelation that coincide 
with the spatial autocorrelation in the survival times of the cohort; and 

(3) In the Jerrett et al study (Table 1), the addition of ecologic variables did result in 
reductions of PM2.5 risk estimates (e.g., from 1.17 with individual covariates only 
to 1.11 with ecologic variables).  In contrast, in Krewski et al’s sensitivity 
analysis of nationwide ACS data, the addition of similar ecologic variables did 
not seem to affect PM2.5 risk estimates. 

 
Expert H concluded that, “I cannot think of a major confounder that would influence this 
estimate.  I guess [the] more important question to answer is about effect modifiers.”   
 
3.6 Effect Modification 
 
Expert H thought that the main effect modifier of the PM/mortality relationship in both 
the ACS and Six Cities studies was educational attainment.  He indicated that Krewski et 
al. had examined a number of different variables but education was the only one that 
exhibited strong effect modification.  He indicated that education was probably a 
surrogate for other factors related to healthier lifestyles, such as diet, access to medical 
care, and housing characteristics.   
 
He thought that the Six Cities cohort overrepresented those with less than a high school 
education (leading to an overestimate) and the ACS study underrepresented this group 
(leading to an underestimate) in comparison with the general U.S. population.  He 
assigned a score of 2 for this factor in each of the two studies.   
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Expert H indicated that the size and importance of this adjustment really depended on 
what the real statistics are about educational attainment in the study populations versus 
the U.S. population, as well as the relevant measurement period.  The Six Cities study 
had 28 percent with less than a high school education, whereas the ACS study had 12 
percent.  Expert H found a statistic of 20 percent for the U.S. population from the U.S. 
Census and the elicitation briefing book had a graph from the U.S census bureau showing 
that in 1980, about 32 percent of the population aged 25 and over had less than high 
school education.  By 2003, only 15 percent had less than high school education.   If the 
relevant point in time is the educational level of the cohort at enrollment, then the Six 
Cities study is more representative of the U.S. at that time.  If the U.S. average for 1980 
(or whatever the right comparison time is) is closer to 20 percent, both studies are off but 
in opposite directions.  He also noted that there was about 45 percent with less than a 
high school education in Steubenville versus 12 percent in Topeka raising the possibility 
of confounding rather than effect modification. 
 
He also discussed the possibility of effect modification by SO2.  However he indicated 
that studies by Joel Schwartz (2000) and the National Morbidity, Mortality and Air 
Pollution Study (NMMAPS) examined this issue and did not find supporting evidence.  
In addition, he thought that in the short-term “it’s conceivable that the areas where you 
have certain components of PM2.5, you may see a strong association of PM2.5,” but he did 
not think it would affect the overall effect estimates.                                                         
 
 
3.7. Exposure Issues 
 
Expert H thought that differences between central site concentrations versus individual 
exposures could be an important exposure issue.  He indicated that the ACS cohort had 
been reanalyzed by Jerrett et al. (2005) and had found that in Los Angeles (LA), better 
spatial resolution of exposure lead to increased effect estimates.  However, he thought 
that it was “not straightforward” to interpret the increased effect as being attributable 
solely to the central site versus individual exposure issue because of the potential 
pollutant mix and because these results were specific to one city.  He noted that the as yet 
unpublished Jerrett work in New York found mixed results: no association for all-cause 
mortality and an association as large or larger than the LA study for cardiovascular 
mortality.  Overall, he thought this type of exposure misclassification would lead to an 
underestimation of mortality effects in both the short-term and long-term studies.  
However, given the disparity in the ACS results in the two cities he felt that he could not 
determine by what magnitude the effects might be off.  He did state that the LA study 
might provide an upper limit on the magnitude of the downward bias and that it might be 
an overestimation.  He assigned a score of 1 to 2 to the ACS study for exposure 
misclassification but a score of 1 to the Six Cities study because he thought the 
investigators selected more representative monitoring sites in the latter study. 
 
When asked about the relevant time window of exposure, Expert H expressed the view 
that for cardiovascular deaths, the critical window would be 10 years, and it would be 
longer for cancer.  He thought that since “the ranking of PM levels don’t change much 
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over time across these cities, I don’t think it’s much of a problem.”  He thought it would 
be more of a problem if the critical period is 40 years or so before, but he thought the 
evidence was more consistent with a 10-20 year period. When asked whether the 
intervention studies suggested a shorter critical time window of a few years, he said that 
he did not think so. He thought it was difficult to discern “how much of the intervention 
drop is accumulation of short term process [or] long-term effects.” 
 
He did not think any of the other exposure issues listed in the protocol were influential. 
 
3.8. Causality 
 
In general, Expert H thought a causal inference would be supported by epidemiological 
studies that include testing of all kinds for confounders and other factors.  He would want 
to see strong and consistent associations, not just for mortality, but also for subclinical 
markers like IMT.  He would like to see evidence demonstrating an appropriate temporal 
relationship between exposure and mortality effects as in the intervention studies.  
Ideally, he would like clinical or other studies that demonstrate a plausible biological 
mechanism.  “But I don’t think it’s absolutely necessary.”   
 
He thought the ACS and Six Cities studies, in particular were important evidence of a 
causal relationship between long-term PM2.5 exposures and mortality.   
 
Expert H thought it was easier to think about a causal relationship for short-term 
exposures and mortality than for long-term exposures.  In particular, Expert H felt 
intervention studies provide potential support for a causal relationship for short-term 
exposures and mortality.  He indicated that, “I think it gets more difficult with [the] 
longer period [of time] you try to estimate risk reduction for.”  He also mentioned a study 
by Clancy et al. (2002) that examined changes in mortality in Dublin after a coal ban, and 
a study by Hedley et al. (2002) in Hong Kong.  Although in the Hong Kong study the 
effects appeared to be more related to SO2 than PM, he thought that SO2 might be serving 
as an indicator for something else in the source emissions, in particular metals.  He cited 
a poster by Hedley showing that nickel levels had been reduced along with SO2 and 
inferred that nickel might be the important agent.  He also discussed a laboratory study 
that exposed cells to ambient PM samples in the Utah Valley during the time when area 
steel mills were functioning and found an inflammatory response that was not present for 
particles from the mill closure period (Dye et al., 2001).  Transition metals are believed to 
play a role in the inflammatory response. 
 
He indicated that the studies that he discussed when answering questions in Section 3.1 
regarding biologic mechanisms were also supportive of a causal relationship (Sun et al. 
(2005); Howard et al. (1990); Ghio et al. (2000); and Kunzli et al. (2005).     
 
Expert H specified a range of the likelihood of a causal relationship of 70 – 95 percent 
with a most likely value of 80 percent.  His lower bound was based on “[j]ust the fact that 
there’s no counterpart to intervention studies for the long-term effects.  It’s hard to 
establish direct, convincing proof.”  His upper bound was based on “the results from the 
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sensitivity analysis of the ACS and Six Cities studies [which] alone give me a lot of 
confidence.”  However, in later characterization of his uncertainty in the magnitude of the 
C-R relationship, he did not think that an 80 percent likelihood of a causal relationship 
was consistent with his views that there are no major confounders of the PM/mortality 
relationship in the key epidemiological studies.  He adjusted his likelihood upward to 90 
percent for his most likely value, and changed his range of values to 80 – 95 percent.       
 
3.9 Thresholds 
 
Expert H thought, “[c]onceptually, you can come up with [a] threshold for some … very 
narrowly defined sub-group that [has a] uniform level of frailty [or] sensitivity … [b]ut 
when you are talking about a population that is diverse in terms of susceptibility, effect 
modifying factors, confounding factors, I think you are bound to come up with something 
that is monotonic … I cannot think of any reason why we should see a population 
threshold in this range.”  His views were the same for short-term and long-term 
exposures. 

When asked what types of evidence would be informative for assessing a threshold level, 
Expert H thought that, “it would be easier to find a threshold in toxicological studies, 
only because you can have uniform levels of susceptibility.”  However, he did not think 
that the results of toxicological studies could be used to support a U.S. population 
threshold.  

He did not think that a population threshold was detectable in any of the studies currently 
available. 

Expert H did not opt to include a threshold in his C-R function.  

 3.10 Other Influential Factors 
 
Given his emphasis on the cohort studies, Expert H did not think there were any other 
influential factors within those studies that would change the estimates.  He did mention 
that it would be helpful in the future to examine the factors that are involved in the effect 
modification by education, since it was still somewhat vague.  He indicated that he would 
have been more skeptical about the statistical modeling in the epidemiologic studies if it 
were not for the Health Effects Institute’s extensive sensitivity analysis of the cohort 
studies’ data. 
 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert H thought the C-R relationship was log-linear over the entire range of 
concentrations that were the focus of the study (4-30 µg/m3) based on the statistical 
model used in the ACS and Six Cities studies and because it was consistent with his view 
that there is no threshold. 
 
Expert H based the values for his uncertainty distribution on a subjective weighting of the 
ACS (Pope et al., 2002) and the Six Cities Study (Dockery et al., 1993) and adjustment 
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for exposure misclassification and for differences in educational attainment relative to the 
U.S. population.  He began by specifying his 50th percentile because he first wanted to 
take into account the education and exposure issues in his midpoint before characterizing 
the other percentiles.  He started with an estimate from Pope et al. (2002) of 5.9 percent 
per 10 µg/m3.  He then decided to adjust it upward to account for exposure 
misclassification, which he supported with the Jerrett et al. (2005) ACS LA analysis.  
This study found an effect estimate of 11 percent per 10 µg/m3 for the model including 44 
individual covariates and parsimonious contextual covariates.  However, given that the 
study was conducted in just one city and that he thought there was epidemiological 
evidence suggesting all-cause mortality is higher in LA than, for example, in the 
Midwest, he was reluctant to adjust his basic estimate up by a factor of 2.  He also 
thought that even this model could be overstating the effect because of some residual 
confounding or for spatial representativeness or “spatial correctional factor taking into 
consideration it was LA where educational attainment is not the same as U.S. general.”  
He therefore moved his central estimate up to 7 percent per 10 µg/m3. 
 
Expert H raised an interesting question about the adjustment for effect modification by 
education.  Initially, he thought that educational attainment could be causing the Pope et 
al. estimates to be underestimated.  But, after learning that the U.S. Census bureau7 
reported in 2003 that 15 percent of the U.S. population aged 25 and older had less than a 
high school diploma, a percentage which does not differ drastically from the percentage 
in the ACS cohort (12 percent), Expert H decided not to adjust for this factor.  Therefore, 
his 50th percentile value remained at 7 percent per 10 µg/m3 (0.7 percent per 1 µg/m3). 
 
Expert H then specified his 75th percentile value at 1.3 percent per 1 µg/m3 based on the 
estimate from the original Six Cities study.  When thinking about his 95th percentile 
value, he relied on the estimate from Jerrett et al., 2005 (adjusted for 44 individual 
covariates) of 1.7.  He thought it could be slightly higher and set the value at 2.  He then 
set his maximum at 3 percent to ensure that his distribution would be smooth.      
 
After reviewing his assumptions on causality, and electing to change his most likely 
value for the likelihood of causality from 80 percent to 90 percent as discussed in an 
earlier section, Expert H set his minimum and 5th percentile values at zero and his 25th 
percentile at 0.4 percent per 1 µg/m3.           
 
 

 

 

 

 

                                                 
7 U.S. Census Bureau, Current Population Survey, Annual Social and Economic Supplement, 2003 
(http://www.census.gov/rod/2004pubs/p20-550.pdf). 
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Exhibit 1: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
for Expert H 

Percentile Percent Change in Mortality  
Minimum 0 
5th 0 
25th 0.40 
50th 0.70 
75th 1.3 
95th 2.0 
Maximum 3.0 
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Exhibit 2: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 Percent Confidence Intervals for Various Studies to Distribution from Expert H 
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Expert H Distribution 
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Interview Summary 
Expert I 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.1 Mechanisms for Effects of Exposure to PM2.5 
 
Expert I discussed the biological mechanisms for short-term and long-term exposures 
together because he thought that, “there are … similar mechanisms involved.”  Expert I 
thought that the main cause of death from particulate matter (PM) was cardiovascular 
disease.  He thought the key mechanisms related to this cause of death were oxidative 
stress and inflammation leading to atherosclerosis, changes in autonomic function, and 
other markers of heart disease. 
 
He first discussed oxidative stress and inflammation leading to plaque development and 
atherosclerosis, stating that this mechanism was first brought to light in a study by Seaton 
et al. (1995) that showed “inflammation and blood coagulation relating to the 
accumulation of particles as a potential pathway.”  He thought papers by Pope et al. 
(2004) and Jerrett et al. (2005), although they do not shed light on specific pathways and 
mechanisms, provide supporting evidence for mortality from various cardiovascular 
disease outcomes as a result of long-term exposures.  Additionally, he cited 
epidemiologic studies that give insight into mechanistic pathways, such as Kunzli et al.’s 
(2005) study on atherosclerosis, and animal studies such as Wellenius et al. (2003), 
showing ischemic heart disease in dogs as a result of fine particles, and Sun et al. (2005), 
that found plaque development, inflammation, and mortality in mice.   

He then discussed autonomic function effects.  He indicated that this mechanism was 
supported by studies that have found changes in heart rate variability (HRV) associated 
with PM, such as Pope et al. (1999 & 2000), Gold et al. (2000), Creason et al. (2000), and 
Devlin et al. (2003).  He indicated that, “heart rate variability, the different measures, 
both the time domain and the frequency domain, are good predictors of congestive heart 
failure and sudden death.”  While some have argued that acute changes in HRV are really 
transient effects, he thought a recent study by Schwartz (2005) provided evidence for a 
longer term role; the study essentially looked at HRV in individuals with different 
genotypes that make them more or less susceptible to oxidative stress.  Individuals with 
genotypes more likely to experience oxidative stress had greater changes in effective 
HRV than those who did not. 

Expert I thought that studies examining other markers of heart disease provided evidence 
for a link to air pollution, although they have not been as well-studied.  For instance, he 
cited a paper by Zanobetti et al. (2004) that found blood pressure changes, and a paper by 
Brook et al. (2002) examining arterial vasoconstriction, a study by Schwartz et al. (2005) 
looking at changes in inflammatory markers in the blood such as fibrinogen and white 
blood cells, and the Peters et al. (2000) implantable defibrillator studies. 
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He thought that respiratory deaths from the progression of Chronic Obstructive 
Pulmonary Disease (COPD) and lung cancer were secondary causes of death from PM.  
He indicated that the Six Cities cohort study extended analysis (Laden et al., 2006) did 
not find a separate effect for respiratory deaths.  However, he thought there was some 
evidence for a mechanism by which inhalation of particles could have effects on the 
respiratory system.  He drew an analogy with smoking, which involves higher 
concentrations but over shorter periods of time than air pollution, which is a more 
constant exposure.  He cited studies by Gaudermann et al. (2004) that showed long-term 
effects on lung function in children exposed to PM2.5 and a paper by van Eeden et al. 
(2005) whose results indicated that, “effects on the COPD from long-term exposures 
could also have cardiac effects.”  He indicated that epidemiologic evidence for lung 
cancer as a result of PM is “quite reasonable and robust” specifically citing the American 
Cancer Society (ACS) cohort study (Pope et al., 2002) and the Adventist Health and 
Smog study (AHSMOG) (Abbey et al., 1999).   

Expert I discussed whether these mechanisms were related to long-term exposures, acute 
exposures or both.  He thought that both types of exposure could contribute to mortality, 
noting a parallel with smoking.  He thought that the pathway involving inflammation and 
build-up of atherosclerotic plaque leading to increased risk of death from heart attack was 
likely a long-term process.  However, the evidence of shorter-term exposures on changes 
in HRV and “increased markers of inflammation, like fibrinogen [and] white blood cells 
… [suggests that acute exposures could affect individuals who are] already compromised 
with heart disease, whether the disease is brought on from exposures to air pollution or 
not.”  He thought the development of COPD and lung cancer was related to long-term 
exposures.  He thought the mechanism for PM’s impact on lung cancer was analogous to 
the mechanisms for smoking and lung cancer. 

