TABLE OF CONTENTS

SURVEY OF INCOME AND PROGRAM PARTICIPATION (SIPP) 2001 PANEL
 WAVE 1 TOPICAL MODULE MICRODATA FILES

Abstract 1-1
File Information 2-1
Index 3-1
Variable Listing 4-1
How to Use the Data Dictionary 5-1
Data Dictionary 6-1
Source and Accuracy Statement 7-1
Control Counts 8-1
Appendices
A. Wave 1 Questionnaire A-1
B. Working Papers B-1
C. User Notes C-1

ABSTRACT
Survey of Income and Program Participation (SIPP) 2001 Panel, Wave 1 Topical Module Microdata File [machine-readable data file] / conducted by the U.S. Bureau of the Census. -Washington: The Bureau [producer and distributor], 2005.

Type of File:

Microdata; unit of observation is an individual.

Universe Description:

The universe is the resident population of the United States, excluding persons living in institutions and military barracks.

Subject-Matter Description:

The file contains data primarily from the topical module portion of the questionnaire. However, for purposes of matching persons to the core file, which was released separately, the beginning of the file contains identifying information as well as some basic demographic and social characteristics that are also contained in the core file. The identifying information includes sample unit, household address, and entry address identification. Demographic and social characteristics include age, sex, race (White; Black; American Indian, Eskimo, and Aleut; Asian or Pacific Islander), ethnic origin (34 categories including 9 Spanish origin categories), marital status, and education. Data in this topical module file include asset, liabilities, and eligibility, medical expenses/utilization of health care - adult and children, work related expenses, child support paid, and children's well-being.

The sample consists of 4 rotation groups, each interviewed in a different month from February 2001 to May 2001. For each group the reference period for reporting labor force activity and income is the four calendar months preceding the interview month.

SIPP is a longitudinal survey where each sampled household and each descendent household is reinterviewed at 4 -month intervals for 9 interviews or "waves." This file contains the results of the first interview. Unique codes are included on each record to allow linking together the same persons from the preceding and subsequent waves.

Geographic Coverage:

United States. Codes are included for 45 individual States and the District of Columbia, although the sample was not designed to produce State estimates. Areas in the SIPP sample in five States are identified in two groups for confidentiality reasons. The file identifies a subsample of metropolitan residents, along with codes for selected metropolitan statistical areas (MSA's) and consolidated metropolitan statistical areas (CMSA's).

Technical Description:

File Structure: Rectangular. Each logical record for a sampled person includes information on the household and family of which the person was a part during each month of the reference period, as well as characteristics of the person.

File Size: 90,408 logical records; 348 character logical record length.
File Sort Sequence of Sample Units: Sampling unit identification number by entry address ID and person number within sampling unit.

Reference Materials:

Survey of Income and Program Participation (SIPP) 2001 Panel, Wave 1 Topical Module Microdata File Technical Documentation. The documentation includes this abstract, the data dictionary, an index to the data dictionary, relevant code lists, questionnaire facsimiles, and general information on SIPP.

Survey of Income and Program Participation Users' Guide. The Users' Guide contains a general overview of the file as well as chapters on survey design and content, structure and use of cross-sectional files, linking waves and reliability of the data. It is available at http://www.sipp.census.gov/sipp/pubs.html

Related Reports Online and in Print:

Related reports include working papers, compilations of papers presented at annual meetings of the American Statistical Association, articles appearing in the Journal of Economic and Social Measurement, and reports in the P-70 series of the Current Population Reports. These reports are available online in PDF in the Publications Library at http://www.census.gov/prod/www/titles.html and in some cases in printed form from the Customer Services Center. Forthcoming reports will be cited in the Census Product Update, an online newsletter issued every two weeks. To subscribe or to view past issues, go to http://www.census.gov/mp/www/cpu.html

Related Machine-Readable Data Files:

SIPP files from all Waves of the 1984 through 1993 Panels, 1996 Panel, and 2001 Panel are available from the Customer Services Center. Files (1990 forward) may be downloaded from the Federal Electronic Research and Review Extraction Tool (FERRET) at http://www.ferret.bls.census.gov/cgi-bin/ferret

File Availability:

You can order the file on disc from the Customer Services Center at (301) 763-INFO (4636) or through our online sales catalog (click "Catalog" on the Census Bureau's home page). Also, this file may be downloaded from the Federal Electronic Research and Review Extraction Tool (FERRET) at http://www.ferret.bls.census.gov/cgi-bin/ferret

FILE INFORMATION

Matching Topical Module File with Core File

Since the core and topical module data are released as separate files, it may be necessary to match the two files. The two files contain the following information for linking purposes.

SSUID	Scrambled sample unit identifier
SPANEL	Panel year
SWAVE	Wave of data collection
SROTATION	Rotation of data collection
TFIPSST - FIPS	State code for the fifth month
EOUTCOME	Interview status code for the fifth month
SHHADID	Household address ID in the fourth reference month
SINTHHID	Household address ID of person in interview month
RFID	Family ID number in month four
RFID2	Family ID excluding related subfamily members
EPPIDX	Person index
EENTAID	Address ID of household where person entered sample
EPPPNUM	Person number
EPOPSTAT	Population status based on age in fourth reference month
EPPINTVW	Person's interview status at time of interview
EPPMIS4	Person's fourth month inteview status
ESEX	Sex of this person
ERACE	Race of this person
EORIGIN	Origin of this person
EFINWGT	Person weight
ERRP	Household relationship
EMS	Marital status
EPNMON	Person number of mother
EPNDAD	Person number of father
EPNGUARD	Person number of guardian
EPNSPOUS	Person number of spouse
RDESGPNT	Designated parent or guardian flag
TAGE	Age as of last birthday at the end of the fourth month
EEDUCATE	Highest degree received or grade completed

Geographic Coverage

State codes are shown except for five States which are identified in two groups. A subsample of metropolitan residents is identified along with codes for selected metropolitan statistical areas (MSA's) and consolidated metropolitan statistical areas (CMSA's). The sample was not designed to produce State or MSA/CMSA level estimates. State codes are primarily useful in relating a respondent's recipiency of benefits to thresholds which may vary from State to State. MSA/CMSA codes may be used in relating respondent characteristics with contextual variables.

Identification Number System

The SIPP identification scheme is designed to uniquely identify individuals in each wave, provide a means of linking the same individuals over time, and group individuals into households and families over time.

The various components of the identification scheme are listed below:

SSUID	Sample Unit Identification Number
SINTHHID	Address ID
EENTAID	Entry Address ID
EPPPNUM	Person Number

The sample unit identification number was created by scrambling together the PSU, segment, and serial numbers used for Census Bureau administrative purposes. This identifier is constructed the same way on each wave regardless of moves, to enable matching from wave to wave.

