Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

2006 Progress Report: Fiber Rolls as a Tool for Re-Vegetation of Oil-Brine Contaminated Watersheds

EPA Grant Number: X832428C003
Subproject: this is subproject number 003 , established and managed by the Center Director under grant X832428
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: IPEC University of Tulsa (TU)
Center Director: Sublette, Kerry L.
Title: Fiber Rolls as a Tool for Re-Vegetation of Oil-Brine Contaminated Watersheds
Investigators: Thoma, Greg , Hunt, Howard , Sublette, Kerry L. , Vavrek, Milan
Institution: University of Arkansas at Fayetteville , University of Tulsa , Louisiana Tech University
Current Institution: Louisiana Tech University , University of Arkansas at Fayetteville , University of Tulsa
EPA Project Officer: Krishnan, Bala S.
Project Period: October 12, 2005 through October 11, 2006 (Extended to June 30, 2007)
Project Period Covered by this Report: October 12, 2005 through October 11, 2006
Project Amount: Refer to main center abstract for funding details.
RFA: Integrated Petroleum Environmental Consortium (IPEC) (1999)
Research Category: Targeted Research

Description:

Objective:

Historic oil brine scars (sites that repeatedly received produced water) are extremely difficult to remediate because these sites possess degraded, highly saline soils, erosion damage, little or no plant cover and an altered microbial community. Ecosystem function is diminished as a result of these impacts.

We are evaluating the contribution of fiber rolls to restoration of a historic oil brine scar in south Arkansas. Four treatments (natural attenuation, standard soil reclamation techniques, fiber rolls, and soil reclamation with fiber rolls) have been applied to plots within the site. Fiber rolls are tubes formed with a geotextile material and filled with organic fiber, mycorrhizal fungal inoculum, bacterial inoculum (soil) and salt-tolerant plants. Consequently, fiber rolls may serve a variety of ecological functions including primary productivity, filtering of sediments and moisture and nutrient retention. Rolls also serve as a source vegetative growth, seeds, microbial spores, organic matter and nutrients.

Our primary objective is to examine the utility of fiber rolls as an effective, inexpensive, and easy-to-use remediation tool at oil brine spill sites. Established fiber rolls and adjacent brine affected plots will be examined to determine the:

1) Structural integrity and ability of fiber rolls to withstand periodic flooding/water flow,
2) Amount of sediment accretion behind fiber rolls,
3) Survival, extent and type of vegetative growth in fiber rolls, and
4) Type and extent of vegetation expansion from fiber rolls onto adjacent soils.

Soil reclamation as a result of treatments will also be assessed through measurements of electrical conductivity, sodium adsorption ratio, and cation exchange capacity.

Progress Summary:

Several significant events occurred during the performance period.

1. An evaluation of soil accretion was conducted during the fall. Our initial hypothesis was that fiber rolls, place in a down-slope "v" configuration would stop sediments that would otherwise wash from surface soil layers. A laser level was used to measure elevation at three different locations above and below each fiber roll "dam". While fiber roll integrity remained high, no significant differences in elevation above and below the fiber rolls were detected. The change in elevation from the top to the bottom of each plot (or treatment area) averaged only 13 cm. The lack of slope and the absence of significant flood flows during the study period probably reduced the effectiveness of fiber rolls in blocking sediment runoff.

2. Post-treatment soil samples were collected from surface and deep soil layers from all 12 plots. As in pre-treatment samples, surface and sub-surface soil was obtained from 3 randomly selected sites (3 surface and 3 deep from each of 12 plots) within each plot, mixed, bagged and sent to the Agricultural Diagnostic Laboratory, University of Arkansas, for analysis.

Plant cover in plots that received tilling, chicken litter, hay and fiber rolls continues to flourish. Plot surfaces that received no treatment along with surfaces in plots between rolls without soil treatments continue to be devoid of plant cover Of special note is the occurrence of several volunteer Baccharis halimifolia (Groundsel) within three of the plots that received fiber rolls, chicken litter and hay.

Future Activities:

Pre- and post-treatment soil samples will be analyzed for differences in pH, EC, P, K, Ca, Mg, S, Na, Fe, Mn, Zn, Cu, B, Cl, NO3, NH4, and total carbon. Completion of the final report is anticipated for June, 2007.