3.2. Conceptual Framework for Mortality Effects of Short-Term and Long-Term 
PM2.5 Exposures 
 
Expert I thought the Künzli diagram was a good conceptualization of the relationship 
between long- and short-term exposures.  “I’m willing to accept this diagram.  I think it 
describes adequately the possible scenarios.”  He thought that not all of the short-term 
effects were captured by the long-term studies, but was not certain enough of the exact 
amount that he would want to add in additional deaths related to short-term effects to 
those reported in the long-term studies.  He thought it was a small percentage, no more 
than ten percent. 
 
We had a lengthy discussion of the challenges to estimating how many deaths fall into 
different exposure windows, the related years of life lost, and what deaths are ultimately 
captured by various study designs. Expert I suggested these topics would be good ones 
for discussion at the Post-elicitation Workshop. 
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3.3. Role of Epidemiologic Study Design in Characterizing the Total Impacts of 
PM2.5 Exposures on Mortality 
 
Expert I thought that a combination of cohort, cross-sectional, intervention, and short-
term studies looking at distributed lags of various lengths were appropriate for capturing 
the mortality effects of changes in annual average PM2.5 concentrations.  The effects 
captured by each study design are shown in the table below: 

 
Study Design Type of Effects Captured (e.g., short-

term, long-term, or both) 
Cohort Studies Long-term, and potentially some short-term 
Cross-Sectional Studies Long-term, and potentially some short-term 

Intervention Studies Short and Intermediate-term 

Time-Series Studies with Distributed Lag Short (multi-day) and Intermediate-term (days 
to weeks) 

 
Expert I also expressed the opinion that there was need for a better understanding of the 
biological explanation for the different mortality effect sizes observed in short-term, 
intermediate-term (intervention), and long-term exposure studies.  Regarding the 
intervention studies, for example, “they’re telling us that something other than same-day 
exposures or same week exposures seem to be important, but it’s not clear whether it’s 
several months or several years.” 
 
3.4. Epidemiologic Evidence for the Impact of Exposures to PM on Mortality 
 
Expert I thought that the following characteristics would be part of an ideal 
epidemiologic study to characterize the PM2.5-mortality relationship in the U.S. 
population: 
 

• Includes a cohort population that is representative of the national population; 
• PM2.5 measured over the lifetime of the cohort members; 
• Personal monitors (home, workplace, everywhere) in addition to central site 

monitors with which the personal monitors could be related; 
• Measures of fine, coarse, and ultrafine particles, gases, benzenes, and benzo-

pyrenes; 
• Measures several confounding factors such as body mass index (BMI), age, 

gender, race, alcohol, tobacco, smoking histories, occupational exposures, 
socioeconomic status (SES), extreme weather events, diet, psychological 
measures, hormone replacement, and neighborhood effects; 

• Periodic follow-ups including residential histories; and 
• Large samples to allow for stratification on several different factors.  

 
When asked to review the epidemiologic studies that have been most informative about 
the percent change in all-cause mortality related to a reduction in annual average ambient 
PM2.5 concentrations, Expert I discussed the following studies: 
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Study 
(author, 
date) 

Key findings 
 

Strengths  Limitations 

ACS Cohort 
(Pope et al., 
2002 & 2004) 

• Effects on 
cardiopulmonary 
disease and lung cancer 

• Effects for 
cardiovascular disease-
specific subsets (Pope 
et al., 2004) 

• National sample (includes variety 
of particle mixes) 

• Controlled for many confounders 
• Replication by Krewski et al. 

(2000) 
• Large sample size 
• Historical data on pollution 
• Range of exposures 
• Well-established cohort 

• Not representative of the 
general U.S. population, 
with respect to lower-
income, minority, and 
education 

• Gaps in exposure estimates 
• Exposure assessment 

problems 

Jerrett et al., 
2005 

With improved exposure 
metric, found associations 
with cardiopulmonary 
disease and lung cancer 

• Improved exposure metric 
• Careful consideration of spatial 

auto-correlation 
• Less inter-city variation and 

confounding 

• No historical pollution data 
• Possibly not representative 

of national mixes of PM  
• Not representative of the 

general U.S. population 
Laden et al., 
2006 

Found both long-term and 
relatively recent exposures 
to fine particles associated 
with cardiovascular disease 

• Monitors set up for the purpose of 
the study and well-followed 

• Representative population  
• Random population design 
• Longer-term and recent set of data 

on pollution  

• Only included 6 cities  
• Limited geographic 

representation of the U.S. 
• Extrapolation from PM10 to 

PM2.5 

Krewski et al., 
2000  

Replicated original findings 
of the ACS and Six Cities 
studies with extensive 
sensitivity analysis.  Found 
that results were robust. 

• Objectivity in approach and 
analysis 

• Extensive analysis including 
multiple confounders, such as 
smoking and occupation. 

• Potential for multiple 
comparisons (i.e., over 
manipulation of the data) 

AHSMOG 
(Abbey et al., 
1999; 
McDonnell et al., 
2000) 

Generally inconsistent 
effects, often gender-
specific 

• Less confounding from alcohol, 
smoking, and environmental 
tobacco smoke (ETS) 

• Frequent follow-up allows for a 
complete exposure profile 

• McDonnell et al. analysis of this 
cohort had improved exposure 
estimates 

• Very small sample 
• Not representative of the 

general U.S. population 
• Used airport visibility as 

exposure measure 
 
 

Enstrom et al., 
2005 

Effect found in the younger 
portion (43-65 at 
enrollment) of the cohort.  
Found smaller effect 
estimates than other cohort 
studies. 

• Moderate sample size • Potential healthy survivor 
effect 

• Elderly cohort (many 65-99 
at enrollment) 

• Questionable objectivity 
• Potential confounding (ETS, 

smoking) 
European studies 
(Hoek et al., 
2002; Filleul et 
al., 2005) 

Found effects related to 
either traffic or to measured 
pollutants 

• Long-term follow-up • Relatively small sample 
sizes 

• PM mixture potentially 
differs from that in the U.S. 

• Different SES/demographics 
factors than in the U.S. (more 
central city, less suburban) 

• No direct measure of PM2.5  
• Small sample size 
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Study 
(author, 
date) 

Key findings 
 

Strengths  Limitations 

Intervention 
studies (Clancy 
et al., 2002 – 
Dublin; Pope et 
al., 1996 – Utah 
Valley; Hedley 
et al., 2002 - 
Hong Kong)  

Associations between 
relatively short-term 
exposures and mortality.  
Effect estimates higher than 
short-term studies. 

• Large change in exposures, and 
exposure conditions very clear 

• Not capturing all of the 
long-term changes 
(intermediate between short-
term and long-term) 

Veteran’s Cohort 
(Lipfert et al., 
2000 & 2006) 

 • Used population at risk 
(hypertensive) so more power to 
detect associations 

• Population not 
representative of the general 
U.S. population 

• Small sample size 
• Unclear and perhaps 

inappropriate statistical 
analysis 

 

3.5 Confounding  
 
Expert I thought that, based on Krewski’s reanalysis of the ACS and Six Cities studies 
(2000) and the Jerrett et al. (2005) ACS L.A. reanalysis, many of the factors commonly 
thought to be confounders did not substantially affect the estimates.  He thought that 
there were three remaining issues of “particular interest”: 
 

• SES:  Expert I thought that SES could be a marker of a “constellation” of other 
confounders, such as alcohol, diet, occupational exposure, smoking, and exercise.  
He thought that SES could be a proxy for exposure, because those with higher 
SES are not likely to live near a major roadway or other pollution sources.  
“When we do find the effect modification of SES … the SES could be picking up 
pure income [or] health habits, [but] it also could just be modeling exposure.” 

• Pre-Existing Health Status: Expert I thought that conceptually, “people with 
pre-existing health status [e.g., cardiovascular disease] should probably have a 
large effect, because they’re on the pathway.”  He indicated that Krewski et al. 
(2000) had examined this issue and did not find higher effect estimates in people 
with pre-existing health issues.  However, he did point out that those with pre-
existing health problems could be susceptible to short-term exposures, so the 
effects might not be easily captured by the long-term studies.   

• Temporal Trends: Expert I thought that exposure changes over time could 
potentially affect the published estimates, although the implications for the 
mortality estimates are not entirely clear.  On the one hand, one might expect that 
early childhood exposures might be very important.  However, Jerrett’s analysis 
of this issue for the L.A. portion of the ACS cohort, as well as some calculations 
done by Expert I, convinced him that this potential source of error would not 
make a big difference in the effect estimates even under the most extreme 
assumptions.  He indicated that results from Laden et al. (2006) found that the 
previous one or two years of exposure were the most influential for effects.  He 



   

I-6 

was unsure of the disease process that could explain the bigger effects found 
when a more recent exposure period is used.  

 
In addition to those three topics discussed above, Expert I also touched on the question of 
co-pollutants and contextual ecologic variables. 
 

• Co-pollutants: Expert I thought the issue of co-pollutants had been handled 
statistically, though “the explanations have not been developed yet.”  He was 
concerned that it was difficult to measure co-pollutants well in long-term settings 
with central site monitors because they are too localized in terms of exposure.  He 
discussed only SO2 specifically.  He thought that SO2 might be a confounder (but 
representing something other than pure SO2).  That is, he did not think there was a 
plausible biological mechanism linking SO2 and mortality.  His understanding 
was that it was unlikely to get into the deep lung and cause the types of 
inflammation that we discussed as part of the mechanisms for health effects.  He 
said that clinical studies have shown health effects to occur only in asthmatics that 
are exercising while exposed to high levels.  He thought it might be more of an 
effect modifier.  He thought SO2’s role would be a good subject to discuss in the 
Post-elicitation Workshop. 

• Ecologic Variables: Expert I thought that ecologic covariates, or factors outside 
the individual level, such as neighborhood effects or air conditioning use, were 
potential confounders.  However, he thought that the issue of how much to control 
for them remains unclear.  He thought there is a strong likelihood of over-control 
if these factors are correlated with pollutants.  He also discussed the possibility 
that unmeasured spatial variables cause mortality rates to correlate among closely 
spaced cities.  He indicated that Jerrett et al. (2005) found reduced effect 
estimates after controlling for spatial auto-correlation in LA, but that the Pope et 
al., 2002 study found that it did not affect results for the full cohort. 

 
Ultimately, Expert I did not want to assign scores, or indicate the degree of adjustment he 
might make as a result of any of these issues, indicating that he would rely on effect 
estimates from studies that had adjusted or accounted for these factors. 

 
3.6 Effect Modification 
 
Expert I thought that the only variable for which empirical evidence existed for effect 
modification was educational attainment.  He indicated that the effect estimates in the 
ACS study were biased downwards because the cohort population overrepresented highly 
educated people.  He discussed the possibility of effect modification by criteria co-
pollutants.  He did not think that there was evidence for effect modification or interaction 
effects (e.g., SO2 with particles).  The one exception he cited was the Air Pollution and 
Health – A European Approach (APHEA) study of short-term exposures that found 
greater effects for PM in cities with high NO2.  He thought that the NO2 effect has been 
interpreted to be a proxy for traffic and diesel, meaning that “that in those areas where 
particles are dominated by traffic, the effects might be higher.”   
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3.7. Exposure Issues 
 
Expert I discussed three issues: 1) relevant time period of exposure; 2) exposure 
misclassification related to location of monitors (i.e., central site versus averages of 
monitors versus monitors closest to the home); and 3) pollutants measured (e.g., PM10, 
PM2.5, PM1, elemental (EC), organic carbon (OC), metals) 
 
Expert I discussed potential exposure misclassification resulting from monitoring PM2.5 
during time windows that may not be most relevant for the effect.  He thought that if 
childhood exposures were important and past concentrations were higher, risk would be 
overestimated based on monitoring in the years immediately preceding death.  On the 
other hand, he though that if very recent exposures were the critical window and an 
annual average or several year average was used, risks could be underestimated.  He 
thought that this was not a major influence, and thought it was “a neutral bias, slightly 
weighted toward overestimation.”  He then went on to quantify the influence of this 
factor, stating that the effect estimates could be overestimated by about 5 to 10 percent, 
based on information from the Jerrett et al. (2005) paper.   
 
Expert I then discussed the impact of location of PM monitors and techniques for 
estimating local exposures.  Based on the “Hoek [2002] study and the Jerrett [2005] 
study, which used localized measures [of exposure], there’s some reason to believe that 
the estimates from the other studies are too low, based on measurement 
misclassification.”  He thought that this was more of an issue in studies that use few 
monitors for a large geographic area, such as the ACS study.  He thought that this could 
be a potentially large bias, and published effect estimates from the ACS study could be 
underestimated by a factor of two (for example, the ACS estimate is 6 percent but the 
Jerrett study finds 15 percent per 10 µg/m3). 
 
Finally, Expert I discussed the role of the pollutant mix, specifically the potential that we 
are not measuring the causal pollutant.  He was not sure whether this is a big factor in 
estimating the mortality effect.  On one hand, if the mis-measured causal pollutant is 
correlated with PM, he did not think there would be an issue.  He thought that it could be 
an issue if that pollutant’s concentration relative to PM varies by region.  He cited studies 
of short-term exposures by Laden et al. (2003) and Mar et al. (2000 & 2003) that suggest, 
“traffic-related particles seem to be a little worse than oil residual particles.”  He noted 
the difficulty of knowing, for example whether particle constituents (or traffic related 
particles) were a possible explanation for the higher effect estimates measured in the 
Jerrett (2005) study in L.A.  However, he indicated that overall, the evidence on the 
relative toxicity of PM components was limited and he would not feel comfortable 
adjusting his quantitative estimates of the mortality effect related to long-term exposures 
based on this issue.   
   
3.8. Causality 
 
Expert I thought that a causal relationship would be best supported by “replicated epi 
studies that are well designed and carefully done.”  In addition, he said it is useful but not 
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necessary to have good mechanistic hypotheses. He also mentioned temporality, exposure 
response, and plausible quantitative results. 
 
“First of all, based on my own criteria, there has been replication in different forms of the 
original studies[;] the fact that [the ACS and Six Cities studies] were replicated by 
Krewski … is a very powerful evidence for a real effect … And then second, when all the 
different sensitivity analyses were conducted, the findings were basically upheld … 
Then, the existence of the other epi studies that have now been conducted support it.  The 
parallels between [PM-mortality] and the models of smoking and ETS and the fact that 
you see similar types of endpoints, cardiovascular and lung cancer effects, help support 
causality.  And then I think the toxicological studies that have been conducted over the 
last five years (most recently the Sun studies and Lippmann studies) showing the effects 
in mice in terms of plaque development are a help, as well as some of the other previous 
studies.  The Godleski studies and the Ghio studies and the van Eeden studies and the 
Seaton studies and some of these other studies, both in humans and in animals, [support] 
causality.  Even the short-term exposure studies, where there's much less of a likelihood 
of confounding, and where you see effects on mortality and morbidity, [support my belief 
in] causality…  [S]ome of the short-term studies and … the endpoints that they found, 
like MIs and defibrillations and changes in blood plasma and inflammatory markers [are 
also supportive].  [So,] observational studies as well as controlled human studies, and 
animal studies also give me some evidence.  And finally I would say that, regarding my 
last criter[ion], when [one] examines what the quantitative implications are of these 
studies, [they’re] entirely plausible in terms of the magnitude of the effect[s] that are 
predicted.” 
 
Expert I specified a range of the likelihood of a causal relationship of 80 – 100 percent 
with a most likely value of 95 percent.  His lower bound was based on having some 
residual doubt.  “You have these monitors, and who knows what those are representing?  
And you've got all sorts of competing risk factors and nothing is ever fully measured, and 
you've got people commuting all over the county and who knows what they're exposed 
to?  And you get different penetration rates.  And you get tons of pollution driving in 
your car, and in your bus.  And you get people taking all sorts of medications or not … I 
factor all that in and how high could be my doubt?  I could say as high as  … 20 percent.”   
Expert I’s upper bound was based on the strength of the evidence such as cohort studies, 
and the addition of more recent toxicological studies (e.g., Sun et al., 2005 study in 
mice), and epidemiologic studies providing evidence on mechanisms (e.g., studies of 
IMT (Kunzli et al., 2005), genetic predisposition to oxidative stress, myocardial 
infarctions (MI’s), and work by van Eeden and Seaton).    
 