The two-digit address ID code identifies each household associated with the same sample unit identification number. The first digit of the address ID code indicates the wave in which that address was first assigned for interview. The second digit sequentially numbers multiple households that have the same serial number. The address ID code is 11 for all sample addresses that are the same as in Wave 1. As SIPP sample persons move to new addresses, new address ID codes are assigned. Any new address to which sample unit members moved during Wave 4 is numbered in the 40's.

The person ID is a five-digit number consisting of the two-digit entry address ID and a three-digit person num-ber. Person numbers 101, 102, etc., are assigned in Wave 1; 201, 202, etc., are assigned to persons added to the roster in Wave 2, and so forth. This five-digit number is not changed or updated, regardless of moves.

The sampling unit serial number and address ID code uniquely identifies each household in any given wave. The sampling unit serial number can link all households in subsequent waves back to the original Wave 1 household.

Topcoding of Income Variables

To protect against the possibility that a user might recognize the identity of a SIPP respondent with very high income, income from every source is "topcoded" so that no individual income amounts above \$150,000 are revealed. While the data dictionary indicates a topcode of 50,000 for monthly income, this topcode will rarely be used. In most cases the monthly income is shown as an individual dollar amount of $\$ 12,500$, with $\$ 12,500$ actually representing "\$12,500 or more." (the \$150,000 annual income topcode is $\$ 12,500$ multiplied by 12 months). Individual monthly amounts above $\$ 12,500$ may occasionally be shown if the respondent's income varied considerably from month to month, as long as the average does not exceed $\$ 12,500$. For example, if a respondents' income from a single job were concentrated in only one of the four reference months, a figure as high as $\$ 50,000$ could be shown. (Income from interest or property have lower topcodes).

Summary income figures on the person, family, and household records are simple sums of the components shown on the file after topcoding, and are not independently topcoded. Thus, a person with high income from several sources (jobs, businesses, property) could have aggregate monthly income well over the topcode for each source. Families and households with a number of high income members could theoretically have aggregate income shown well over $\$ 150,000$, though well below the $\$ 1.5$ million shown as the highest allowable value in the data dictionary.

The user is cautioned against trying to make much use of the occasional monthly figures above $\$ 12,500$, except in calculating aggregates or observing patterns across the 4-month period for a single individual, family, or household. Those units with higher monthly amounts shown are a biased sample of high income units, more likely to include units with income from multiple sources than other units with equally high aggregate income which comes from a single source.

INDEX TO 2001 WAVE 1 TOPICAL MODULE FILES

Key to Concept Labels

AHI - Embedded Health Insurance Topical Module Variables
ED - Education Variables
EMP - Employment History Topical Module Variables
FA - Family Variables
HH - Household Variables
PE - Person, Demographic, and Coverage Variables
RC - Embedded Recipiency History Topical Module Variables
REC - Recipiency History Topical Module Variables
SU - Sample Unit Variables
WW - Weighting Variables

	Description	Variable	Position
AHI:	Allocation flag for ECDBEGMO	ACDBEGMO	245-245
AHI:	Allocation flag for EHIALLCV	AHIALLCV	248-248
AHI:	Allocation flag for EHICVMTH	AHICVMTH	267-267
AHI:	Allocation flag for EHIEVRCV	AHIEVRCV	259-259
AHI:	Allocation flag for EHINOMTH	AHINOMTH	256-256
AHI:	Allocation flag for TCDBEGYR	ACDBEGYR	242-242
AHI:	Allocation flag for THICVYR	AHICVYR	264-264
AHI:	Allocation flag for THINOYR	AHINOYR	253-253
AHI:	Has ... always been covered by health insurance?	EHIALLCV	246-247
AHI:	Has ... ever been covered by health insurance?	EHIEVRCV	257-258
AHI:	In what mnth was ... last not covered by health ins?	EHINOMTH	254-255
AHI:	In what month did ... become covered by Medicaid?	ECDBEGMO	243-244
AHI:	In what month was ... last covered by health ins	EHICVMTH	265-266
AHI:	In what year did ... become covered by Medicaid?	TCDBEGYR	238-241
AHI:	In what year was ... last covered by health ins	THICVYR	260-263
AHI:	In what year was ... last not covered by health ins?	THINOYR	249-252
AHI:	Universe indicator.	EAHIUNV.	236-237
ED:	Highest Degree received or grade completed	EEDUCATE	93-94
EMP:	(Before 1st ref mnth) mnth last wrk at pd jb or bs	EPRVJBMN	283-284
EMP:	(Before 1st ref mnth) yr last work at pd jb or bs	TPRVJBYR	278-281
EMP:	1st of 2+ spells ...caring for child, eld, or disab	EFRSTRSN	344-345
EMP:	Allocation flag for ENWRESN	ANWRESN	327-327
EMP:	Allocation flag for EYRSINC2	AYRSINC2	308-308
EMP:	Allocation flag for TFSTYRFR	AFSTYRFR	338-338
EMP:	Allocation flag for TFSTYRTO	AFSTYRTO	343-343
EMP:	Allocation flag for TMAKMNYR	AMAKMNYR	298-298
EMP:	Allocation flag for ECNTOTHR	ACNTOTHR	333-333
EMP:	Allocation flag for EFRMRMN	AFRMRMN	293-293
EMP:	Allocation flag for EFRSTRSN	AFRSTRSN .	346-346
EMP:	Allocation flag for ELSTWRKM	ALSTWRKM	277-277
EMP:	Allocation flag for EMNRESON	AMNRESON	301-301
EMP:	Allocation flag for EOFF6MTN	AOFF6MTN	314-314
EMP:	Allocation flag for EOTHTIME	AOTHTIME	330-330
EMP:	Allocation flag for EPRVJBMN	APRVJBMN	285-285
EMP:	Allocation flag for EWRK35HR	AWRK35HR	311-311
EMP:	Allocation flag for EYRSINCE	AYRSINCE	304-304