Progress and Final Reports:
Original Abstract
Final Report


Main Center Abstract and Reports:
X832428    IPEC University of Tulsa (TU)

Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R827015C001 Evaluation of Road Base Material Derived from Tank Bottom Sludges
R827015C002 Passive Sampling Devices (PSDs) for Bioavailability Screening of Soils Containing Petrochemicals
R827015C003 Demonstration of a Subsurface Drainage System for the Remediation of Brine-Impacted Soil
R827015C004 Anaerobic Intrinsic Bioremediation of Whole Gasoline
R827015C005 Microflora Involved in Phytoremediation of Polyaromatic Hydrocarbons
R827015C006 Microbial Treatment of Naturally Occurring Radioactive Material (NORM)
R827015C007 Using Plants to Remediate Petroleum-Contaminated Soil
R827015C008 The Use of Nitrate for the Control of Sulfide Formation in Oklahoma Oil Fields
R827015C009 Surfactant-Enhanced Treatment of Oil-Contaminated Soils and Oil-Based Drill Cuttings
R827015C010 Novel Materials for Facile Separation of Petroleum Products from Aqueous Mixtures Via Magnetic Filtration
R827015C011 Development of Relevant Ecological Screening Criteria (RESC) for Petroleum Hydrocarbon-Contaminated Exploration and Production Sites
R827015C012 Humate-Induced Remediation of Petroleum Contaminated Surface Soils
R827015C013 New Process for Plugging Abandoned Wells
R827015C014 Enhancement of Microbial Sulfate Reduction for the Remediation of Hydrocarbon Contaminated Aquifers - A Laboratory and Field Scale Demonstration
R827015C015 Locating Oil-Water Interfaces in Process Vessels
R827015C016 Remediation of Brine Spills with Hay
R827015C017 Continuation of an Investigation into the Anaerobic Intrinsic Bioremediation of Whole Gasoline
R827015C018 Using Plants to Remediate Petroleum-Contaminated Soil
R827015C019 Biodegradation of Petroleum Hydrocarbons in Salt-Impacted Soil by Native Halophiles or Halotolerants and Strategies for Enhanced Degradation
R827015C020 Anaerobic Intrinsic Bioremediation of MTBE
R827015C021 Evaluation of Commercial, Microbial-Based Products to Treat Paraffin Deposition in Tank Bottoms and Oil Production Equipment
R827015C022 A Continuation: Humate-Induced Remediation of Petroleum Contaminated Surface Soils
R827015C023 Data for Design of Vapor Recovery Units for Crude Oil Stock Tank Emissions
R827015C024 Development of an Environmentally Friendly and Economical Process for Plugging Abandoned Wells
R827015C025 A Continuation of Remediation of Brine Spills with Hay
R827015C026 Identifying the Signature of the Natural Attenuation of MTBE in Goundwater Using Molecular Methods and "Bug Traps"
R827015C027 Identifying the Signature of Natural Attenuation in the Microbial Ecology of Hydrocarbon Contaminated Groundwater Using Molecular Methods and "Bug Traps"
R827015C028 Using Plants to Remediate Petroleum-Contaminated Soil: Project Continuation
R827015C030 Effective Stormwater and Sediment Control During Pipeline Construction Using a New Filter Fence Concept
R827015C031 Evaluation of Sub-micellar Synthetic Surfactants versus Biosurfactants for Enhanced LNAPL Recovery
R827015C032 Utilization of the Carbon and Hydrogen Isotopic Composition of Individual Compounds in Refined Hydrocarbon Products To Monitor Their Fate in the Environment
R830633 Integrated Petroleum Environmental Consortium (IPEC)
R830633C001 Development of an Environmentally Friendly and Economical Process for Plugging Abandoned Wells (Phase II)
R830633C002 A Continuation of Remediation of Brine Spills with Hay
R830633C003 Effective Stormwater and Sediment Control During Pipeline Construction Using a New Filter Fence Concept
R830633C004 Evaluation of Sub-micellar Synthetic Surfactants versus Biosurfactants for Enhanced LNAPL Recovery
R830633C005 Utilization of the Carbon and Hydrogen Isotopic Composition of Individual Compounds in Refined Hydrocarbon Products To Monitor Their Fate in the Environment
R830633C006 Evaluation of Commercial, Microbial-Based Products to Treat Paraffin Deposition in Tank Bottoms and Oil Production Equipment
R830633C007 Identifying the Signature of the Natural Attenuation in the Microbial Ecology of Hydrocarbon Contaminated Groundwater Using Molecular Methods and “Bug Traps”
R830633C008 Using Plants to Remediate Petroleum-Contaminated Soil: Project Continuation
R830633C009 Use of Earthworms to Accelerate the Restoration of Oil and Brine Impacted Sites
X832428C001 Effective Stormwater and Sediment Control During Pipeline Construction Using a New Filter Fence Concept
X832428C002 Paraffin Control in Oil Wells Using Anaerobic Microorganisms
X832428C003 Fiber Rolls as a Tool for Re-Vegetation of Oil-Brine Contaminated Watersheds

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.