3.9 Thresholds 
 
Conceptually, Expert I thought “that [al]though individuals can have thresholds, for such 
a huge distribution of individuals and such heterogeneity across individuals, it's unlikely 
at the population level to have a particular threshold.”  The types of studies he thought 
would be most informative about the quantitative level of a threshold included a 
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combination of epidemiological studies, clinical studies of markers of inflammation, 
studies of disease with long-term follow-up, and long-term primate studies. 

However, Expert I thought “epi evidence … from both the mortality studies and 
morbidity studies and lung function studies, failed to show any kind of threshold or even 
non-linearity in most of the cases.  So I think the scientific [evidence] at this point does 
not suggest any kind of threshold concentration.”  Further, he noted that there has been a 
simulation study in Risk Analysis by Brauer et al. (2002) with short-term exposures 
showing that if there is significant exposure measurement error, thresholds would be 
difficult to detect, even if one existed.  However, he did think that there was the 
possibility of non-linearity at the low end of the concentration range because limited data 
exists for the C-R function at concentrations below 8-10 µg/m3 and the uncertainty 
bounds are wider.  He concluded that his best estimate was that the C-R function shape 
was linear based on the existing evidence and did not elect to incorporate a threshold into 
his quantitative response.   

 3.10 Other Influential Factors 
 
Expert I did not think there were any other outstanding sources of uncertainty not already 
covered by the protocol.  He did not think that publication bias was an issue because all 
of the existing cohorts are well-known and followed.  He also thought that the statistical 
modeling used in published studies is “appropriate.”  He indicated that the use of Cox 
proportional hazard models for survival analysis was “well established theoretically and 
empirically.”  He noted that Krewski’s re-analysis evaluated other statistical models and 
found the results to be similar. 
 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert I thought the C-R relationship was log-linear over the entire range of 
concentrations that were the focus of the study (4-30 µg/m3) based on the current 
evidence.  He indicated that, “those who have done specific statistical tests, chi-square 
tests … for linearity, seem to be able to rule out non-linearity.”   
 
Expert I felt the most comfortable basing his C-R function distribution on empirical 
estimates from the literature.  He indicated that rather than attempt to adjust for specific 
factors (e.g., confounding, effect modification, exposure issues), his approach to 
incorporating uncertainty would be by weighting different studies whose estimates reflect 
different conditions or approaches about which he is uncertain.  He selected three 
estimates and their associated standard errors and assigned each one a subjective weight.8  
The elicitation team then combined the estimates in Crystal Ball™ using a Monte Carlo 
simulation, according to the assigned weights.  The trial values from the Monte Carlo run 
were then fit to a Beta distribution, which was ranked the most highly by Crystal Ball™ 
based on the Anderson-Darling goodness-of-fit test.  The elicitation team then combined 
the Beta distribution with Expert I’s estimate for the likelihood of a causal relationship.     

                                                 
8 The estimates and standard errors from the three studies were each fit to a normal distribution. 
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For his first modeling approach, Expert I chose the first estimate from Pope et al., 2002 
(β (SE) - 0.0583 (0.02157)) because it has a large sample size and the cities includes are 
geographically representative of the US.  However, he thought the population was not 
representative of the entire U.S. because of oversampling of highly educated people and 
therefore, the estimates were biased downward.  The second estimate chosen by Expert I 
was from the ACS L.A. reanalysis by Jerrett et al., 2005, in  (0.14 (0.0574)) based on the 
model using principal components analysis for the ecological covariates.  He chose this 
study because it has “better modeling of exposure, less potential inter-city-related 
confounding, regional confounding.”  He thought the limitations of this study were that it 
only included the “L.A. basin, so the pollution mix could be different.  The people could 
be different.  Smaller sample size.”  His final estimate was taken from Six Cities 
extended reanalysis (Laden et al., 2006 (Table 3, Model 1: 0.1484 (0.0417)).  
“Advantages: biggest one is the monitor placement and the city size that's used.  The city 
sizes are small, so the monitors are probably most representative.  And the sample is 
more random and representative of those areas.  Third, it's been replicated by Krewski.  
The downsides are … small sample [size that only includes the] East Coast  [and the] 
Midwest.”   
 
Expert I based his maximum value on adding two standard deviations to the mean effect 
estimates from the Laden et al., 2006 study, arguing that it would be “hard to believe” it 
could be higher. 
 
Expert I ran through the combination of these three studies with three different weighting 
schemes.  The first run included equal weights for each study.  For the second run, he 
placed a weight of 0.25 on the Pope et al., 2002 estimate and a weight of 0.375 on both 
the Jerrett et al., 2005 and the Laden et al., 2006 estimates.  His final run included an 
estimate from the Pope et al., 2002 study adjusted for educational attainment as an 
alternative to the original Pope estimate; this run also assigned equal weights to each 
study.  After examining the resulting distributions from each run, Expert I ultimately 
decided to use the results from the second run, which did not weight Pope et al., 2002 as 
highly as the other two studies, for the following two reasons:  “One is that the 
measurement error might be a little bit more [in the Pope et al., 2002 study] … And then 
two, because of the [lack of] national representation.”   
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Exhibit 1: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
for Expert I 

Percentile Percent Change in Mortality 
Elicited Distribution** 

Percent Change in Mortality 
Distribution Incorporating 

Causal Likelihood (IEc 
Generated) 

Minimum 0 0 
5th 0.30 0 
25th 0.80  0.70  
50th 1.2 1.2  
75th 1.6 1.6 
95th 2.2 2.2 
Maximum 2.3 2.3 
** Parameters of fitted beta distribution: α = 2.9, β= 3.7, min = -0.16, max = 3.0  
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Exhibit 2: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 Percent Confidence Intervals for Various Studies to Distributions from Expert I 

 
• = median □ = interquartile range │= 90 percent confidence interval 
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Elicited Distribution 
 

 
 
Distribution Incorporating Causality - Probability Density Function (IEc Generated) 
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Distribution Incorporating Causality - Cumulative Density Function (IEc Generated) 
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U.S. EPA EXPERT ELICITATION STUDY OF THE CONCENTRATION-RESPONSE 
RELATIONSHIP BETWEEN ANNUAL AVERAGE PM2.5 EXPOSURE AND 

MORTALITY 
 

Modification to Expert Judgments 
 

Expert I 
 

 
Date: 7/7/06 
 
 
Section of Protocol Affected (Section Number and/or Title): 
 
Part 4 – Elicitation of Quantitative Judgments 
 
Description of Change (e.g. to a specific percentile, or to a qualitative opinion or 
statement of belief): 
 

1. Expert I chose to use Run 3 of the meta-analysis for his final distribution, rather 
than Run 2.  This entailed using estimates for the beta (slope) and standard error, 
from Pope et al., 2002 that he adjusted upward for educational attainment.  He 
then applied equal weights to the three studies used in the meta-analysis (Pope et 
al., 2002; Jerrett et al., 2005; and Laden et al., 2006). 

 
2. Expert I decided to fit the weighted average data to a normal distribution, rather 

than a beta distribution, as in the original interview.   
 

3. Expert I selected a minimum value of 0.2 based on the lower 95 percent 
confidence limit on the original Pope et al., 2002 all-cause mortality effect 
estimate for the average of the two exposure periods (1979-83 & 1999-2000). 

 
Rationale for Change: 
 

1. He thought that first adjusting the Pope et al. upwards for education and then 
weighing the three studies equally was a better approach then weighting the 
original Pope estimate lower than the other two studies.  He also wanted to clarify 
that although the Jerrett et al. study is a subset of the ACS study, the exposure 
assessment was so different than the original study, that he considered it to be an 
independent analysis.  Therefore, he chose to weight it equally along with the 
other two studies. 

 
2. His rationale was that the weighted average data fit to the normal distribution was 

almost equally as good (the normal distribution was the second most highly 
ranked distribution in terms of fit according to the Anderson-Darling test), the 
values of his final uncertainty distribution differed very little from those resulting 
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from the fit of the beta distribution, and that the normal distribution was more 
intuitive and straightforward to explain. 

 
3. He selected this minimum value based on the lower 95 percent confidence 

interval bound of the Pope et al. (2002) all-cause estimate for the average of the 
two exposure periods (1979-83 & 1999-2000). 
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Interview Summary 
Expert J 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.1 Mechanisms for Effects of Exposure to PM2.5 
 
Relying on a schematic diagram, Expert J outlined the general pathophysiologic 
mechanisms and pathways that he thought could explain the mortality effects of PM2.5 
exposure.  In order to be plausible, Expert J noted, mechanisms should be consistent with 
what is observed in the epidemiologic studies (respiratory and cardiovascular mortality 
for short-term exposures and cardiovascular and to a lesser extent, respiratory mortality, 
in the studies of long-term exposures).  He also thought the mechanisms should explain 
the findings of morbidity studies (primarily respiratory and hospital admissions 
associated with short-term exposures).  His views have been shaped particularly by the 
emergence over the last six years of numerous studies from different disciplines that 
seem to converge on this set of pathways.  Expert J chose to discuss mechanisms for 
short-term and long-term exposures together.  “I think that it's hard to talk about [short-
term and long-term exposures] individually.  There's no question that some of the 
pathophysiologic links are different whether you're talking short-term exposure versus 
long-term exposure.  But there's a lot of it that's very much the same.” 
 
The primary health effects that Expert J thought might be linked by the same 
pathophysiologic mechanisms included chronic obstructive pulmonary disease (COPD) 
and ischemic heart disease.  He discussed data showing both acute and chronic impacts 
on lung function (Harvard 24-city study (Raizenne et al., 1996), Adventist Health and 
Smog (AHSMOG) study, Children’s Health Study (Gaudermann et al., 2004)).  In 
particular, he thought there was “substantial evidence that long-term exposure to air 
pollution increases the progression of chronic obstructive pulmonary disease…[and] that 
short-term elevated exposure exacerbates existing COPD.  [T]here is also substantial 
literature, more recently, that suggests that the existence of COPD substantially increases 
[the] risk of heart disease and complications related to heart disease, especially … 
ischemic heart disease and death.”  He thought the mechanism for exacerbation of COPD 
was likely to involve pulmonary inflammation. 
 
The second key hypothesis for the impact of PM on mortality that Expert J discussed was 
that “long-term, repeated exposure to fine particulate matter may help initiate and 
accelerate the progression of atherosclerosis and that short-term elevated PM exposures 
may also contribute to the acute thrombotic complications of atherosclerosis.”  He noted 
that this hypothesis is not independent of the COPD hypothesis, but rather that the 
process begins in the lung with pulmonary inflammation leading to systemic 
inflammation and oxidative stress that contribute to development of atherosclerosis, 
plaque instability, and increasing vulnerability to ischemic events.  He cited Godleski et 
al (2004), Brook et al. (2004), Kunzli’s atherosclerosis work in LA (2005), Sun et al.’s 
(2005) work at New York University (NYU) in mice, and work done in Hogg’s lab work 
looking at bone marrow responses (van Eeden et al., 2001 & 2002; Terashima et al., 
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1997; Mukae et al., 2000 & 2001; Fujii et al., 2002; Goto et al., 2004) and in 
hyperlipidemic rabbits (Suwa et al., 2002) as some of the evidence supporting this 
hypothesis.   
 
Expert J thought that another, related set of intermediate effects on the vascular system 
that several studies have associated with exposures to PM contribute to the risk of 
ischemic events (i.e., endothelial dysfunction, vasoconstriction, and hypertension).  He 
noted that the PM findings are “at least qualitatively consistent with” the smoking 
literature in which one sees that “smoking accelerates COPD ... increases respiratory 
symptoms, [reduces] lung function.  You see systemic inflammation, … oxidative stress, 
… ischemic heart disease, … ischemic cerebral vascular disease, … changes in the 
vasculature.” 
 
He discussed an additional hypothesis for cardiovascular mortality related to impacts on 
the autonomic nervous system, which has arisen out of the work of Annette Peters et al. 
and others.  He noted there are now about a dozen studies showing a relatively robust 
association between short-term exposures to PM (mostly PM2.5 but sometimes PM10) and 
short-term changes in heart rate variability (HRV).  However, Expert J indicated that it is 
not yet clear to him how these observations relate to the other pathophysiologic 
mechanisms discussed above. 
 
Two other hypotheses for which he found the evidence to be less compelling included 
those involving systemic translocation of ultrafines, altered immune responses, and 
hypoxemia (resulting from declines in lung function and oxygen saturation of the blood). 
 
3.2. Conceptual Framework for Mortality Effects of Short-Term and Long-Term 
PM2.5 Exposures 
 
While he thought Kunzli’s paper on this topic was an important contribution, he thought 
that, in practice, allocation of health effects would be difficult to achieve using this 
framework.  He preferred to view the effects of short- and long-term exposures in terms 
of time scale.  Referring to the work by Schwartz et al. (2000 & 2001), and others (Zeger 
et al., 1999; Kelsall et al., 1999; Dominici et al., 2003) exploring the question of 
harvesting, he thought that the evidence suggests “that daily time-series studies utilizing 
only short-term time, day to day variability, are observing more than just the phenomena 
of short-term harvesting or mortality displacement.  These results suggest the daily time-
series studies capture only a small amount of the overall health effect of long-term-
related exposure to particulate air pollution.  Because the adverse health effects of 
particulate air pollution are dependent on both exposure concentrations and the length of 
exposure, it's fully expected that long-term repeated exposures would have larger, more 
persistent cumulative effects than short-term transient exposures.”  He thought that the 
data are consistent with the view that long-term chronic exposure contributes to the 
progression of disease and that short-term exposure exacerbates underlying disease and 
contributes to short-term changes in mortality.  He argued that the exposure-response 
relationships are essentially linear and that if the right time scale and weighting were 
known, one could estimate the long-term effects exposure from the time-series studies; if 
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it were not linear, and the effects of short-term exposures only occurred above some 
level, the results of two types of studies would be additive.   He concluded that the time-
series studies are only giving a “glimpse” of the total health effects of PM and that the 
long-term cohort studies are capturing nearly all of the effects.   
 
3.3. Role of Epidemiologic Study Design in Characterizing the Total Impacts of 
PM2.5 Exposures on Mortality 
 
The following table summarizes the discussion of the types of impacts that Expert J 
thought were observable using different study designs: 
 
Study Design Type of Exposure Effects Captured 

Prospective Cohort • Long-term 
• Cumulative short-term 

Intervention Studies 
(Intermediate term length) 
 

• Cumulative short-term 
• Intermediate long-term 
• Misses effects of long-term exposures 

Ecological Studies  
 

• Cumulative short-term 
• Long-term  

Multi-city, intermediate time-series studies 
(distributed lag, unconstrained distributed 
lag ~ 5-40 days) 

• Cumulative short-term up to length of 
lag 

• Not capturing effects of long-term 
exposure to chronic disease and 
mortality 

 
Overall, he thought the American Cancer Society (ACS) cohort studies (Pope et al., 1995, 
2002 & 2004; Krewski et al., 2000; Jerrett et al., 2005) and the Six Cities cohort studies 
(Dockery et al., 1993; Krewski et al., 2000; Laden et al., 2006) were the most suitable for 
estimating the total health impacts of a 1 µg/m3 reduction in annual average PM2.5.  He 
thought they were likely to capture both the mortality effects of long-term exposures but 
also the cumulative effects of short-term exposures (distributed lag). 
 
He thought the intervention studies (Pope et al., 1996 (“Utah Valley” study); Clancy et 
al., 2002 (“Dublin” study)) were primarily indicative of the effects of cumulative short-
term exposures and intermediate exposures.  He did not think they captured the full 
effects of chronic exposure (contribution to progression of chronic disease and mortality). 
 