	Description	Variable	Position
EMP:	Allocation flag for TFRMRYR	AFRMRYR	290-290
EMP:	Allocation flag for TLSTWRKY	ALSTWRKY.	274-274
EMP:	Allocation flag for TNOWRKFR	ANOWRKFR	319-319
EMP:	Allocation flag for TNOWRKTO	ANOWRKTO	324-324
EMP:	Allocation flag for TPRVJBYR	APRVJBYR	282-282
EMP:	Did ... wk 6 strght mo ea yr since starting wk	EYRSINCE	302-303
EMP:	Did not wrk b/c was caring for child, elder,disable	EOFF6MTN	312-313
EMP:	End year, first spell of caregiving	TFSTYRTO	339-342
EMP:	Has ... generally worked 35 or more hours per week	EWRK35HR	309-310
EMP:	Has...stopped working to become caregiver 2+ times	EOTHTIME	328-329
EMP:	How many other brk in labr force b/c of care givng	ECNTOTHR	331-332
EMP:	How many years has ... not worked 6 straight months	EYRSINC2	305-307
EMP:	Main reason never wrk 6 mos at a pd job or business	EMNRESON	299-300
EMP:	Month ... started the job or business	EFRMRMN	291-292
EMP:	Month last worked at a paid job or business	ELSTWRKM	275-276
EMP:	Most recent time period this happened (report beg.)	TNOWRKFR	315-318
EMP:	Most recent time period this happened(report end)	TNOWRKTO	320-323
EMP:	Start year, first spell of caregiving	TFSTYRFR	334-337
EMP:	Universe indicator.	EAEMUNV	268-269
EMP:	Which was ...taking care of; child, elderly,disabled	ENWRESN	325-326
EMP:	Year ... started last paid job or business	TFRMRYR	286-289
EMP:	Year last worked at a paid job or business	TLSTWRKY	270-273
EMP:	Yr ... 1st wrk 6 straight mnths at some job or bus	TMAKMNYR	294-297
FA:	Family ID Number in month four	RFID	36-38
FA:	Family ID excluding related subfamily members	RFID2	39-41
HH:	Interview Status code for fifth month household	EOUTCOME	33-35
PE:	Address ID of hhld where person entered sample	EENTAID	45-47
PE:	Age as of last birthday	TAGE	72-73
PE:	Designated parent or guardian flag	RDESGPNT	91-92
PE:	Household relationship	ERRP	70-71
PE:	Marital status	EMS	74-74
PE:	Origin of this person	EORIGIN	58-59
PE:	Person index	EPPIDX	42-44
PE:	Person longitudinal key	LGTKEY	95-102
PE:	Person number	EPPPNUM	48-51
PE:	Person number of father	EPNDAD	83-86
PE:	Person number of guardian	EPNGUARD	87-90
PE:	Person number of mother .	EPNMOM.	79-82
PE:	Person number of spouse	EPNSPOUS	75-78
PE:	Person's 4th month interview status	EPPMIS4	55-55
PE:	Person's interview status at time of interview	EPPINTVW	53-54
PE:	Population status based on age in fourth ref. month	EPOPSTAT	52-52
PE:	Race of this person	ERACE	57-57
PE:	Sex of this person	ESEX	56-56
RC:	Allocation flag for mnth started child's SS payment	AKCOVB1M	136-136
RC:	Allocation flag for month started child's Fed SSI .	AKCOVB3M.	144-144
RC:	Allocation flag for month started child's State SSI	AKCOVB4M	152-152
RC:	Allocation flag for year started child's Fed SSI .	AKCOVB3Y	141-141
RC:	Allocation flag for year started child's State SSI	AKCOVB4Y	149-149
RC:	Allocation flag for yr started child's SS payments	AKCOVB1Y	133-133
RC:	Month applied for Food Stamps	EFBG120M	121-122

	Description	Variable	Position
RC:	Month applied for Food Stamps allocation flag	AFBG120M	123-123
RC:	Month applied for WIC	EWBG120M	113-114
RC:	Month applied for WIC allocation flag	AWBG120M	115-115
RC:	Month applied for public assistance	EYBG120M .	105-106
RC:	Month applied for public assistance allocation flag	AYBG120M .	107-107
RC:	Month started Federal SSI for child	EKCOVB3M	142-143
RC:	Month started Social Security payments for child	EKCOVB1M	134-135
RC:	Month started State SSI for child	EKCOVB4M	150-151
RC:	Universe indicator.	ERCUNV	103-104
RC:	Year applied for Food Stamps	TFBG120Y	124-127
RC:	Year applied for Food Stamps allocation flag	AFBG120Y	128-128
RC:	Year applied for WIC .	TWBG120Y .	116-119
RC:	Year applied for WIC allocation flag	AWBG120Y .	120-120
RC:	Year applied for public assistance	TYBG120Y	108-111
RC:	Year applied for public assistance allocation flag	AYBG120Y	112-112
RC:	Year started Federal SSI for child	TKCOVB3Y .	137-140
RC:	Year started Social Security payments for child	TKCOVB1Y .	129-132
RC:	Year started State SSI for child	TKCOVB4Y .	145-148
REC:	Allocation flag for EAFDCLM	AAFDCLM	202-202
REC:	Allocation flag for EAFDCSTM	AAFDCSTM	194-194
REC:	Allocation flag for EAPLAFDC	AAPLAFDC	188-188
REC:	Allocation flag for EAPLAFDC	ACURAFDC	185-185
REC:	Allocation flag for EAPLAFDC	ACURSSI	213-213
REC:	Allocation flag for EAPLFS	AAPLFS	160-160
REC:	Allocation flag for ECURFS	ACURFS	157-157
REC:	Allocation flag for EFSLM .	AFSLM	174-174
REC:	Allocation flag for EFSSTRMN	AFSSTRMN .	166-166
REC:	Allocation flag for ERCVAFDC	ARCVAFDC	191-191
REC:	Allocation flag for ERECVFS	ARECVFS	163-163
REC:	Allocation flag for ESSISTRM	ASSISTRM	222-222
REC:	Allocation flag for TAFDCLY	AAFDCLY	207-207
REC:	Allocation flag for TAFDCSTY	AAFDCSTY	199-199
REC:	Allocation flag for TAFDCTIM .	AAFDCTIM	210-210
REC:	Allocation flag for TFSLY	AFSLY	179-179
REC:	Allocation flag for TFSSTRYR	AFSSTRYR	171-171
REC:	Allocation flag for TFSTIMES	AFSTIMES	182-182
REC:	Allocation flag for TSSILY...	ASSILY	235-235
REC:	Allocation flag for TSSISTRY	ASSISTRY	227-227
REC:	Any other time authorized to recieve SSI .	ECURSSI	211-212
REC:	Any other time authorized to recieve public assist	ECURAFDC	183-184
REC:	Authorized to receive AFDC, TANF, or State Named	ERCVAFDC	189-190
REC:	Authorized to receive Food Stamps	ERECVFS	161-162
REC:	Authorized to receive SSI	ERECVSSI	217-218
REC:	Authorized to receive SSI allocation flag	ARECVSSI	219-219
REC:	Ever applied for AFDC, TANF, or State Named Program	EAPLAFDC .	186-187
REC:	Ever applied for Food Stamp Program	EAPLFS	158-159
REC:	Ever applied for SSI allocation flag ...	AAPLSSI	216-216
REC:	Ever applied for SSI program	EAPLSSI	214-215
REC:	Last mnth received AFDC, TANF, or St Named Benefits	EAFDCLM	200-201
REC:	Length of time received SSI(months)	ESSILM	228-229
REC:	Length of time received SSI(years)	TSSILY.	231-234

Description Variable Position
REC: Length of time received SSI(years) allocation flg ASSILM 230-230
REC: Length of time received food stamp(months) EFSLM 172-173
REC: Length of time received food stamp(years) TFSLY 175-178
REC: Month first received AFDC/ADC benefits EAFDCSTM 192-193
REC: Month first received SSI benefits ESSISTRM 220-221
REC: Month first received food stamp EFSSTRMN 164-165
REC: Number of times received AFDC, TANF, or State Named TAFDCTIM 208-209
REC: Number of times received food stamps TFSTIMES 180-181
REC: Other Times When Authorized to Receive Food Stamps ECURFS 155-156
REC: Universe indicator EARCUNV 153-154
REC: Year 1st received AFDC, TANF, or State Named Prog TAFDCSTY 195-198
REC: Year first received SSI benefits TSSISTRY 223-226
REC: Year first received food stamp TFSSTRYR 167-170
REC: Year last received AFDC, TANF, or State Named TAFDCLY 203-206
SU: FIPS State Code for fifth month household TFIPSST 25-26
SU: Hhld Address ID in fourth reference month SHHADID 27-29
SU: Hhld Address ID of person in interview month SINTHHID 30-32
SU: Rotation of data collection SROTATON 24-24
SU: Sample Code - Indicates Panel Year SPANEL 18-21
SU: Sample Unit Identifier SSUID 6-17
SU: Sequence Number of Sample Unit - Primary Sort Key SSUSEQ 1-5
SU: Wave of data collection SWAVE 22-23
WW: Person weight WPFINWGT 60-69

ALPHABETICAL VARIABLE LISTING TO 2001 WAVE 1 TOPICAL MODULE FILES

Key to Concept Labels

AHI - Embedded Health Insurance Topical Module Variables
ED - Education Variables
EMP - Employment History Topical Module Variables
FA - Family Variables
HH - Household Variables
PE - Person, Demographic, and Coverage Variables
RC - Embedded Recipiency History Topical Module Variables
REC - Recipiency History Topical Module Variables
SU - Sample Unit Variables
WW - Weighting Variables

Variable		Description	Position
AAFDCLM	REC:	Allocation flag for EAFDCLM	202-202
AAFDCLY	REC:	Allocation flag for TAFDCLY	207-207
AAFDCSTM	REC:	Allocation flag for EAFDCSTM	194-194
AAFDCSTY	REC:	Allocation flag for TAFDCSTY	199-199
AAFDCTIM	REC:	Allocation flag for TAFDCTIM	210-210
AAPLAFDC	REC:	Allocation flag for EAPLAFDC	188-188
AAPLFS	REC: ..	Allocation flag for EAPLFS	160-160
AAPLSSI	REC:	Ever applied for SSI allocation flag	216-216
ACDBEGMO	AHI:	Allocation flag for ECDBEGMO	245-245
ACDBEGYR	AHI:	Allocation flag for TCDBEGYR	242-242
ACNTOTHR	EMP:	Allocation flag for ECNTOTHR	333-333
ACURAFDC	REC:	Allocation flag for EAPLAFDC	185-185
ACURFS	REC: .	Allocation flag for ECURFS	157-157
ACURSSI	REC:	Allocation flag for EAPLAFDC	213-213
AFBG120M	RC:	Month applied for Food Stamps allocation flag	123-123
AFBG120Y	RC:	Year applied for Food Stamps allocation flag	128-128
AFRMRMN	EMP:	Allocation flag for EFRMRMN	293-293
AFRMRYR	EMP:	Allocation flag for TFRMRYR	290-290
AFRSTRSN	EMP:	Allocation flag for EFRSTRSN	346-346
AFSLM	REC:	Allocation flag for EFSLM	174-174
AFSLY	REC:	Allocation flag for TFSLY	179-179
AFSSTRMN	REC:	Allocation flag for EFSSTRMN	166-166
AFSSTRYR	REC:	Allocation flag for TFSSTRYR	171-171
AFSTIMES	REC: ..	Allocation flag for TFSTIMES	182-182
AFSTYRFR	EMP: .	Allocation flag for TFSTYRFR	338-338
AFSTYRTO	EMP:	Allocation flag for TFSTYRTO	343-343
AHIALLCV	AHI:	Allocation flag for EHIALLCV	248-248
AHICVMTH	AHI:	Allocation flag for EHICVMTH	267-267
AHICVYR	AHI:	Allocation flag for THICVYR	264-264
AHIEVRCV	AHI:	Allocation flag for EHIEVRCV	259-259
AHINOMTH	AHI:	Allocation flag for EHINOMTH	256-256
AHINOYR ...	AHI:	Allocation flag for THINOYR	253-253
AKCOVB1M	RC:	Allocation flag for mnth started child's SS paymen	136-136
AKCOVB1Y	RC:	Allocation flag for yr started child's SS payments	133-133

Variable		Description	Position
AKCOVB3M	RC:	Allocation flag for month started child's Fed SSI	144-144
AKCOVB3Y	RC:	Allocation flag for year started child's Fed SSI	141-141
AKCOVB4M	RC:	Allocation flag for month started child's State SSI	152-152
AKCOVB4Y	RC:	Allocation flag for year started child's State SSI	149-149
ALSTWRKM	EMP:	Allocation flag for ELSTWRKM	277-277
ALSTWRKY	EMP:	Allocation flag for TLSTWRKY	274-274
AMAKMNYR	EMP:	Allocation flag for TMAKMNYR	298-298
AMNRESON	EMP:	Allocation flag for EMNRESON	301-301
ANOWRKFR .	EMP:	Allocation flag for TNOWRKFR	319-319
ANOWRKTO .	EMP:	Allocation flag for TNOWRKTO	324-324
ANWRESN	EMP:	Allocation flag for ENWRESN	327-327
AOFF6MTN	EMP:	Allocation flag for EOFF6MTN	314-314
AOTHTIME	EMP:	Allocation flag for EOTHTIME	330-330
APRVJBMN	EMP:	Allocation flag for EPRVJBMN	285-285
APRVJBYR	EMP:	Allocation flag for TPRVJBYR	282-282
ARCVAFDC	REC:	Allocation flag for ERCVAFDC	191-191
ARECVFS	REC:	Allocation flag for ERECVFS	163-163
ARECVSSI	REC:	Authorized to receive SSI allocation flag	219-219
ASSILM	REC:	Length of time received SSI(years) allocation flg	230-230
ASSILY	REC:	Allocation flag for TSSILY	235-235
ASSISTRM	REC:	Allocation flag for ESSISTRM	222-222
ASSISTRY	REC:	Allocation flag for TSSISTRY	227-227
AWBG120M	RC:	Month applied for WIC allocation flag	115-115
AWBG120Y	RC:	Year applied for WIC allocation flag	120-120
AWRK35HR	EMP:	Allocation flag for EWRK35HR	311-311
AYBG120M	RC:	Month applied for public assistance allocation flag	107-107
AYBG120Y	RC:	Year applied for public assistance allocation flag	112-112
AYRSINC2	EMP:	Allocation flag for EYRSINC2	308-308
AYRSINCE	EMP:	Allocation flag for EYRSINCE	304-304
EAEMUNV	EMP:	Universe indicator	268-269
EAFDCLM	REC:	Last mnth received AFDC, TANF, or St Named Benefits	200-201
EAFDCSTM	REC: ..	Month first received AFDC/ADC benefits	192-193
EAHIUNV	AHI:	Universe indicator.	236-237
EAPLAFDC	REC: ...	Ever applied for AFDC, TANF, or State Named Program	186-187
EAPLFS	REC: ...	Ever applied for Food Stamp Program	158-159
EAPLSSI	REC: ..	Ever applied for SSI program	214-215
EARCUNV	REC: ..	Universe indicator.	153-154
ECDBEGMO	AHI:	In what month did ... become covered by Medicaid?	243-244
ECNTOTHR	EMP:	How many other brk in labr force b/c of care givng	331-332
ECURAFDC	REC:	Any other time authorized to recieve public assist	183-184
ECURFS	REC: ...	Other Times When Authorized to Receive Food Stamps	155-156
ECURSSI	REC:	Any other time authorized to recieve SSI	211-212
EEDUCATE	ED:	Highest Degree received or grade completed	.. 93-94
EENTAID	PE:	Address ID of hhld where person entered sample	45-47
EFBG120M	RC:	Month applied for Food Stamps	121-122
EFRMRMN	EMP:	Month ... started the job or business	291-292
EFRSTRSN	EMP:	1st of $2+$ spells ...caring for child, eld, or disab	344-345
EFSLM	REC	: Length of time received food stamp(months)	172-173
EFSSTRMN	REC:	Month first received food stamp	164-165
EHIALLCV	AHI:	Has ... always been covered by health insurance?	246-247
EHICVMTH	AHI:	In what month was ... last covered by health ins	265-266