Expert J thought that the “ecological studies” (Lave and Seskin; Thurston and Ozkaynak; 
Evans, Tosteson and Kinney) have come to represent much the same findings as the 
prospective cohort studies.  Their results were dismissed early on because they did not 
control for smoking or other individual level risk factors (several contextual ecologic 
variables were examined).  He thought it was ironic that subsequent studies including 
Krewski’s re-analysis of the ACS study (2000) and the ACS LA analysis Jerrett et al. 
(2005) have suggested that these individual factors are not likely to have had a huge 
impact on the results.   
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3.4. Epidemiologic Evidence for the Impact of Exposures to PM2.5 on Mortality 
 
Expert J noted that none of the studies currently published really represent the ideal study 
one would want for predicting the impact of PM2.5 on U.S. mortality.  He thought an ideal 
study should have a larger sample size, include more cities, include cities where air 
pollution differs across communities and over time, and should collect information on 
clinical and subclinical measures of disease (e.g., atherosclerosis) or markers of 
inflammation.  He thought the ideal study would also have not just ambient monitors but 
monitors in homes, in workplaces, and some personal monitoring. 
 
He noted that the Six Cites study had many characteristics of an ideal study in that, unlike 
most epidemiologic studies that tend to be opportunistic, it was specifically designed to 
look at the relationship between air pollution exposure and health.  He indicated that it 
included cities with a range of exposures, and with the extended follow-up, a few of the 
cities have shown substantial reductions in exposure.  He felt that the study’s limitations 
are relatively small study size, and that it did not anticipate the link with cardiovascular 
disease, and therefore did not include some of the key clinical and subclinical measures 
of disease. 
 
Expert J thought that the ACS study and its reanalysis, although more opportunistic that 
the Six Cities study, had the strong advantage of representing a much larger number 
cities, included a large population, and collected very good information on individual risk 
factors.  The ACS study, like the Six Cities study, has also undergone extensive re-
analysis and has been corroborated by independent investigators. 
 
When asked which studies he would most like to focus on during our later discussions of 
confounding, effect modification, and exposure issues, he indicated that he would most 
like to rely on the ACS study and then the Six Cities studies.  For the ACS study, he 
included the original study its reanalysis (Pope et al., 1995; Krewski et al., 2000) its 
extended analysis (Pope et al., 2002), the analysis of cardiovascular disease (Pope et al., 
2004) as well as the analysis of spatial resolution of exposure in LA by Jerrett et al. 
(2005).  For the Six Cities study, he relied upon the original analysis and reanalysis 
(Dockery et al., 1993; Krewski et al. 2000) and the extended analysis (Laden et al., 
2006). 
 
Expert J discussed more briefly a second set of studies: the AHSMOG cohort studies 
(Abbey et al., 1991 & 1999 and Chen et al., 2005); Hoek et al.’s work in the Netherlands 
looking at proximity to roadways (2002); the Finklestein et al. (2004) study in Ontario, 
Canada also looking at proximity to roadways and finding similar results as Hoek et al.; 
and the series of work staring with Woodruff (1997) looking at infant mortality.  We then 
discussed the series of papers based on the Veterans Administration (VA) cohort by 
Lipfert et al., 2000, 2003 & 2006.  He expressed concern about the lack of robustness of 
the results, the convoluted nature of the analysis and the write-up, and their publication in 
journals where they are less likely to have received peer review by epidemiologists.  He 
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had not had an opportunity to evaluate fully the Enstrom et al. (2005) study in California, 
but expressed some concerns similar to those he had for the VA studies. 
 
3.5 Confounding 
 
We conducted a lengthy discussion of confounding in both time-series analyses and in 
cohort studies.  Expert J generally felt that most confounders had been adequately 
controlled in the studies upon-which he would rely for his quantitative estimates of the 
PM mortality effect.   
 
For time-series studies, the potential confounder that remained a concern for Expert J was 
the issue of co-pollutants (SO2, NO2, CO, and ozone).  Expert J thought that co-pollutants 
are positively correlated with PM and inadequately controlling for co-pollutants will tend 
to overstate the importance of PM alone.  However, he argued that if one is using PM as 
an indicator for air pollution in general, excluding the other co-pollutants might 
underestimate the effects of air pollution.  He wanted to clarify that this argument about 
co-pollutants can only be carefully evaluated in the context of large, multi-city studies 
like the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) or Air 
Pollution and Health – A European Approach (APHEA).  He thought analyses of co-
pollutant effects in single cities (e.g., by Moolgavkar et al.) are problematic given that 
individual cities are likely to differ in the relative levels of co-pollutants.  In general, he 
argued that the literature suggests that PM is driving more of the mortality effect seen 
than the co-pollutants. 
 
For the cohort studies, Expert J discussed smoking, occupation, weather, diet, 
socioeconomic variables, contextual variables, and differential migration.  He thought 
smoking had been well-controlled in the ACS and Six Cities studies, and the AHSMOG 
study included only non-smokers.  He thought occupation, weather, and diet were well-
controlled for in both ACS and Six Cities studies (score = 1).  Neither study controlled 
for exercise directly, though each assumed body mass index (BMI) was at least a partial 
measure for exercise.   
 
He had some concern about general socioeconomic status (SES) variables and the fact 
that the Jerrett et al. (2005) study found lower effect estimates when it controlled for 
more contextual SES variables.  He thought it was unclear whether these analyses were 
evidence of residual confounding or over-fitting the models. “Probably some of both.” 
 
Expert J thought that of all the confounders discussed, co-pollutants and differential 
migration had been addressed the least in his key studies.  He thought co-pollutants had 
the potential to be a major factor (score ≈ 3) in overstating the impact of PM alone (as 
discussed above).  Differential migration he thought had the potential to be a major 
negative confounder (score ≈ 3) if for example, sick people are more likely to move to 
the cleaner areas of the country (e.g., to Arizona) whereas the healthy people do not 
move. 
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3.6 Effect Modification 
 
After an extensive discussion, Expert J summarized his views on effect modification by 
saying that the only effect modifier that has emerged from the analysis and re-analysis of 
the Six Cities and ACS studies has been educational attainment. He thought the relative 
risks associated with PM were clearly higher in the population with less than high school 
education.  He explained that educational attainment per se is not a risk factor but that it 
correlates with various socioeconomic variables that may more directly bear on exposure 
or health outcomes (e.g., housing, income, access to medical care, or use of air 
conditioning). 
 
Expert J thought that the higher level of educational attainment in the ACS cohort relative 
to the U.S. population could lead to the conclusion that the overall ACS risk estimate 
likely understates the true relative risks in the broader U.S. population.  He cited a 
presentation at the Pre-elicitation Workshop in which the Pope et al., 2002 effect 
estimates were adjusted to account for the distribution of educational attainment in the 
U.S. population.  Depending on the data used for the adjustment, the original estimates 
rose by about 30-50 percent or from “six, seven percent per 10 µg/m3 estimate to about a 
nine or 10.” 
 
Expert J also discussed whether race is another potential effect modifier given that 
neither the Six Cities or the ACS study were representative of the racial mix in the U.S.  
On the one hand, he noted that work by Joel Schwartz’s group has shown a role for 
genetic differences in response to particulate pollution and changes in HRV.  On the 
other hand, he did not think that the epidemiologic evidence in studies in populations 
around the world suggests that different nationalities respond differently to air pollution.  
He did not think sufficient evidence exists to speculate whether and/or how differences in 
racial composition of the cohorts might affect the generalizability of the results to the US 
population. 
 
3.7 Exposure Issues 
 
Expert J raised five potential issues with regard to how exposure is measured in the 
cohort studies: 
• Central versus personal exposure monitors; 
• Spatial resolution of exposure monitoring; 
• Migration of the population; 
• Co-pollutants; and 
• Temporal changes in exposure. 
 
Expert J thought that the first three issues were most important as each could contribute 
to a substantial underestimate of the PM mortality effect (score = 3).  “To the extent that 
variability in central site monitoring only gives you part of the variability in exposure, we 
have substantial exposure measurement error that likely is biasing our effect estimates 
downward.”  He thought a related issue is the degree of spatial resolution of the exposure 
measurements.  He referred to an expert’s presentation at the Pre-elicitation Workshop, 
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which suggested that finer spatial resolution of the Six Cities study relative to the ACS 
study might account in part for the higher relative risks observed in that study.  He noted 
that the spatial resolution in the L.A. sub-cohort of the ACS study (Jerrett et al., 2005) 
was finer than in the original ACS study and found results that are more comparable to 
the Six Cities study.  He pointed out, however, that it is difficult to know what the “right” 
spatial resolution should be in these studies; if it’s too big, there is exposure measurement 
error, but it it’s too small, there may be exposure measurement error because individuals 
are not staying in the vicinity of the monitor to which they’re assigned (e.g., they go to 
work elsewhere).   He also thought migration of individuals in the cohort over the course 
of the study could lead to exposure error and underestimation of the “true” relative risk.   
He indicated that if, on average, some individuals in high pollution areas move to lower 
pollution areas and some move from low to high pollution areas, it is another form of 
random exposure misclassification.  He noted another expert’s presentation on 
differential migration patterns according to socioeconomic status at the Pre-elicitation 
Workshop, which offers a “reasonable hypothesis” for the differences in relative risk 
estimates by education.  This expert’s analysis of U.S. census data indicated that 
individuals with higher SES were more likely to move outside than within Metropolitan 
Statistical Areas (MSAs) as compared with individuals with lower SES, the implication 
being that their exposure might be subject to more misclassification.  Expert J did not 
think the data were available to know how to estimate the magnitude of this issue’s 
effects on relative risks. 
 
In his discussion of co-pollutants, Expert J raised the same issues as he had under 
confounding.  In essence, the question is whether one is focusing on a pure PM effect or 
an air pollution effect for which PM is an indicator.   Expert J argued that a weakness of 
the elicitation question is that it is hard to know which of these two is truly the focus of 
the study.  He noted that, in reality, the evidence does not allow us to understand what 
happens if PM changes without any other change in co-pollutants or components; when 
the sources are reduced, the mix of co-pollutants changes.   If one wants the marginal 
effect of PM alone, which is the actual focus of the elicitation, the PM effect estimates in 
the studies could be moderate over-estimates (score = 2) of the true PM effect for the US 
population.   
 
Finally, we raised the question of the time course of historical exposures that were 
relevant to the health effects observed in the follow-up period.  Expert J did not think this 
issue would matter much in terms of hypothesis testing, though it might matter some in 
the magnitude of the relative risks.  Theoretically, “if the time scale [for long-term 
effects] is on the order of decades and we use more recent PM2.5 measures where the rank 
ordering is the same, but the [concentrations] are lower, then we are overestimating the 
effects.”  However, he believed that the health effects observed in the cohort studies are 
primarily due to exposures over the previous 5 to 10 years (based on looking at the 
progressive size of mortality effects over studies looking at the past few days (time 
series), to few years (intervention studies), to eight years (the Six Cities) where the 
largest effects are seen).  He therefore did not think he would want to adjust his estimates 
to account for this issue (score = 1). 
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3.8 Causality 
 
Expert J described how the development of the body of evidence over the past several 
years has convinced him that it is highly likely that the relationship between exposure to 
fine particles and mortality is a causal one.  The literature has gone from the early, naïve 
epidemiological studies to a variety of study designs showing a consistent and coherent 
relationship between particulate air pollution and respiratory and cardiovascular disease 
as measured by various health endpoints (“changes in lung function, changes in cardiac 
autonomic function, changes in hospitalization for both respiratory and cardiovascular 
disease, changes in mortality for respiratory hospitalization and mortality”). He indicated 
that there are no studies showing associations with health endpoints that one would 
consider a priori to be unrelated.  In addition, he stated that there are “semi-controlled 
[studies] … looking for sub-clinical measures of disease” such as measures of pulmonary 
and systemic inflammation, C-reactive protein, and cardiac autonomic function.   He 
thought that the toxicological studies by Hogg et al and the NYU group looking at such 
things as “changes in inflammation, changes in bone marrow responses, changes in 
atherosclerosis, etcetera” lend further credibility to the whole hypothesis.  Ultimately, 
Expert J noted that he is not able to define an alternative explanation for the phenomena 
observed across these studies; nor has he heard one put forward by others.  For example, 
the early criticism of publication or analytical bias in the individual time series studies 
has been muted by the large multi-city studies (e.g., NMMAPS, APHEA). 
 
Expert J did not draw a distinction between short-term and long-term exposures and 
mortality.  While he expressed the view that, at some level, it has been more difficult to 
imagine that a short-term exposures to PM could lead to a cardiac death than to believe 
that chronic exposure to PM could, like exposure to environmental tobacco smoke (ETS), 
lead to an increased risk of cardiovascular disease.  However, he felt that the empirical 
evidence is too strong to ignore. 
 
Expert J’s quantitative characterizations of the causal relationship reflect his inherent 
conceptual difficulty with this question.  In the initial discussions on causality, Expert J 
expressed the view that the overall likelihood of a causal relationship between annual 
average PM2.5 exposures and mortality ranged between 75 percent and 98 percent with a 
best estimate of 90-95 percent.  However, in the development of his quantitative 
estimates, Expert J revised these views, ultimately stating that he could not argue for a 5 
percent likelihood of a non-causal relationship.  He then provided an estimate of no more 
than a 1 percent likelihood of a non-causal relationship (i.e., his final estimate of the 
percent likelihood of a causal relationship was 99 percent). 
 
3.9 Thresholds 
 
Expert J’s views on thresholds were driven by the empirical data.  While conceptually he 
might have difficulty believing that low levels of PM2.5 could cause damage, he stated 
that the empirical evidence does not point to an observable threshold for the effects of 
either short-term or long-term exposures.  Piecing together the literature on smoking, 
occupational exposures to particulates (e.g., coke ovens), ETS, and ambient air pollution, 
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there’s a trend that “basically looks linear.”  He thought the epidemiological studies with 
sufficient power to make statistical inferences about population thresholds (e.g., multi-
city time series studies, the ACS study) have not been able to detect them even with using 
more sophisticated statistical techniques (e.g., meta-smoothing in multi-city time series 
studies, Krewski et al., 2000 reanalysis of the ACS study).  He indicated that these 
studies consistently support a generally linear relationship.  He did not think that 
toxicological studies or clinical studies were useful for finding population thresholds 
because they lack sufficient statistical power and are conducted at the high end of, or well 
beyond the range of environmentally relevant exposures. 
 
3.10   Other Influential Factors 
 
Expert J discussed additional sources of uncertainty that were not raised as part of the 
protocol.  He expressed concern about whether the PM index most commonly used in the 
literature (PM2.5) is the best measure in terms of both understanding potential health 
comes and directing regulatory efforts.  For example, he expressed the opinion that if 
there are characteristics of combustion or non-combustion related PM more 
toxicologically relevant, and PM is not a good index for them, we may be 
underestimating the real effects of exposure.  He thought that an example of this was with 
historical measurements of PM10 or total suspended particles (TSP).  “When we were 
using PM10, we were underestimating the effect estimates, especially in those studies 
where PM10 was not highly correlated with PM2.5 … and with TSP, there [were] no 
effects.”  Furthermore, he thought we might be regulating the wrong sources.   
 
Expert J also discussed the fundamental issues raised by the 2002 National Research 
Council (NRC) study about application of probability models that assume random 
behavior or sampling to observational data in epidemiologic studies and whether the 
standard error is therefore an appropriate expression of uncertainty.   He noted that 
analysts are aware that this approach is not “exactly right” but that in the “real world, the 
actual data never matches the ideal.”  He argued that none of the people who do these 
studies “thinks that any one of the studies precisely defines not only the point estimate 
[or] the uncertainty around that estimate.” 
 
He also expressed a lingering concern about scientific and human fallibility and that the 
current scientific consensus might eventually be proven wrong.  
 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert J thought that the concentration-response (C-R) function was log-linear and 
consistent over the entire range of annual average PM2.5 concentrations that were the 
focus of the study (4-30 µg/m3). 