Variable	Description Position
EHIEVRCV AHI:	Has ... ever been covered by health insurance? ... 257-258
EHINOMTH AHI:	In what mnth was ... last not covered by health ins? 254-255
EKCOVB1M RC:	Month started Social Security payments for child ... 134-135
EKCOVB3M RC:	Month started Federal SSI for child .. 142-143
EKCOVB4M RC:	Month started State SSI for child ... 150-151
ELSTWRKM EMP:	Month last worked at a paid job or business ... 275-276
EMNRESON EMP:	Main reason never wrk 6 mos at a pd job or business 299-300
EMS PE:	Marital status .. 74-74
ENWRESN EMP:	Which was ..taking care of; child,elderly,disabled ... 325-326
EOFF6MTN EMP:	Did not wrk b/c was caring for child,elder,disable .. 312-313
EORIGIN PE:	Origin of this person ... 58-59
EOTHTIME EMP:	Has...stopped working to become caregiver 2+ times 328-329
EOUTCOME HH:	Interview Status code for fifth month household ... 33-35
EPNDAD PE:	Person number of father ... 83-86
EPNGUARD PE:	Person number of guardian ... 87-90
EPNMOM PE:	Person number of mother ... 79-82
EPNSPOUS PE:	Person number of spouse .. 75-78
EPOPSTAT PE:	Population status based on age in fourth ref. month .. 52-52
EPPIDX PE:	Person index ... 42-44
EPPINTVW PE:	Person's interview status at time of interview ... 53-54
EPPMIS4 PE:	Person's 4th month interview status ... 55-55
EPPPNUM PE:	Person number .. 48-51
EPRVJBMN EMP:	(Before 1st ref mnth) mnth last wrk at pd jb or bs ... 283-284
ERACE PE:	Race of this person .. 57-57
ERCUNV RC:	Universe indicator. ... 103-104
ERCVAFDC REC:	Authorized to receive AFDC, TANF, or State Named 189-190
ERECVFS REC:	Authorized to receive Food Stamps .. 161-162
ERECVSSI REC:	Authorized to receive SSI .. 217-218
ERRP PE:	Household relationship ... 70-71
ESEX PE:	Sex of this person .. 56-56
ESSILM REC:	Length of time received SSI(months) .. 228-229
ESSISTRM REC:	Month first received SSI benefits ... 220-221
EWBG120M RC:	Month applied for WIC .. 113-114
EWRK35HR EMP:	Has ... generally worked 35 or more hours per week 309-310
EYBG120M RC:	Month applied for public assistance ... 105-106
EYRSINC2 EMP:	How many years has ... not worked 6 straight months 305-307
EYRSINCE EMP:	Did ... wk 6 strght mo ea yr since starting wk .. 302-303
LGTKEY PE:	Person longitudinal key .. 95-102
RDESGPNT PE:	Designated parent or guardian flag .. 91-92
RFID FA:	Family ID Number in month four ... 36-38
RFID2 FA:	Family ID excluding related subfamily members ... 39-41
SHHADID SU:	Hhld Address ID in fourth reference month ... 27-29
SINTHHID SU:	Hhld Address ID of person in interview month ... 30-32
SPANEL SU:	Sample Code - Indicates Panel Year ... 18-21
SROTATON SU: .	Rotation of data collection .. 24-24
SSUID SU:	Sample Unit Identifier ... 6-17
SSUSEQ SU:	Sequence Number of Sample Unit - Primary Sort Key ... 1-5
SWAVE SU:	Wave of data collection ... 22-23
TAFDCLY REC:	Year last received AFDC, TANF, or State Named ... 203-206
TAFDCSTY REC:	Year 1st received AFDC, TANF, or State Named Prog 195-198
TAFDCTIM REC:	Number of times received AFDC, TANF, or State Named 208-209

Variable	Description Position
TAGE PE:	Age as of last birthday ... 72 - 73
TCDBEGYR AHI:	In what year did ... become covered by Medicaid? .. 238-241
TFBG120Y RC:	Year applied for Food Stamps ... 124-127
TFIPSST SU:	FIPS State Code for fifth month household ... 25-26
TFRMRYR EMP:	Year ... started last paid job or business ... 286-289
TFSLY REC:	Length of time received food stamp(years) ... 175-178
TFSSTRYR REC:	Year first received food stamp .. 167-170
TFSTIMES REC:	Number of times received food stamps .. 180-181
TFSTYRFR EMP:	Start year, first spell of caregiving ... 334-337
TFSTYRTO EMP:	End year, first spell of caregiving .. 339-342
THICVYR AHI:	In what year was ... last covered by health ins .. 260-263
THINOYR AHI:	In what year was ... last not covered by health ins? .. 249-252
TKCOVB1Y RC:	Year started Social Security payments for child ... 129-132
TKCOVB3Y RC:	Year started Federal SSI for child ... 137-140
TKCOVB4Y RC:	Year started State SSI for child .. 145-148
TLSTWRKY EMP:	Year last worked at a paid job or business ... 270-273
TMAKMNYR EMP:	Yr ... 1st wrk 6 straight mnths at some job or bus .. 294-297
TNOWRKFR EMP:	Most recent time period this happened (report beg.) 315-318
TNOWRKTO EMP:	Most recent time period this happened(report end) .. 320-323
TPRVJBYR EMP:	(Before 1st ref mnth) yr last work at pd jb or bs ... 278-281
TSSILY REC:	Length of time received SSI(years) .. 231-234
TSSISTRY REC:	Year first received SSI benefits .. 223-226
TWBG120Y RC:	Year applied for WIC ... 116-119
TYBG120Y RC:	Year applied for public assistance ... 108-111
WPFINWGT WW:	Person weight .. 60-69

HOW TO USE THE DATA DICTIONARY

The Data Dictionary describes the file contents and provides locations for each variable (record layout of the public-use computer tape file.) The first line ("D" Line) of each data item description gives the variable name, size of the data field, and the begin position of that field. The components include a short mnemonic or field name for use with software packages; field size; starting position; and a description of field contents with possible values.