As discussed in Section 3.8, Expert J ultimately chose to provide a C-R function that 
directly incorporated his assumptions about the likelihood of a causal relationship. 
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Expert J specified his maximum, minimum, 5th, 50th, and 95th percentiles and then used 
the Weibull distribution in Crystal Ball™ to generate the interquartile range (25th and 75th 
percentiles). 

Expert J placed his minimum at zero in order to be consistent with his views that the 
likelihood of a causal relationship was less than 100 percent.  He loosely based his 
estimate of the 5th percentile on published estimates from time-series studies with 
distributed lags (meta-analyses from Levy et al., 2000; Steib et al., 2002; Anderson et al., 
2005; Ostro et al., 2005; Schwartz et al., 1996 (Six cities), Klemm et al., 2000; Burnett et 
al., 2003) He thought NMMAPS value (0.04 percent per µg/m3) represented somewhat of 
an outlier in this group and more of a minimum value.    

For his 95th percentile value, he first discussed results from the Hoek et al. (2002) work in 
the Netherlands which, though based on measurements of black smoke, suggested effects 
on the order of 3 percent per µg/m3 which he thought was on the high end.  He next 
considered results from the Six Cities cohort studies and the Jerrett et al. (2005) paper 
(1.7 per µg/m3) and observed that one standard deviation or so above the primary 
estimates lead to values of roughly 2-2.5 percent.  The maximum value (3 percent) was 
based on estimates from Hoek et al., (2002) as well as unpublished findings from the 
Women’s Health Initiative study. 

His 50th percentile was initially based on adjusting the ACS cohort estimate (0.62 percent 
per µg/m3 from Pope et al., 2002 (average of exposure periods, all-cause mortality)) 
upward to account for exposure misclassification due to central site monitoring and 
migration, and effect modification by education and also giving consideration to the 
Harvard Six Cities and ACS-L.A. studies.  He then down-weighted that estimate to take 
into account some of the more negative studies (AHSMOG, VA, Enstrom).  When 
elicitors pointed out that his estimate was only slightly higher than that in the ACS, he 
indicated that he was relying on the fact that the ACS study was larger than the other 
published studies. 

Exhibit 1: Subjective Estimate of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 

Percentile Percent Change in Mortality 
Minimum 0 
5th 0.15 
25th 0.53 
50th 0.90 
75th 1.3 
95th 2.0 
Maximum 3.0 
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Exhibit 2: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 Percent Confidence Intervals for Various Studies to Distribution from Expert J 

 

• = median □ = interquartile range │= 90 percent confidence intervals  
* Note that this estimate is for a 1 µg/m3 increase in black smoke for cardiopulmonary mortality. 
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Expert J Distribution 
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Interview Summary 
Expert K 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.1 Mechanisms for Effects of Exposure to PM2.5 
 
Expert K discussed the biological mechanisms for short-term and long-term exposures 
separately. “I think the mechanisms probably have some relationship between acute and 
chronic.  But [since] we’re talking about mortality, then I think there are some 
differences.”  He began with a discussion about short-term mechanisms. 
 
Short-Term Exposures 
 
Expert K thought that short-term mortality from PM is caused by “an exacerbation … of 
an underlying disease process.”   
 
He discussed cardiovascular mortality, specifying two plausible underlying mechanisms 
for acute events: arrhythmias and endothelial dysfunction.  He discussed studies looking 
at PM concentrations and ventricular arrhythmias in patients with defibrillators (Peters et 
al., 2000; Dockery et al., 2005).  He thought that this could be related to effects on the 
autonomic nervous system but “how that happens exactly I don’t think we know at this 
point.”  He thought another plausible mechanism for cardiovascular death was 
endothelial dysfunction.  He cited a study by Brooks et al. from Michigan (2002) that 
measured brachial artery diameter and found that this vessel constricted following 
exposure to ozone and particles.  He thought that “[i]f it happens in a peripheral or a 
central artery, there’s some evidence that these kinds of things can happen in coronary 
arteries as well.”  He thought that this “vasoconstriction or absence of normal dilation” in 
an individual with significant vascular disease is a possible explanatory mechanism for an 
acute event.  Expert K thought that the “attractive basic science mechanism right now” 
for these responses is that particles could induce inflammation, which could stimulate 
production of reactive oxygen species (ROS). He indicated that in vitro studies have 
shown production of ROS with cellular exposure to PM (Nel et al., 2001).  The ROS 
could trigger a series of events in someone with underlying endothelial dysfunction, or in 
the case of arrhythmias, could an effect on the autonomic nervous system.  
 
Expert K indicated that it was conceivable that respiratory mortality may be related to 
particles if one argued that particles cause inflammation in the lung, resulting in broncho-
constriction and possibly mortality.  However, he had less confidence in this mechanism, 
pointing out that asthmatics, although they could have particle-induced exacerbations of 
their disease, do not usually die from asthma. 
 
Expert K discussed the limitations and/or gaps in the mechanistic literature.  His major 
concern was about exposure particularly in epidemiological studies, which he thought 
were uncertain because they are measures of ambient, rather than personal exposures.  He 
thought it was possible that those with defibrillators could be spending their time indoors, 
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for example, and would not be exposed to ambient pollution.  He thought the in vitro 
studies that provide evidence on the “more basic science or the cell biology question, the 
production of reactive oxygen species” could not be directly extrapolated to humans.  He 
indicated that although the exposures are more controlled, these studies rely on isolated 
cell systems whereas “the way most things happen in biology is that … there’s a signal 
from one cell to the next … [This gap] creates great uncertainty.”   
 
When asked about data suggesting C-reactive proteins (CRP) or other factors as a 
markers of inflammation related to air pollution exposures, he explained that CRP levels 
are non-specific; they may be elevated in response to an infection, to chronic artery 
disease, or to other chronic inflammatory diseases like lupus.  Similarly, there is “some 
very interesting data showing that when you breathe ultrafine particles and you don't 
vasodilate, it affects your nitric oxide production [Shah et al., submitted for publication].  
Nitric oxide can certainly be related to reactive oxygen products.  But it isn't a specific 
marker.”  
 
Long-Term Exposures 
 
Expert K indicated that he thought the mortality effects from PM are “largely cardiac” 
although he expressed uncertainty about whether there was a true independent chronic 
effect of long-term exposure and of acute exposures, or whether the long-term effects 
published were more the result of acute exacerbation of existing chronic disease.  He 
cited the Sun et al. (2005) study looking at the impact of six-month exposures to 
concentrated ambient particles (CAPs) in mice in which the authors found evidence for 
the “development of vascular response and atherosclerosis.”  While he thought this study 
had the advantage of controlled exposure and a genetically modified mouse model, he 
also thought it still raised questions.  “Is it something specific about the particles or … 
are there lots of other things that would just do this because of [the animals’] genetic 
susceptibility? … [I]f we gave [them] salt every day or something else, would we see 
plaque formation just because most any inflammatory event might initiate this kind of 
change?”  He thought the Kunzli et al. (2005) epidemiologic study of intima-media 
thickness in carotid arteries, as a measure of atherosclerosis progression, was intriguing 
but that exposure uncertainties limit its usefulness.   
 
He thought the series of studies by Godleski et al. looking at myocardial infarction (MI) 
in animals with underlying chronic disease after exposure to particles were indicative that 
“in fact you’d need the chronic disease to lead on to the acute.”  Expert K thought Devlin 
et al.’s study in Baltimore that found acute changes in heart rate variability (HRV) and 
some arrhythmia in an elderly population exposed to CAPs provided evidence of “the 
potential that particles would put you at risk, [but] is it acute or chronic? I don’t know.” 
 
Expert K also discussed possible evidence for the effect of long-term exposures on 
respiratory mortality.  He cited a study by Diaz-Sanchez et al. (1999) that he felt provided 
some evidence not just for exacerbation but possibly development of asthma. In this 
study, the investigators showed IgE production, a marker of allergy/immunological 
response, following nasal exposures to diesel; the response was enhanced with joint 
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exposure to ragweed and diesel.  He thought Gauderman’s paper in the New England 
Journal of Medicine on the effect of air pollution on lung function were not specific to 
particles but indicated a NO2 effect as well. 
 
When asked about lung cancer, Expert I answered that he did not think there was a strong 
link with particle exposures.  He thought the signal from smoking is so strong, and self-
reporting on smoking histories are so often inaccurate (i.e., self identification as a non-
smoker is unreliable) that he thought associations found in cohort studies that did not 
involve a formal medical history taking could be the result of residual confounding by 
smoking.   He noted, for example that the ACS study relied on a questionnaire filled out 
at one point in time (1982). 
 
3.2. Conceptual Framework for Mortality Effects of Short-term and Long-Term 
PM2.5 Exposures 
 
Expert K thought the Künzli diagram was a good conceptualization of the relationship 
between long- and short-term exposures.  “I don’t know if it’s valid or not, but it’s a good 
way to say, if indeed short-term or long-term or perhaps both can affect mortality, how 
can we envision that that can happen?  I think this is a very reasonable sort of framework 
for it.”   
 
3.3. Role of Epidemiologic Study Design in Characterizing the Total Impacts of 
PM2.5 Exposures on Mortality 
 
Expert K thought that cohort, time-series, and intervention studies each provided 
somewhat different information about the potential mortality effects of changes in annual 
average PM2.5 concentrations, as indicated in the table below: 

Study Design Type of Mortality Effects Captured (e.g., 
short-term, long-term, or both) 

Cohort Studies Long-term 
Time-Series Studies  Short-term 

Intervention/ “Accountability” Studies Short-term,  
Long-term, if studied long enough 

 
Expert K thought the intervention studies were certainly capturing effects of short-term 
reductions in PM2.5 on both morbidity and mortality and that they offered the hope of 
understanding the effects of long-term reductions.  However, he would want to see 
longer-term follow-up, use of clear markers of cardiac disease (e.g., cardiac 
catheterization) and comparison to a community without the same intervention. 
 
3.4. Epidemiologic Evidence for the Impact of Exposures to PM on Mortality 
 
Expert K thought that the following characteristics would be part of an ideal 
epidemiologic study to characterize the PM2.5-mortality relationship in the U.S. 
population: 
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• Good exposure data documenting the link between ambient exposures and the 
specific outcome; 

• Prospective study design (similar to the Six Cities); 
• An intervention in exposure; 
• Good characterization of underlying cause of death (e.g., details on myocardial 

infarction or ventricular arrhythmia, not just cardiac arrest); and 
• Broad geographic coverage of the U.S. 

 
When asked to review the epidemiologic studies that have been most informative about 
the percent change in all-cause mortality related to a reduction in annual average ambient 
PM2.5 concentrations, Expert K mentioned the American Cancer Society (ACS) study, the 
Six Cities study, the Clancy et al. (2002) study in Dublin, and the Jerrett et al. studies in 
Los Angeles (L.A.) and New York.  He felt the Six Cities study was strengthened by 
being specifically designed to test the hypothesis of a relationship between air pollution 
levels and health, although he would have liked to have seen more personal monitoring.  
Among the analyses of the Six Cities studies, he focused on the original study (Dockery 
et al., 1993) and its reanalysis by Krewski et al. (2000).  He was not as familiar with the 
Laden et al. (2006) follow-up to the Six Cities study, but felt that it found similar results 
as the original and reanalysis. 
 
He preferred the prospective design to what he characterized as “data mining,” which he 
defined as the use of large data sets to look retrospectively for associations.  He expressed 
a general discomfort with the fact that investigators often find associations with PM and 
several outcomes.  “Every time I see an association between breathing and an adverse 
outcome [e.g., reproduction, central nervous system, birth outcomes], it makes me a little 
uncomfortable.  I could be wrong, but I worry that it’s in the way the data are analyzed, 
and that there are so many unknowns in terms of the actual exposures.  And yet every 
time the analysis is done, it shows an effect.”   In general, he thought it would be 
beneficial if the clinical endpoints of these studies were more fully understood by the 
investigators.   
 
He acknowledged that his concern about the role of the statistical analysis in somehow 
generating the associations primarily applied to time-series studies.  He thought the 
Krewski re-analysis of the Six Cities and ACS studies was very credible. 
 
He thought the Dublin intervention study (Clancy et al., 2002) was important because of 
the potential advantages of intervention studies discussed previously. 
 
He thought the Jerrett et al. analyses of the ACS data in L.A. and New York were 
intriguing because they had “a better handle on the exposure.” However, he wasn’t sure 
what the implications of the improved exposure were given that the two studies appeared 
to find very different relationships.   
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3.5 Confounding  
 
In his discussion of confounding, Expert K focused on the ACS and Six Cities studies. 
He initially first discussed several factors that he thought could still be potential 
confounders of the mortality effect (smoking, socioeconomic status, pre-existing health 
status, indoor air exposures, co-pollutants, and diet).  He ultimately reasoned that 
smoking, co-pollutants, and diet were the most important of these for each study and 
assigned them scores according to the table below.   
 
Study Potential 

Confounder 
Direction of impact Score 

Smoking Overestimate 1-2 
Diet Overestimate 1 
Co-pollutants Uncertain 2 

Pope et al., 2002 

Indoor Air Exposures Uncertain 2 
Smoking Overestimate 1 
Diet Overestimate 1 

Dockery et al., 1993 

Co-pollutant Uncertain 1 
 
Expert K first discussed smoking.  He acknowledged that the ACS study had a variable 
for smoking in the model but thought that there could be some residual confounding (see 
discussion under mechanisms) that could lead to inflation of the effect estimate (score of 
1 or 2, smaller than the effect of co-pollutants).   
 
He also thought that cardiovascular mortality from PM could be overestimated due to 
confounding by diet; he thought poverty, smoking, poor diet are probably highly 
correlated.  He indicated that the effects of diet on the estimation of the PM/mortality 
relationship are likely to be a major focus of future research. 
 
Expert K raised co-pollutants as an issue of concern.  “You have a very large population 
and there you could have fairly different exposures in terms of the co-pollutants.”   He 
discussed the Pope et al. (2002) and the Krewski et al. (2000) reanalysis, which indicated 
that SO2 was the only co-pollutant that could account for a lot of the PM2.5 effect, but 
ultimately Expert K did not think there was a sound biological explanation for an 
independent SO2 role in mortality at ambient concentrations.  Expert K then indicated 
that he did not think that the National Morbidity, Mortality, and Air Pollution Study 
(NMMAPS) had not eliminated the possible role of co-pollutants.  He particularly 
thought that ozone has not been ruled out as a factor.  In summarizing his views, Expert 
K indicated that the issue of co-pollutants is not straightforward.  He thought there are 
recent data relating elevated ozone levels to increased mortality rates.  But more 
importantly, there may be unregulated co-pollutants that are neither regulated nor 
measured which could important confounders.  He thought that these unmeasured co-
pollutants could have a moderate effect (score = 2) on the mortality effect estimate for the 
ACS study estimates.   
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Finally, he thought differential exposures in indoor air across study areas could cause the 
effect estimates to be confounded. He was uncertain about either the direction or the 
magnitude of the effect since indoor air was not monitored in either the ACS or Six Cities 
study.  However, he argued that it was more likely to be an issue in the ACS study 
because it spanned a broader geographic area than the Six Cities study. 
 
Expert K thought the Six Cities study could be affected in a similar way by the 
confounders discussed for the ACS study.  He thought that this study controlled for 
smoking and diet a little bit better than the ACS study because they interviewed the 
cohort participants rather than just had them fill out questionnaires, but still thought that 
there could be some residual confounding.  He did not think indoor air affected the Six 
Cities results because he did not think there was as much potential for differential 
exposures across the cities given their geographic distribution largely in the East. 

 
3.6 Effect Modification 
 
Expert K discussed three issues that he thought could be effect modifiers in specific 
studies: educational attainment, co-pollutants, and weather (as it affects prevalence of 
seasonal viruses and building effects). 
 