The next few lines contain descriptive text and any applicable notes. Categorical value codes and labels are given where needed. Comment notes marked by an $\left({ }^{*}\right)$ are provided throughout for the rest of the dictionary components. Comments should be removed from the machine-readable version of the data dictionary before using it to help access the data file.

The first line of each data item description begins with the character "D" (left-justified, two characters). The " D " flag indicates lines in the data dictionary containing the name, size and begin position of each data item. The second line of each data item description begins with the character "T" (left-justified, two characters). The " T " flag indicates lines in the data dictionary containing the category code and short description of the variable. The line beginning with the character "U" describes the universe for that item. Lines containing categorical value codes and labels follow next and begin with the character " V ". The special character (.) denotes the start of the value labels. Two examples of data item descriptions follow:

```
D RNOTAKE 2 813
T LF: Reason coul dn't start job
            Why coul dn't ... have started a job?
U All persons 15+ at the end of the
    reference peri od who were unable to start
    a job during weeks on Iayoff or looking
    for work.
    EPOPSTAT = 1 and RTAKJ OB = 2
V
1. Not in uni verse
    1. Waiting for a new job to begin
        2. Own temporary ill ness
        3.School
        4.Ot her
```


D RRRSN 21218
Gl: Reason for recei pt of Railroad
ement pay
For what reason or reasons did..
recei ve Rail road Retirement pay during
the ref erence peri od? 1 SS Code 2
U All persons 15 to 69 who recei ve
sability income and/or persons 15+ at
the end of the reference peri od who
recei ve retirement i ncome and/ or survi vor
benefits.
V
V
V
V
V
V
V
V
V
V
. Di sability
2. Ret i rement
3 . Sur vi or
4 . Di sability and reti rement
. Di sability and survi vor
. Ret i rement and survi vor
sur vi vor
. No payment recei ved

SURVEY OF INCOME AND PROGRAM PARTICIPATION, 2001 PANEL WAVE 1 TOPICAL MODULE DATA DICTIONARY

T SU: Wave of data collection
Wive of data coll ection. The range of this variable is 1 through 12 to
represent each wave in the 1996 Panel.
For a specific cross-sectional product, the wave remai ns constant.
U All persons
\checkmark 1:12. Weve of data collection
D SROTATON 1 24
T SU: Rotation of data coll ection
Rotati on within wave. Each wave of data is col lected over a four cal endar nont h period. The rot ation field i ndi cates which month within the wave a particular interview was conducted.
$\underset{V}{ } \mathrm{All}$ persons
D TFI PSST ${ }^{2}{ }^{25}$ fips ftate Code for fifth month
T SU: FIM
household
FI PS St ate Code Feder al I nf ormati on Processing St andards state (and state equi val ent) code for the 50 states, and DC. For the Sampl e Unit

U All persons

25 . Massachusetts
26. M chi gan

27 . M nnesota
28 . M ssi ssi ppi
29 . M ssouri
30 . Mbnt ana
31 . Nebr aska
32 . Nevada
33 . New Hampshi re
34 . New Hersey
.new vexico
36 . New York
37 . North Carolina
39 . Ohi o
40. Okl ahonm
41. Oregon

42 . Pennsyl vani a
44 . Rhode I sl and
45 . South Car ol i na
47 . Tennessee
48 . Texas
49. Utah

51 . Virginia
53 . Washi ngt on
54 . West Virgi nia
55 . Wisconsin
61 . Mai ne, Vernont
62 . North' Dakota, South Dakota, wyoming
D SHHAD D
3
27

T SU: Hhl d Address ID in fourth reference month

Househol d Address ID. This field
differentiates househol ds wi thi n the
sampl e PSU, segment, serial, serial
suffix; that is, househol ds' spawned from
an origi nal sample househol d. The Address
ID in a speci fic wave should never be
greater than (WAVE * 10 +9).
U All per sons
\checkmark 11: 129 . Househol d Address ID
D SI NTHH D 30
T SU: Hhl d Address ID of person in intervi ew nont h

Address ID of this per son at time of
interview (fifth month). Address ID in a specific wave should never be great er than (WAVE * $10+9$).
V 11.99 . Not in uni verse
11: 99 . Househol d Address ID
D EOTCOME ${ }^{3}$ Hi ${ }^{33}$ int er vi ew St at us code for fifth month househol d

Househol d i nt er vi ew st at us. I n Wive 1,
the onl y val id codes are 201, 203 and
207.
203. Compl ; partial-missing data; no - TYPE- Z
207. Compl et e partial - TYPE-Z; no further follow up
213 . TYPE-A, language probl em
215. TYPE-A, i nsuffici ent partial
216. TYPE-A, no one hone (noh)

217 . TYPE-A, temporarily absent (ta)
218 . TYPE-A, hh ref used

DATA SI ZE BEG N

D EORI G N 258
T PE: Origin of this person

1. Canadi an
2. Dutch
3. Engl i sh
4. Engl i sh

4 . French
5
6
6 . French7. Hungari an 8. Hungar
9.Ital i an
10. Pol i sh
11. Russi an