Expert K thought that the ACS study results could be modified by educational attainment, 
since the ACS cohort was a more highly educated population than the general U.S. 
population.  He thought this differential in educational attainment could cause the 
mortality effects to be underestimated and, given the Krewski analysis, assigned it a score 
of 2.   
 
Expert K thought that differences in the co-pollutant/component mix in the Six Cities 
study relative to the rest of the country could result in potential effect modification of 
their results.  Specifically, he thought that the SO2 and acid particles could be higher in 
the six cities selected for the study than in the rest of the U.S., but thought that the ozone 
levels could be lower.  Therefore, he was uncertain of the direction of bias, and assigned 
it a score of 2.  
 
He thought differences in viral epidemics (e.g., adeno-viruses (not influenza)) could lead 
to an overestimate because of “certain kind[s] of winter and seasonal viruses which may 
be different in this temperate zone that in the southern temperate zone ... It might be a 
problem when you’re extrapolating outside of those cities.”   
 
He also thought that temperature could be an effect modifier, but was uncertain of the 
direction.  “And weather … the ability of outdoor air to penetrate indoors, depending on 
the amount of insulation and how tight your windows are and so on.  I don't know if we're 
stretching or those are real issues, but there are differences that exist.” 
 
3.7. Exposure Issues 
 
Expert K thought a major exposure issue in both the ACS and Six Cities studies was 
central site versus individual exposures.  “Is there any confidence that what we say we’re 
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monitoring is actually what people are exposed to? ... The other exposure issue … that’s 
covered in this is going to be … where you live [with respect to a roadside].”  He 
discussed Jerrett et al. work with the ACS data that attempted to improve spatial 
resolution of exposure.  He indicated that the L.A. analysis (2005) seemed to show that 
improved exposure measurement leads to higher effect estimates.  However, the analysis 
in New York (unpublished) did not find the same relationship.  He did not necessarily 
think that the New York results refuted the L.A. results, because of city-specific 
characteristics such as the existence of tall vertical buildings that could cause differences 
in the exposures.  He thought that exposure misclassification was probably more of a 
problem in the ACS study, and assigned it a score of 2 to 3.  He thought the Six Cities 
study had better exposure measurement and placement of central site monitors, and 
assigned a score of 2.  There was further discussion of the statistical arguments about the 
influence of exposure misclassification on effect estimates.  He was uncertain about the 
direction of influence central site versus individual monitors might have on the effect 
estimates.  
 
3.8. Causality 
 
Expert K expressed the view that “causality doesn’t simply arrive from statistical 
correlations.”  He indicated that there are several time-series and cohort studies that 
“suggest or indicate an association between PM concentrations and … mortality,” but he 
thought of them as associations rather than evidence for causality.  He thought that there 
are several mechanistic explanations for a PM/mortality effect, but he did not feel that 
there was a single, well-established pathway.  “Reactive oxygen species, as we talked 
about this morning, [is] a nice model.  There are some very elegant in vitro work that 
show these kinds of effects.  There are whole animal studies [where] one can find lots of 
different mediators, lots of different electrophysiological responses, inflammation.  But I 
don't think we have a clear understanding of a mechanism that goes from exposure to 
whatever it is in the ambient air to an effect that we want to establish as mortality or 
certainly morbidity.  I think those are the two … major reasons that I'm still not certain 
about a causal relationship.” 

He thought that there were some differences in causality between short-term and long-
term exposures, in that he thought the evidence was stronger for short-term.  He cited the 
defibrillator studies indicating that if these studies had personal exposures measurements 
so that, “if I knew that the people who develop the arrhythmia, that they were the people 
that we actually knew that their exposure went up, not at a central site … that to me 
would get very close to establishing causality.”  As for the long-term studies, he found 
the kind of questionnaires and correlations not as powerful, particularly in the ACS study, 
for establishing a causal link.  Furthermore, the exposure issues (discussed in Section 3.7) 
also undermined his belief in a causal relationship.  He indicated that, “I don’t know that 
there is a clear model that’s going to get us there on the long-term studies until we 
actually are able to more carefully define the exposure.”  

Expert K estimated the likelihood of a causal relationship between PM and mortality to 
be about 20 percent.  His overall estimate the range was rooted in his low confidence in 
the completeness of the existing science.  In terms of cardiovascular mortality, he felt 
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there was uncertainty in both the link between exposure to particles and atherosclerotic 
plaque and in the progression from that stage to death.  He observed that, “the only 
observations that really tie the long-term exposure with the plaque are the NYU studies.”  
Although he thought these studies represent “an initially powerful set of studies,” he 
thought that there were problems with extrapolating from studies performed on mice 
genetically altered to be at high risk for atherosclerosis to humans.  In particular, he did 
not think that it was possible to tell yet whether it was just the particles or whether there 
were a number of other factors that could equally well trigger atherosclerosis in this 
sensitive mouse model.   
 
He thought the likelihood of a causal relationship could be as high as 50 percent.   To be 
more convinced, he would want a study to find similar results using a more normal 
animal model. 
 
After quantifying his uncertainty in the C-R function, Expert K revised his estimates for 
the likelihood of a causal relationship.  He thought that his original estimate of 20 percent 
was too low.  He then specified a range of 20 to 50 percent likelihood with a most likely 
value of 35 percent. 
 
3.9 Thresholds 
 
Expert K thought that it is possible to make a conceptual argument that a population 
threshold exists.  He drew an analogy with smoking, indicating that among heavy 
smokers, only a proportion of them gets lung cancer or demonstrates an accelerated 
decline in lung function.  “I think that the idea that somehow there’s no level that 
biologically is safe just doesn’t fit with toxicology, where in fact we usually think about 
the dose making the toxicity of the material, and normal host defenses, normal responses, 
I think that there is going to be a level below which the population is fine.”   
 
When asked about what types of studies would be appropriate for determining values for 
a potential population threshold, Expert K answered that short-term studies with personal 
exposure monitoring data and clear outcome (e.g., arrhythmia) that could be associated 
with mortality would be helpful.  He also thought that an animal model that did not use 
animals that were genetically altered to be highly susceptible to disease and that used 
exposures that were progressively closer to ambient levels would be necessary.  
However, he thought the likelihood that such a model would find no threshold would be 
small. 
 
He did not think that a population threshold was detectable in the currently available 
epidemiologic studies.  He indicated that in some of the cohort studies showed greater 
uncertainty in the shape of the C-R function at lower levels, which could be indicative of 
a threshold. 
 
Expert K chose to incorporate a threshold into his C-R function.  He indicated that he was 
50 percent sure that a threshold existed.  If there were a threshold, he thought that there 
was an 80 percent chance that it falls between 0 and 5, and a 20 percent chance that it 
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falls between >5 and 10.  The elicitation team took this information and created a 
probabilistic distribution in Crystal Ball™ with 50 percent of the weight at zero, 40 
percent of the weight between >0 and 5, and 10 percent of the weight between >5 and 10. 
 
3.10 Other Influential Factors 
 
Expert K discussed additional sources of uncertainty that were not part of the protocol.  
Expert K indicated that he was unsure if publication bias existed, but noted that there 
were a large number of studies published with positive results on this topic (primarily 
time-series studies).  In addition, Expert K expressed the view that the fact that 
investigators are finding associations with PM and “different, totally unrelated outcomes” 
such as reproductive outcomes, effects on fertility, central nervous system, stroke, and 
Alzheimer’s disease made him uncomfortable.  He thought that there was a possibility 
that, “there is a systematic problem that results in these kinds of associations.” 
 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert K chose to characterize his C-R function within the specified range of annual 
average PM2.5 concentrations (4-30 µg/m3) in a piece-wise linear fashion.  He specified 
one set of numbers that applied to concentrations of 4-16 µg/m3 (hereafter, “Range 1”), 
and another set that applied to concentrations of >16-30 µg/m3 (hereafter, “Range 2”).  
He chose the split point, 16 µg/m3, because it was at about the mid-point of the range. 

Expert K elected to provide his initial distributions conditional on the existence of a 
causal relationship and on being above a threshold.  The elicitation team then combined 
his conditional distributions with his percent likelihood of causality specified in Section 
3.8 and his probability distribution for a threshold specified in Section 3.9.  In order to 
create a single distribution (hereafter, “Example Applied Distribution”) representing the 
incorporation of all these concepts, the elicitation team probabilistically combined the 
distributions for threshold, causal likelihood, and concentration response with a 
distribution of population-weighted annual average PM2.5 concentrations in the U.S. from 
EPA’s BenMap model using Monte Carlo simulation.  

Expert K began by specifying the percentiles for the slope of Range 2.  He indicated that 
he put more weight on the ACS study than the Six Cities study because it was more 
geographically representative.  He thought that the maximum value would be 1.5, slightly 
above the mortality estimates for the original Six Cities study.  In order to specify his 
median, he indicated that he would start with an estimate of 0.6 from the ACS study and 
1.25 for the Six Cities. We discussed again his view that smoking at diet might not have 
been fully controlled for in both studies and his uncertainty about the role of co-
pollutants.  He chose to weight the ACS study roughly twice as much as the Six Cities 
study and arrived at a median of 0.7.  He then selected a 5th percentile of 0.1 after 
considering a range of confidence intervals from the cohort studies.  He then had the 
elicitation team fit a normal distribution to his estimated 5th and 50th percentile values.  
The resulting 25th percentile value was 0.45, his 75th was 0.95, and his 95th percentile was 
1.3.   
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He then specified the percentiles for Range 1, which overall he thought should reflect his 
view that at “these lower levels, there should be less effect for a small change.”  He 
provided a theoretical maximum of 0.8.  He specified a 5th percentile of 0.1 and a 50th of 
0.4.  The elicitation team again fit a normal distribution to the 5th and 50th percentile 
values.  His resulting 25th percentile was 0.28, his 75th was 0.52, and his 95th was 0.7. 

Viewing his distribution with causality incorporated prompted further discussion of his 
assumption about the likelihood of causality.  He reconsidered his views thinking his 
initial estimate of 20 percent was perhaps an “overreaction.”  He still thought he couldn’t 
place more than 50 percent likelihood of a causal relationship but decided to change his 
most likely estimate from 20 percent to 35 percent, with a range of 20-50 percent. 

Exhibit 1: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
for Range 1 (4 – 16 µg/m3) 

Percentile Percent Change in 
Mortality  

Elicited Distribution 

Percent Change in 
Mortality  

Distribution 
Incorporating Causal 

Likelihood (IEc 
Generated) 

Percent Change 
in Mortality 
Distribution 

Incorporating 
Causal 

Likelihood and 
Threshold (IEc 

Generated) 
Minimum - 0 0 
5th 0.10 0 0 
25th 0.28 0 0 
50th 0.40 0 0 
75th 0.52 0.29 0.28 
95th 0.70 0.59 0.58 
Maximum 0.80 0.80 0.80 
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Exhibit 2: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
for Range 2 (>16 – 30 µg/m3) 

Percentile Percent Change in 
Mortality  

Elicited Distribution 

Percent Change in 
Mortality  

Distribution 
Incorporating Causal 

Likelihood (IEc 
Generated) 

Percent Change 
in Mortality 
Distribution 

Incorporating 
Causal 

Likelihood and 
Threshold (IEc 

Generated) 
Minimum - 0 0 
5th 0.10 0 0 
25th 0.45 0 0 
50th 0.70 0 0 
75th 0.95 0.48 0.48 
95th 1.3 1.1 1.1 
Maximum 1.5 1.5 1.5 
 

Exhibit 3: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
After Incorporating Causality and Threshold and Applying the C-R functions to the 
Population-Weighted Annual Average PM2.5 Concentration Distribution in the U.S. 
from BenMap - Example Applied Distribution (IEc Generated)  

 

Percentile Percent Change in Mortality  
Minimum 0 
5th 0 
25th 0 
50th 0 
75th 0.29 
95th 0.63 
Maximum 1.5 
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Exhibit 4: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 Percent Confidence Intervals for Various Studies to Distributions from Expert K 

 
* = Distribution incorporating causality and applying the C-R functions from Ranges 1 and 2 to a 2002 population-weighted annual average PM2.5 concentration 
distribution in the U.S. from BenMap. 
• = median □ = interquartile range │= 90 percent confidence interval 
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Elicited Distribution – Range 1 
 

 
 
Elicited Distribution – Range 2 
 

 
 
 
 



   

K-14 

Range 1 Incorporating Causality - Probability Density Function  (PDF) (IEc Generated) 
 

 
 
Range 1 Incorporating Causality - Cumulative Density Function (CDF) (IEc Generated) 
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Range 2 Incorporating Causality – PDF (IEc Generated) 
 

 
 
Range 2 Incorporating Causality – CDF (IEc Generated) 
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Range 1 Incorporating Causality and Threshold – PDF (IEc Generated) 
 

 
 
Range 1 Incorporating Causality and Threshold – CDF (IEc Generated) 
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Range 2 Incorporating Causality and Threshold – PDF (IEc Generated) 
 

 
 
Range 2 Incorporating Causality and Threshold – CDF (IEc Generated) 
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Example Applied Distribution – PDF (IEc Generated) 
 

 
 
Example Applied Distribution – CDF (IEc Generated) 
 

 
 



   

K-19 

U.S. EPA EXPERT ELICITATION STUDY OF THE CONCENTRATION-RESPONSE 
RELATIONSHIP BETWEEN ANNUAL AVERAGE PM2.5 EXPOSURE AND 

MORTALITY 
 

Modification to Expert Judgments 
 

Expert K 
 

 
Date: 7/10/06 
 
 
Section of Protocol Affected (Section Number and/or Title): 
 
 
3.8 Causality 
 
 
 
Description of Change (e.g. to a specific percentile, or to a qualitative opinion or 
statement of belief): 
 
Expert K changed his range of values for the likelihood of a causal relationship.  The new 
range is from 5 to 50 percent.  The most likely value of 35 percent remains the same. 
 
Rationale for Change: 
 
My confidence (or lack thereof) in the data showing that reductions in PM2.5 levels 
translate into changes in mortality (e.g., annual averages of 4-30 µg/m3) goes back to my 
concerns about both exposure measurements (errors) as well as all of the other 
unaccounted for variables that are changing in the environment. Unfortunately, your 
question is somewhat confusing to me: Are you asking about a 1 µg/m3 reduction or as 
much as a 25 µg/m3 reduction.  I would certainly have more confidence that a large 
reduction could impact mortality and virtually no confidence that we could meaningfully 
measure the impact of a reduction of 1 µg/m3.  It would simply be an exercise in more 
modeling and extrapolation at such low level reductions.  My estimates will certainly 
increase for larger decreases in PM2.5 levels.  
 



   

 

 
 
 
 
 
 
 

Expert L  
Interview Summary



   

L-1 

Interview Summary 
Expert L 

 
PART 3. CONDITIONING STEP: PRELIMINARY QUESTIONS 
 
3.1 Mechanisms for Effects of Exposure to PM2.5 
 
Expert L discussed the biological mechanisms for short-term and long-term exposures 
separately because he thought, “different mechanisms come into play.”  He preferred to 
begin with a discussion of the mechanisms of mortality related to short-term exposures 
because “long-term effects are to some extent also the result of a mechanism that 
happened in the acute domain.” 
 
Short-Term Exposures 
 
Expert L’s views on causes of death related to fine particle exposure were informed by a 
broad overview of the scientific evidence, which he thought provides support to the idea 
that “seemingly different pathways are interconnected.”  He thought smoking is a good 
parallel for fine particles because both are complex exposures; particles are “markers for 
something for that is much more complex than just the mass … [which makes it] very 
possible to assume that [a] whole range of pathways are initiated.” 
 
Expert L thought that a major cause of death from short-term exposures was 
cardiovascular disease, specifically myocardial infarction (MI) and stroke.  He thought 
work by Annette Peters (2001), Joel Schwartz, and others on “a whole range of … acute 
effect studies” was informative for these outcomes (Wellenius et al., 2005; Tsai et al., 
2003; Hong et al., 2002; Zanobetti et al., 2000; Schwartz et al., 2003).  He also thought 
the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) was very 
important because of the wide geographic coverage and standardization of methods.  He 
felt that the U.S. findings are strengthened by the European studies, particularly the large 
multi-center studies like Air Pollution and Health – A European Approach (APHEA), 
where publication bias is not an issue. 
 
 He thought one pathway for cardiovascular disease included particle-induced oxidative 
stress leading to systemic inflammatory responses and release of fibrinogen, which are 
associated with outcomes like MI, and to a lesser degree, with stroke.  He also thought 
cardiovascular outcomes could be caused by particle-induced arrhythmias or changes in 
autonomic function that might also be linked to inflammatory pathways.  To support this, 
he cited work by Joel Schwartz, which found that changes in HRV are modified by 
factors on the oxidative stress or inflammatory pathway (Schwartz et al., 2005).  He 
indicated that there are fewer studies on stroke, but they are of a high quality.  Expert L 
thought that the mechanistic evidence is strengthened by the fact that “where we expect 
MIs [to] happen, strokes should happen as well, and the fact that [published] studies show 
this, I think this very much [strengthens] the evidence.” 
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Expert L thought that another cause of death related to short-term exposures was 
respiratory disease and that oxidative stress and inflammation were again part of the 
pathway. “The changes in [neuro] reflexes in the lung ... structur[al] changes [like] 
narrowing of the airways.”  He thought these impacts create particular challenges for 
asthmatics.  Expert L also indicated that PM could cause weakening of clearance and the 
immune system, lowering an individual’s ability to fight infection. 
 
In addition, he thought there were subpopulations that are particularly susceptible to the 
effects of PM, including people who are in “terminal health states,” such as those with 
lung cancer or diabetes. He noted Mark Goldberg’s time-series studies showing that lung 
cancer patients die earlier when air pollution is high.  He thought diabetics were more 
likely to have underlying cardiovascular disease or atherosclerosis, in addition to reduced 
defense mechanisms against infections and therefore would be vulnerable to acute 
exposures to PM. 
 
Long-Term Exposures 
 
Expert L thought that overall, “long-term effects … are really changes in the underlying 
pathophysiology that ultimately leads to ailments, to chronic conditions which we know 
lead to premature death.”    
 
He first discussed lung cancer as a cause of death related to long-term exposures.  He 
cited a Swedish study by Nyberg et al. (Epidemiology, 2000: Vol. 487) that found lung 
cancer associated with air pollution exposures 20-30 years in the past.  He also thought 
that there was “toxicological evidence for some of the relevant pathways that are well-
described for carcinogenesis, that they also relate to toxicity of particles, leading to 
chronic persistent inflammation in the lung and airways, with genotoxic and proliferative 
effects in the lung tissue and remodeling.”  He indicated carcinogens can adsorb to the 
particles and individuals can be exposed in that way as well.     
 
Expert L next discussed cardiovascular disease as a cause of death related to PM.  He 
cited four groups of researchers that published recent animal studies providing evidence 
that particles contribute to the progression of atherosclerosis (a study in rabbits by Suwa 
et al., 2002; a particle instillation study in rabbits showing inflammation by Goto et al., 
2004; a study from Mort Lippmann’s group (Sun et al., 2005) showing progression of 
atherosclerosis in rats; and a rat model by Lemos et al. 2006).  He also mentioned a 
Japanese study by Yamawaki et al. (2006) that found endothelial dysfunction with 
exposures to carbon black, which he thought was an important part of developing 
atherosclerosis.  He thought additional support of this mechanism was provided by an 
epidemiologic study by Kunzli et al. (2005) in Los Angeles (L.A.) showing increasing 
carotid intima-media thickness (CIMT) associated with outdoor particles.   
 
He thought another mechanism related to long-term exposures was chronic lung 
inflammation leading to decreased lung function, although he acknowledged that lung 
pathologists would agree that it is difficult to line up all the pathways that lead to reduced 
lung function as it may involve air ways, lung parenchyma, and the pulmonary 
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vasculature.  He indicated that, “[l]ower lung function is one of the strongest predictors of 
survival, of life expectancy, of mortality.”  He thought one of the most important pieces 
of evidence for this mechanism comes from the Children’s Health Study, which found 
that children’s lung function develops more slowly if they reside in areas with poor air 
quality.  It also showed that when children moved into higher pollution areas, the 
development of their lung function decreased.  He thought in general, respiratory deaths 
were less correlated with air pollution in the major cohort studies than other causes.  For 
instance, the Six Cities follow-up (Laden et al., 2006) had found a positive signal with 
respiratory deaths that was non-significant.  He indicated that some studies have found 
signals for chronic obstructive pulmonary disease (COPD), but in general the signals are 
weak.  He thought an explanation for this could be misclassification of cause of death 
(e.g., older people are more likely to be classified as dying from cardiovascular disease) 
or a lack of clarity in the definition of COPD itself.  He indicated that there was one 
German study that observed an association between air pollution and lung function 
markers of COPD (Schikowski et al., 2006).  In addition, he said that the Adventist 
Health and Smog (AHSMOG) study shows incidence of COPD associated with PM.  
“From the mechanistic perspective … it is very important to use lung function studies in 
assessing the plausibility … of deaths being related to particles or to air pollution.” 
 
Finally, he discussed the development of asthma – a story he thought was not as clear.  
He indicated that several recent studies (Children’s Health Study (McConnell et al., 
2006); a European study (Venn et al., 2001); a study in Alaska (Gordian et al., 2006)) are 
suggesting a connection between traffic related exposures and development of asthma.  
He thought these studies were indicative air pollution’s role in the development of 
chronic disease 
 
3.2. Conceptual Framework for Mortality Effects of Short-term and Long-Term 
PM2.5 Exposures 
 
Expert L thought the Künzli diagram was a good conceptualization of the relationship 
between long- and short-term exposures.  “I think it is … a framework that is useful … 
and it allows us to think, for each death … about what story might be important.”    He 
thought the difficulty is how the literature relates to the diagram and he indicated that one 
has to be careful in discussing this relationship. 
 
3.3. Role of Epidemiologic Study Design in Characterizing the Total Impacts of 
PM2.5 Exposures on Mortality 
 
Expert L thought that none of the study designs alone were sufficient for capturing “total” 
mortality from PM exposures.  He thought time-series studies with a 2-3 day exposure 
window are useful measures of the most acute effects.  He indicated that these estimates 
are certainly not a measure of “total” mortality, nor even of total acute if one imagines 
that “air pollution … triggers an MI, many MI [patient]s do not die within 3 days but end 
up in a phase of treatment … and some of them die within six weeks, or during their 
convalescence.”  He thought Ari Rabel’s work arguing that we don’t observe the true 
total acute effect was a useful theoretical contribution. 
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The next class of studies he discussed was the cohort studies which he thought provided 
some measure of the effects of long-term exposures, but which were unlikely to capture 
the cases where life is shortened by less than five to ten days up to two or three weeks, 
for example.  He noted that we have to be “clear and honest that these are very, very 
crude approaches in terms of characterizing exposure, and also in terms of measuring 
time lost … [loss of] life expectancy.  When asked how much mortality the cohorts might 
miss, he responded, “I don't know the signal exactly, but maybe it's the NMMAPS type 
of signal, which is …[about] a half percent [per 10 µg/m3] … It seems to me this is [part 
of the] noise of what we discuss for the cohort [studies].” 

He thought case-control studies had value for estimating the risks for specific health 
outcomes like lung cancer, or possibly COPD.  He did not think they were appropriate for 
assessing the effects of exposure on total mortality. 

The final type of studies he discussed was the intervention study, which he thought 
provided strong evidence of a benefit of reducing air pollution, particularly in the short-
term.  However, he thought they might pose a challenge for assessing the long-term 
effects of reduction.  For example, he thought the Utah Valley study (Pope et al., 1996) 
provides “particularly strong evidence for the acute, sub-acute domain.”  He thought the 
Clancy et al. (2002) study in Dublin was the appropriate design for assessing the effects 
of long-term exposures but that the longer the follow-up time, the more difficult it 
becomes to isolate the effects of PM changes alone.  It might be argued that changes in 
other factors, for example, economic development, diet, smoking rates, or ETS could also 
contribute to improvement, or declines (in the case of obesity) in health status and 
susceptibility.  Thus, the intervention studies could not necessarily be a “gold standard” 
for chronic effect studies in his view. 

The effects captured by each study design are shown in the table below: 

Study Design Type of Effects Captured (e.g., short-
term, long-term, or both) 

Cohort Studies Long-term, excludes very short-term effects 

Case-Control Studies Long-term for specific health outcomes only 

Intervention Studies Acute, sub-acute, intermediate acute 
(depending on study) 

Time-Series Studies with a 2-3 day lag; 
distributed lag (up to 3 months) Short-term; subacute 

 
3.4. Epidemiologic Evidence for the Impact of Exposures to PM on Mortality 
 
Expert L thought that the following characteristics would be part of an ideal 
epidemiologic study to characterize the PM2.5-mortality relationship in the U.S. 
population: 
 

• Based in the U.S.; 
• Large sample size covering the entire U.S.; 
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• Random population sample, including susceptible individuals; 
• Spatially resolved exposure data at the neighborhood level; 
• Lifetime, or at least 10, 20, or 30 years of individually assigned exposure; 
• Recent cohort (with PM exposures at current levels); 
• Control of potential confounders and susceptibility factors (e.g., smoking, 

physical activity, diet, obesity, body mass index (BMI), family history of disease); 
 
When asked to review the epidemiologic studies that have been most informative about 
the percent change in all-cause mortality related to a reduction in annual average ambient 
PM2.5 concentrations, Expert L first discussed Pope et al’s work with the American 
Cancer Society (ACS) cohort (Pope et al., 1995 & 2002).  He thought that strengths of 
these studies included large population, geographic representation of the U.S., long-term 
follow-up, control of confounding, and the degree of scrutiny and re-analysis that they 
have undergone.  He thought that limitations of the studies included the very large areas 
that were assigned exposure from a single monitor and the fact that the population was 
not a random sample.  He also discussed the ACS reanalysis in L.A.  He thought that this 
study had very strong exposure assessment and control of confounders.  However, he 
thought that the fact that it only included one city was a limitation. “[I]t opens the 
question of whether these effects are larger because of the better exposure, or whether it's 
a population … with different types of more toxic exposures from traffic, more toxic PM 
due to the ozone environment or the susceptibility [in] the population.”   
 
He next discussed the Six Cities study, both the original (Dockery et al., 1993) and the 
extended analysis (Laden et al., 2006).  He thought a strength of these studies were that 
the cohort was a more random sample than the ACS study, with better exposure 
assignments (smaller areas assigned to each monitor).  However, he thought small sample 
size and geographic focus on the eastern U.S. were limitations. 
 
Expert L discussed the AHSMOG, the Enstrom et al., 2005, and the Veteran’s cohort 
studies by Lipfert et al.  Although he considered these studies for this exercise, he did not 
end up relying on the estimates when quantifying his C-R function.  However, he did 
discuss the following strengths and limitations: 

• AHSMOG: Expert L thought that this study was overall supportive of a PM 
effect but less clear.  He indicated that the population was not a random sample 
and had restricted geography, small sample size, and was non-representative in 
terms of susceptibility factors.  He did think the study had full control of smoking, 
good exposure assignment, making “attempts to assign exposure on an individual 
level, more than any other [current] study.”   

• Enstrom et al., 2005:  He thought that this study was limited geographically, in 
that it only included 11 counties in California.  In addition, he indicated that they 
used a single monitor for each county, which could have introduced exposure 
error.  It is also limited by having a very elderly population so the relevant periods 
of exposure may extend back a long time. 

• Veteran’s cohort: He said that this study used traffic as a surrogate for PM, 
which was consistent with a Canadian study by Finkelstein et al. (2004) and the 
Netherlands cohort study by Hoek et al. (2002).  He thought that the statistical 
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analysis was a limitation, indicating that the authors used models that included 
both traffic and PM2.5, which would yield uncertain results since the two factors 
are correlated.  He also indicated that the study population was not representative 
of the general population because it included a large percentage of smokers and 
included only hypertensive individuals, which could cause uncertain results due to 
potential treatment interaction effects.   

• Other work that he thought was supportive of a quantitative relationship included 
the Finkelstein et al. study and the Hoek et al. (2002) study, which are more 
“traffic-driven” and therefore not directly applicable given the relationship to PM. 

 
3.5 Confounding  
 
Although Expert L discussed potential confounding by smoking and SES, he thought that 
confounding did not affect the published estimates from the ACS studies (Pope et al., 
1995 & 2002), the ACS L.A. reanalysis (Jerrett et al., 2005), and Six Cities Studies 
(Dockery et al., 1993; Laden et al., 2006) in a significant way.  “It’s my impression that 
confounding has been addressed … I don’t see much strong evidence for an uncontrolled 
confounder that one could claim, and convince me that [it is] really confounding. [That it 
is both] associated with air pollution and these outcomes.”  In particular, he felt that the 
Krewski et al. (2000) reanalyses of the Six Cities and the ACS studies, as well as the 
ACS L.A. reanalysis (Jerrett et al., 2005) included extensive sensitivity analyses with 
several different variables without finding a large effects on the estimates.  For example, 
Jerrett et al. included 44 individual covariates in the analysis.  Expert L thought that it 
was possible that the Jerrett analysis could have overadjusted.  In particular, he was 
concerned about the models with 44 individual covariates plus contextual covariates 
because they include variables that are indicators of exposure, such as air conditioning 
other pollutants. The contextual covariates include things like SES (a complex covariate), 
or urban land use that could also be indicators for exposure.  He thought SES could also 
be a surrogate for susceptibility (e.g., correlated with obesity, diet, antioxidants) but was 
likely not a confounder per se.  In general he argued the quantitative effects of possible 
confounding were within the range of effect estimates presented in the key studies.  He 
thought the model from the Jerrett study that included 44 individual covariates and 
parsimonious contextual covariates, with relative risk of 1.11, represented the “lowest 
end” of the PM effect estimates. 

 
3.6 Effect Modification 
 
Expert L framed his discussion of effect modification by stating that he sees two different 
aspects: 1) real biological modifiers of the PM effect (i.e., that influence susceptibility to 
PM) and 2) the presence of co-pollutants in the ambient environment that may modify the 
effect of particles.  For this discussion, he focused on the first issue.  The second issue, 
which he felt related more to regulatory approaches, was left for discussion of exposure 
issues. 
 
Expert L’s discussion focused on the ACS study.  Expert L thought that the ACS study 
population was not reflective of the actual U.S. distribution of SES; that is that it 
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underrepresented individuals with lower SES as indicated by educational attainment 
(those with less than a high school education).  He thought this could be one of the 
reasons that the effect estimates in this study are lower than those found in the Six Cities 
study.  He reiterated that SES could be a marker for several factors, such as obesity, diet, 
or underlying diseases.  He thought it would be useful to adjust the ACS study for 
educational attainment, which might get at some of the underlying SES effect 
modification. He would want to include it in his list of effect estimates as part of 
characterizing his uncertainty.   He thought the sample adjustments presented at the Pre-
elicitation Workshop, showing 30-50 percent increases in the ACS mortality effect 
estimate when adjusted for educational attainment, were consistent with what he would 
have expected. 
 
Effect modification in the Jerrett et al. (2005) and the Six Cities studies were not 
discussed, and he thought that the paper did not disclose much about heterogeneities.   
 
Expert L expressed the general concern that there are important heterogeneities (patterns 
in susceptibility) in populations that are likely to change over time.  “This type of risk 
assessment [the expert elicitation] would be much less uncertain if our data would show 
no heterogeneity.  And that’s not true.  The evidence is really increasing that we have 
heterogeneity.” 
 