12 . Scandi navi an
13 . Scot ch-I rish
14 . Scottish
15 . Sl ovak

DATA	SI ZE BEGI N
V	$35.9 t$
V	$36.10 t h$ grade
V	$37.11 t h$ grade
V	38.12 th grade
V	39. Hi gh school graduate - hi g
V	school di pl onm or equi val ent
V	40. Sone coll ege but no degr ee
V	41. Di pl ont or certificate froma
V	voc, tech, trade or bus school
V	42. Associ ate degree in coll ege
V	. Occupati onal /vocational program
V	43. Associ ate Degree in coll ege -
V	44 . Academi c program
V	
V	45. Master's degree (For example:
V	MA, MS, MEng, MSW
V	46. Pr of essi onal School Degr
V	47 . Doct or at e degree (For exampl e:
V	. PhD, EdD)
D LTGTKEY Per son I ongitudi nal key	
The longit udi nal key is in sort by	
di gits of the key cont ai n a longitudi nal	
sample unit across all waves. The last	
three di gits contain a person' s i ndex	
whi ch identifies a per son within a sample	
al 1 naves. Thi s key can be used to nerge peopl e longi tudi nall y.	
U All persons	
$\checkmark 100$	000001 . Longi tudi nal Key
D ERCUNV RC Uni verse ${ }^{2}$ i ndi cator. Uni verse i ndi cat or.	
$\checkmark \mathrm{V}$ Al adul t with ISS code of $1,3,4,20,25,27$	
$\checkmark \quad 1.1 n$ uni verse	
D EYBG120M 2 105	
for the publ ic assi stance such as AFDC or TANF that ... recei ved in month 1?	
U All adults who recei ved public assistance in month 1	
V 1:12. Mbnt h appl i ed for publ i c	
$\begin{aligned} & \text { D AYBG120M } \stackrel{1}{107} \\ & \text { T RC: Mbnt } \mathrm{h} \text { appl ied } \stackrel{10}{\text { for publ ic assi stance }} \end{aligned}$	
allocation flag I mutation flag for EYBG120M	
$\checkmark \quad 0$. Not i mput ed	
\checkmark 1.in	
	2. Cold Deck I mputation
$\checkmark \quad 3$. Logical Imputation (Deri vation)	
D TYBG120Y 4108 T RC: Year applied for publ ic assistance BEG120@EAR In what year did... apply for the publ ic assi stance such as AFDC, TANF, or [state named] that ... recei ved in month 1 ?	
U Al I adults who recei ved public assistance in month 1	
V 1972: 2001. Not in uni verse V 1972: 2001. Year appli ed for public	

SIPP 2001 WAVE 1 TOPICAL MODULE

DATA SI ZE BEG N
V 1: 12. Mbnth first start recei ving AFDC
D AAFDCSTM 1 Al 194 fact ion flag or EAFDCSTM

AFDCWHEN@AFSTRTM Al l ocat i on flag for

nont h 1st recei ved AFDC, TANF, or [St at e Naned] pr ogram
V
V
V
V
 . deck)
2. Col d deck i mputat i on
3. Logi cal i mput at i on (der i vat i on)

D TAFDCSTY 4 195
T REC: Year 1st recei ved AFDC, TANF, or St ate Named Prog

AFDCWHEN@AFSTRTY When di d... first start recei ving_publ ic assistance benefits such as AFDC, TANF, or [St at e Named] programp
U Al I adul ts that recei ve AFDC and EPOPSTAT=1 and EAPLAFDC=1 and ERCVAFDC=1
$\begin{array}{lll}V & \text {. Not in uni ver se } \\ V & \text { 1976: } 2001 \text {. Year first recei ved AFDC }\end{array}$
D AAFDCSTY 1 Al 199 for TAFDCSTY
AFDCWHEN@AFSTRTY Al locat i on flag for year 1st recei ved AFDC, TANF, or [State Named] benefits

0 . Not i mputed
$\vee 1$ 1. Statistical imputation (hot . deck)
2. Col d deck i mputat i on

3 . Logi cal i mput at i on (deri vation)
D EAFDCLM 2200
T REC: Last mith recei ved AFDC, TANF, or St Named Benefits

TMAFDCLG@1 When di d...I I ast recei ve
publ ic assi stance such as AFDC, TANF, or
[State Naned] benefits?
U Al adul ts that recei ve AFDC and EPOPSTAT=1 and EAPLAFDC $=1$ and ERCVAFDC $=1$ and EAFDCSTY ${ }^{1}$ >0
V
V
-1. Not in uni verse
1: 12 . Mbnt h I ast recei ved AFDC, TANF, . or State Named benefits

D AAFDCLM $1 \quad 202$
T REC: Al locat ion flag for EAFDCLM
TMAFDCLG@l Al ocati on flag for l ength of
ti ne recei ved AFDC, TANF, or [St ate
Named] ${ }_{0}$ (mont h) Not mput ed
V
V
V
V
V
0 . Not i mputed
1 . Stat istical imput at ion (hot
. deck)
2. Col d deck i mputat i on
3. Logi cal imputation (deri vation)

D TAFDCLY 4203
T REC: Year last recei ved AFDC, TANF, or State Naned

TMAFDCLG@2 When did... I ast recei ve
publ ic assi stance such as AFDC, TANF, or
State Named]?
U Al adul ts that recei ve AFDC and EPOPSTAT=1 and EAPLAFDC $=1$ and ERCVAFDC $=1$ and EAFDCSTY >0
\checkmark - V. Not in uni verse
V 1981: 2001. Year I ast recei ved AFDC, TANF,

TMAFDCLG@2 Al l ocation flag for length of

SIPP 2001 WAVE 1 TOPICAL MODULE

DATA SI ZE BEG N
CAI DBEGMTH Al I ocation flag for month nedi cai d coverage began

0 . No it mput at in on
1 . St at istical imput at i on (hot 1. St at i
2. Col d deck
3. Logi cal i mput ation (deri vation)
V
V
V
V
V
D E AH
in

DATA	TA SI BE BEG N
3. Logi cal i mputation (derivation)	
D EHI EVRCV 2257 T AH: Has ... ever been covered by heal th i nsur ance? HI NOLNGYR/ HI NOLNGMTH Has ... ever been covered by heal th insurance?	
U All persons 15+ who are not covered by heal $t h$ insurance in the first month of the reference peri od 	
$\checkmark 2$. No	
D AH EVRCV $1 \quad 259$ T AH: Al l ocat ion flag for EHI EVRCV HI NOLNGYR/ HI NOLNGMTH All ocat ion flag for ever been cover ed by heal $t h$ i nsur ance	
V	
D THI CVYR ${ }^{4}{ }^{4} 260$ AH In what year was ... I ast covered by heal th ins HI NOLNGYR HI NOLNGMTH In what year was... l ast covered by heal $t h$ i nsur ance?	
U All persons $15+$ with EHI EVRCV $=1$ \checkmark - 1 . Not in uni verse	
V 1974: 2000 . Year I ast cover ed	
D AH CVYR ${ }^{1}{ }^{1}$ AH : 264 Al ocat il on flag for THI CVR HI NOLNGYR HI NOLNGMTH Al I ocat i on flag for year I ast cover ed by heal th i nsur ance	
0 . No i mput at o	
Cold dec	
$\checkmark \quad 3$. Logi cal i mputat i on (deri vation)	
D EH CVMTH 2265 T AH: In what month was ... I ast covered by heal th ins HI NOLNGYR/ HI NOLNGMTH I n what nont h was l ast covered by heal th i nsur ance?	
U Al I persons $15+$ with EHI CVYR > intervi ew year- 3	
	12 . Mbnth I ast cove
D AH CVMTH 1267 T AH: Al locat ion flag for EHI CVMTH HI NOLNGYR/ HI NOLNGMTH Al I ocat i on flag for nonth last covered by heal th insurance	
	0 . No imputation
	Statistical imputation (hot
	3. Logi cal i mputat i on (deri vation)
D EAEMUN 2268 T EMP: Uni verse i ndi cat or Uni ver se i ndi cator.	
U Al I adults V $-\frac{1}{1}$. Not in uni verse V n uni verse	
D TLSTWRKY $4 \quad 4 \quad 270$T EMP: Year I ast worked at a paid j ob orbusi nessLSTWRKY In what year did... I ast nork	