3.7. Exposure Issues 
 
Expert L thought that exposure misclassification due to central monitors versus 
individual exposures caused the ACS study results to be biased downwards.  He 
discussed the ACS L.A. reanalysis by Jerrett et al. (2005), indicating that he thought that 
it was “strong evidence that improvement of exposure assignment matters [quite a bit].”  
However, he thought that “there is a limitation [in the Jerrett paper] … we are not sure to 
what extent [the] much bigger signal [is] a result of being in California rather than in the 
rest of the states, or in another susceptibility domain than the rest.”   
 
He thought another exposure issue was changes in the characteristics of ambient air 
pollution over time.  He thought that “exposures, emissions change with technology.  
And [it] is … not … possible to take into [this into] account with the current type of data, 
which is just mass-based.”   
 
Expert L discussed his theoretical concern that “in heavily polluted centers, over the last 
30 years, improvements in air quality have been much … bigger than in the cleaner areas, 
where it might even have deteriorated or [become] more or less stable.  This has 
implications on the estimate, and not knowing exactly which time window is the relevant 
one for the mortality, this becomes an unresolvable challenge. Exposure gradients and 
errors in assignment also change with the time window of exposure.”  He thought this 
probably could be more of a problem in the Six Cities study because it was smaller, so 
“the large change in one city has a big impact.”  He thought that this was the only 
argument he could find that “could lead to an overestimation of the main effects.”  
However, he noted that the Laden et al. analysis, by looking into how changes in air 



   

L-8 

quality affected the outcomes, controlled for the problem to some extent.  He thought this 
issue was less of a problem in the ACS study, pointing to the sensitivity analysis in the 
Krewski reanalysis and a comparison of effect estimates from different time periods in a 
paper by Jerrett et al. (2003).   
 
Expert L discussed regional differences in the concentration-response (C-R) function.  He 
indicated there are not enough data in the studies of long term exposures to stratify by 
region so “one can go to the acute effect studies ... for evidence of … geographic 
heterogeneity.”  He noted that NMMAPS (Samet et al., 2000) found evidence that “there 
are geographic patterns” although the reason for these differences was not easily 
explained.  He thought they could be due to differences in PM toxicity, or susceptibilities 
of the population.  He thought that the ACS study was “a decent estimate for the [entire] 
U.S.,” and although he thought the Six Cities study was limited by the inclusion of only 
six cities and was probably an estimate of east coast exposures, he thought “these 
differences [in PM composition] are not sufficiently big to expect too much of a 
difference in this estimate.”  He went on to say that, “I'm convinced [the constituents of 
PM] does matter, but it's very difficult to say how.  And the answer might be different for 
the different outcomes.  Might be different in acute and in the chronic domain.  And 
given all these uncertainties, it still seems that measuring the mass concentration in the 
real world of real exposures that happen today, real emissions, it still seems to be a pretty 
useful marker for a much more complex story.” 
 
3.8. Causality 
 
Expert L indicated that he relied on a variety of evidence to evaluate the strength of the 
causal relationship between PM and mortality: 
 

o Cohort and time-series mortality studies; 
o Intervention studies (epidemiological); 
o Studies examining the underlying mechanisms, “in terms of morbidity or 

intermediate outcomes, [it] is extremely important to support the evidence”; and  
o Toxicological studies, especially those using concentrated ambient particle (CAP) 

exposures.  In particular, he mentioned an animal study by McDonald et al. 
(2004) that involved an experimental intervention “changing the diesel emissions 
with a filter [or] sulfur content of the gasoline and showing that all these acute 
effects on the molecular and cellular level are almost disappearing or very … 
strongly reduced, all the inflammatory responses, oxidative stress-related 
responses.”   

 
His overall conclusion was that he does not “see any coherent way to argue that this is a 
fluke that has nothing to do with air pollution and particle pollution, but would rather be 
explained by SES factors or the weather or smoking.” 
 
He thought that there was strong evidence of a causal relationship with mortality for both 
long-term and short-term exposures.  He thought that “there is a continuum, and given 
that we have this everyday exposure, we repeat the short-term effects every day in the 
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long run.  [B]ased on the mechanism discussion we had yesterday, I think evidence is 
really increasing almost every month in the direction of leading to the conclusion that 
these short-term acute mechanistic pathways that are initiated, they have longer-term 
effects.”  

Expert L thought that the likelihood of a causal relationship between PM and mortality 
fell between 90 and 100 percent, with a most likely value of 99 percent.  He based these 
estimates on the fact that he did not think that there was an alternate explanation for the 
effects seen, particularly in light of the more recent evidence.  He cited studies showing 
atherosclerosis (“this piece was entirely missing and now it’s here”), oxidative stress and 
DNA changes due to diesel particles (Knaapen et al., 2004; Borm et al., 2004) as well as 
new epidemiologic studies looking at cardiovascular disease and other outcomes. In fact, 
he suggested that he would probably have provided different numbers three years ago. 
 
3.9 Thresholds 
 
Expert L thought that in order to determine whether there is a threshold in the 
PM/mortality relationship, he would want to rely on the published epidemiological 
studies that include scatter plots of their data, that are inclusive of a wide range of PM, 
and those that try more formally to investigate the existence of a threshold.  He thought 
that a formal investigation of threshold would be difficult because of the small effect 
sizes seen.  He thought that this had been done to some extent in the time-series studies, 
with authors concluding that, “there is no evidence for any well-defined threshold.”  
However, he thought that this type of assessment was more difficult in the long-term 
studies, although some had attempted it and had also come to the same conclusion as in 
the time series studies. “And if there is one, it must be at the very lower end of this range 
… based on the lack of evidence for a clear threshold, and the positive findings in 
[relatively] clean air studies.”   He thought it might be possible to assess the presence of a 
threshold if one were to focus on a susceptible population and follow them for long 
periods of time.  Or he thought the threshold question might be addressed by repeated 
acute effect time-series approaches.  “Just to repeat … every five years under the new 
pollution conditions, to see whether one still sees the signal and whether one sees it down 
to … very low exposures.”  He did not think toxicological or clinical study designs were 
likely to resolve the question given concerns about interspecies comparisons, high to low 
dose extrapolations, differences in susceptibilities, and interaction of effects of different 
pollutants. 

When asked if his views on threshold differed for long-term and short-term exposures, 
Expert L thought that they were related, in that if “we are clear about the effects and 
shape of the response function in the very short-term domain, this answers part of the 
long-term question … if it is true that in the very short-term, there is no threshold, this 
would be true for the long-term public health impact to the extent that the latter is in part 
also the accumulation of acute effects.”    

He indicated that overall, he did not think there was evidence for a threshold, indicating 
that the scatter plots in the ACS study do not show a threshold across the range of 
exposures (about 6 up to 23 µg/m3 for the later exposures (1999-2000) and about 10 to 30 
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µg/m3 (1979-1983) for the earlier exposures). Nor did he think they are statistically 
detectable by current methods.  Expert L did not elect to incorporate a threshold into his 
C-R function. 

 3.10 Other Influential Factors 
 
Expert L discussed additional sources of uncertainty that were not part of the protocol.  
When asked whether he felt that there had been adequate exploration of alternative ways 
to model PM/mortality effects, he answered that the ACS and Six Cities studies had been 
analyzed and scrutinized extensively and that the overall conclusions of the main 
published estimates remained the same.  Expert L did not think there were any other 
outstanding issues not already covered by the protocol. 
 
PART 4. ELICITATION OF QUANTITATIVE JUDGMENTS 
 
Expert L chose to characterize his C-R function within the specified range of annual 
average PM2.5 concentrations (4-30 µg/m3) in a piece-wise linear fashion.  He specified 
one set of numbers that applied to concentrations of 4-10 µg/m3 (hereafter, “Range 1”), 
and another set that applied to concentrations of >10-30 µg/m3 (hereafter, “Range 2”).  
He did so to reflect his greater uncertainty about the shape of the C-R function in the 
lower concentration range. 

Expert L elected to provide C-R functions conditional on the existence of a causal 
relationship.  He thought that the discussion of causality should be separate from that of 
the C-R function itself.  “I don’t see how to integrate the probability of the causality with 
the probability of these estimates, because I honestly do not believe that this is a 
multiplication of probabilities.  [There is] [t]he causality, and then these estimates.”  The 
elicitation team then combined his conditional distributions with his percent likelihood of 
causality specified in Section 3.8 (99 percent likelihood of a causal relationship).  In 
addition, the two distributions were applied to a distribution of population-weighted 
annual average PM2.5 concentrations in the U.S. from EPA’s BenMap model to create a 
combined distribution (hereafter, “Example Applied Distribution”).   

His general approach was to characterize his uncertainty using the “best estimates” from 
a variety of studies, reflecting different strengths and weaknesses.  He did not think the 
published statistical confidence intervals were as relevant to answering the elicitation 
question, given that they reflect precision of the data, choice of model, and covariates. 

He began by specifying the percentiles for Range 2.  He started with a minimum value of 
0.2 percent per 10 µg/m3, basing it on the NMMAPS paper (Samet et al., 2000) because 
“biologically, mechanistically, and epidemiologically, it is really clear that there must be 
more than just these immediate acute effects that you observe in two days … evidence is 
very strong that things happen in a longer-term way.”  His 5th percentile value, 2 percent 
per 10 µg/m3, was based on a study by Schwartz et al. (2000), which used a distributed 
lag model up to 3 months. To determine his 25th percentile, he began with estimates from 
the cohort studies.  He selected a 25th percentile value of 4 percent per 10 µg/m3 based on 
the lower estimate from the Pope et al., 2002 ACS paper.  He noted that the maximum is 
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a particularly difficult value to estimate.  He ultimately chose a maximum of 30 percent 
per 10 µg/m3 based on a rough average of the upper 95 percent confidence limits from 
several models published in the Jerrett et al. (2005) paper.  For the 95th percentile value, 
he used the individual covariate-adjusted estimate from the Jerrett et al. (2005) paper, 17 
percent per 10 µg/m3.  For the 75th percentile value, Expert L elected to use 15 percent 
per 10 µg/m3 based on the estimate adjusted for social factors from the Jerrett et al. 
(2005) study as well as the Laden et al. (2006) extension of the Six Cities study.  He then 
chose his 50th percentile value based on the fully adjusted estimate from Jerrett et al. 
(2005) as well as the fact that it fell between the other Jerrett et al. estimates, the Laden et 
al. estimates, and the Pope et al. estimates.  For Range 1, Expert L specified the same 
percentiles, with the exception of the minimum, which he placed at zero to account for 
the uncertainty in the threshold at low levels.  We discussed how published error bars 
tend to be greater around the lower and upper ends of a range, but Expert L felt that those 
were statistically driven and did not make sense for these estimates.          
 
After viewing his distributions for Ranges 1 and 2 incorporating causality in Crystal Ball, 
he felt that the they did not accurately reflect his views about where the probability mass 
should be centered.  For example, his interquartile range was between 4 and 15 percent 
per 10 µg/m3, which would indicate that 50 percent of the time, the true mortality effect 
estimate should fall within that range.  However, he felt that the probability weight 
assigned to that range should be greater than 50 percent, and opted to change the weight 
to 70 percent.  Therefore, his original 25th and 75th percentiles became his 15th and 85th 
percentiles.  The elicitation team then built a custom distribution in Crystal Ball in order 
to calculate his new interquartile range, displayed below.  

Exhibit 1: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
for Range 1 (4 – 10 µg/m3) 

Percentile Percent Change in Mortality 
Elicited Distribution 

Percent Change in Mortality 
Distribution Incorporating 

Causal Likelihood (IEc 
Generated) 

Minimum 0 0 
5th 0.20 0.16 
25th 0.60 0.54 
50th 1.0 0.98 
75th 1.4 1.4 
95th 1.6 1.6 
Maximum 2.7 2.7 
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Exhibit 2: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
for Range 2 (>10 – 30 µg/m3) 

Percentile Percent Change in Mortality 
Elicited Distribution 

Percent Change in Mortality 
Distribution Incorporating 

Causal Likelihood (IEc 
Generated) 

Minimum 0.02 0 
5th 0.20 0.17 
25th 0.60 0.56 
50th 1.0 0.99 
75th 1.4 1.4 
95th 1.6 1.6 
Maximum 2.7 2.7 
 

Exhibit 3: Subjective Estimates of the Percent Change in Annual Mortality 
Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 Concentrations 
After Incorporating Causality and Applying the C-R functions to the Population-
Weighted Annual Average PM2.5 Concentration Distribution in the U.S. from 
BenMap - Example Applied Distribution (IEc Generated)  

 

Percentile Percent Change in Mortality  
Minimum 0 
5th 0.20 
25th 0.55 
50th 1.0 
75th 1.4 
95th 1.6 
Maximum 2.7 
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Exhibit 4: Percent Change in Annual Mortality Associated with a 1µg/m3 Change in Ambient Annual Average PM2.5 
Concentrations: Comparison of 90 Percent Confidence Intervals for Various Studies to Distributions from Expert L 

* = Distribution incorporating causality and applying the C-R functions from Ranges 1 and 2 to a 2002 population-weighted annual average PM2.5 concentration 
distribution in the U.S. from BenMap. 
• = median □ = interquartile range │= 90 percent confidence interval 
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Elicited Distribution – Range 1 
 

 
 
Elicited Distribution – Range 2 
 

 
 
 
 



   

L-15 

Range 1 Incorporating Causality - Probability Density Function (PDF) (IEc Generated) 
 

 
 
Range 1 Incorporating Causality - Cumulative Density Function (CDF) (IEc Generated) 
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Range 2 Incorporating Causality – PDF (IEc Generated) 
 

 
 
Range 2 Incorporating Causality – CDF (IEc Generated) 
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Example Applied Distribution – PDF (IEc Generated) 
 

 
 
Example Applied Distribution – CDF (IEc Generated) 
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U.S. EPA EXPERT ELICITATION STUDY OF THE CONCENTRATION-RESPONSE 
RELATIONSHIP BETWEEN ANNUAL AVERAGE PM2.5 EXPOSURE AND 

MORTALITY 
 

Modification to Expert Judgments 
 

Expert L 
 
Date: July 7th, 2006 
 
Section of Protocol Affected (Section Number and/or Title): 
 
Causality 
 
Description of Change (e.g. to a specific percentile, or to a qualitative opinion or 
statement of belief) (Causality versus Change of Mortality): 
 
1. Regarding the range of probabilities of a CAUSAL RELATIONSHIP I would like to 

express two issues: 
 

In the range of >10 µg/m3, my Min/Max values are 90 and 100 with the ‘more likely’ 
being 99 because we can never be “100 percent sure.” 

 
In the range of 0-10 µg/m3 my Min/Max range estimates are 0 and 95 with the ‘most 
likely value’ being 75. 

 
ARGUMENTS: 

 
It is very hard to me to find a plausible coherent alternative explanation for all the 
findings – at least in the acute effect domain – showing effects of PM in the range 
>10 µg/m3. It is inherently more difficult to know what is going on in the lowest 
ranges. If the theory of ‘distributions of susceptibilities’ does apply (which I endorse), 
it means to have no threshold on the population level, thus effects among susceptible 
individuals are likely to occur in the 0-10 µg/m3 range, too. Empirical evidence is just 
not abandoned to disregard the minute probability of ‘no effect’ in this lowest range 
(or maybe in the lowest range of this low range, e.g., 0-5 µg/m3. 

 
 
2. I ask for strict separation of the “causality distribution” and of the response function 

distribution (in the two concentration strata).  It is important to not provide any 
figures or tables that combine “Percent Change in Mortality” with “Causality.” What 
might be done are combinations of the overall distributions (percent change, number 
of cases etc.) with causality in the estimation/presentations of costs. 
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ARGUMENTS: 
 

As discussed at the Post-elicitation Workshop, the science to establish causality has 
its own research domains, which may lead to a steady increase (as in case of air 
pollution) in favor of ‘causality,’ or the opposite could happen as well.  The question 
of the quantitative association between an agent and an outcome needs an 
independent assessment.  Evidence for causality may, e.g., increase while the updated 
literature may give no indication at all that concentration response functions changed 
– or if they do change in future studies it may be due to constituents or susceptibility 
changes rather than ‘causality.’  
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