SOURCE AND ACCURACY STATEMENT
 for the 2001 Public Use Files from the Survey of Income and Program Participation ${ }^{1}$

SOURCE OF DATA

The data were collected in the 2001 panel of the Survey of Income and Program Participation (SIPP). The population represented (the population universe) in the 2001 SIPP is the civilian noninstitutionalized population living in the United States. The institutionalized population, which is excluded from the population universe, is composed primarily of the population in correctional institutions and nursing homes (91 percent of the 4.1 million institutionalized people in Census 2000). The population includes persons living in group quarters, such as dormitories, rooming houses, and religious group dwellings. Crew members of merchant vessels, Armed Forces personnel living in military barracks, and institutionalized persons, such as correctional facility inmates and nursing home residents, were not eligible to be in the survey. Also, United States citizens residing abroad were not eligible to be in the survey. Foreign visitors who work or attend school in this country and their families were eligible; all others were not eligible to be in the survey. With the exceptions noted above, persons who were at least 15 years of age at the time of the interview were eligible to be in the survey.

The 2001 panel of the SIPP sample is located in 322 Primary Sampling Units (PSUs), each consisting of a county or a group of contiguous counties. Within these PSUs, living quarters (LQs) were systematically selected from lists of addresses prepared for the 1990 decennial census to form the bulk of the sample. To account for LQs built within each of the sample areas after the 1990 census, a sample containing clusters of four LQs was drawn of permits issued for construction of residential LQs up until shortly before the beginning of the panel.

In jurisdictions that do not issue building permits or have incomplete addresses, we systematically sampled expected clusters of four LQs which were listed by field personnel and then subsampled in the field. In addition, we selected sample LQs from a supplemental frame that included LQs identified as missed in the 1990 census.

Sample households within a given panel are divided into four random subsamples of nearly equal size. These subsamples are called rotation groups and one rotation group is interviewed each month. Each household in the sample was scheduled to be interviewed at 4 month intervals over a period of roughly 3 years beginning in February 2001. The reference period for the questions is the 4 -month period preceding the interview month. In general, one cycle of four interviews covering the entire sample, using the same questionnaire, is called a wave.
In Wave 1, we fielded a sample consisting of 88 reduction groups (88 comparable representative subsamples) which resulted in an average sampling interval of approximately 2,420 housing units. In this wave, we obtained interviews from occupants of about 35,100 of the 40,500 eligible living quarters. We found most of the remaining 15,400 living quarters in the panel to be vacant, demolished, converted to
${ }^{1}$ For questions or further assistance with the information provided in this document contact Jennifer A. Guarino of the Demographic Statistical Methods Division on (301) 763-6445 or via the e-mail using jennifer.a.guarino @census.gov.
nonresidential use, or otherwise ineligible for the survey. However, we did not interview approximately 5,400 of the 15,400 living quarters in the panel because the occupants, (1) refused to be interviewed, (2) could not be found at home, (3) were temporarily absent, or (4) were otherwise unavailable. Thus, occupants of about 87 percent of all eligible living quarters participated in the first interview of the panel.

Due to budget constraint, we cut the sample in Wave 2 by 13 reduction groups which resulted in an average sampling interval of approximately 2,840 housing units. We did not cut the sample in the remaining waves (Wave 3 to Wave 9). For interviews in Wave 2 to Wave 9, only original sample persons (those in Wave 1 sample households which survived the sample cut in Wave 2 and interviewed in Wave 1) and persons living with them were eligible to be interviewed. We followed original sample persons if they moved to a new address, unless the new address was more than 100 miles from a SIPP sample area. Then, we attempted telephone interviews. Based on these follow-up criteria, we interviewed about 28,100 living quarters of the approximately 30,500 eligible living quarters for Wave 2, about 27,500 living quarters of the approximately 30,900 eligible living quarters for Wave 3, about 27,200 living quarters of the approximately 31,100 eligible living quarters for Wave 4 , about 26,800 living quarters of the approximately 31,300 eligible living quarters for Wave 5 , about 26,600 living quarters of the approximately 31,400 eligible living quarters for Wave 6 , about 26,500 living quarters of the approximately 31,500 eligible living quarters for Wave 7 , about 26,000 living quarters of the approximately 31,600 eligible living quarters for Wave 8 , about 25,500 living quarters of the approximately 31,700 eligible living quarters for Wave 9. In each of these waves, we did not interview some of the eligible living quarters because the occupants either directly or indirectly refused our interview in the same manner described for Wave 1 or moved to an unknown address. The rates of noninterviewed living quarters due to direct or indirect refusal were 6.2% for Wave $2,8.4 \%$ for Wave 3, 9.5% for Wave 4, 10.9% for Wave 5, 11.6% for Wave 6, 12.3% for Wave 7, 13.3% for Wave 8, and 14.7% for Wave 9. The rates of non-interviewed living quarters due to moving to an unknown address were 1.7% for Wave 2, 2.7% for Wave 3, 3.2% for Wave 4, 3.6% for Wave 5, 3.7\% for Wave 6, 3.8\% for Wave 7, 4.5% for Wave 8, and 4.8% for Wave 9.

The public use files include core and supplemental (topical module) data. Core questions are repeated at each interview over the life of the panel. Topical modules include questions which are asked only in certain waves. The 2001 panel topical modules are given in Table 1.

Table 2 indicates the reference months and interview months for the collection of data from each rotation group for the 2001 panel. For example, Wave 1 rotation group 1 of the 2001 panel was interviewed in February 2001 and data for the reference months October 2000 through January 2001 were collected. This source and accuracy statement can also be accessed through the U.S. Census Bureau website at "http://www.sipp.census.gov/sipp/sourceac/S\&A01_w1tow9_cross_puf.pdf."

Estimation. We used several stages of weight adjustments in the estimation procedure to derive the SIPP cross-sectional person level weights. We gave each person a base weight (BW) equal to the inverse of probability of selection of a person's household. We applied two noninterview adjustment factors. One factor adjusted the weights of interviewed persons in interviewed households to account for households which were eligible for the sample but which field representatives could not interview at the first interview ($\mathrm{F}_{\mathrm{N} 1}$). The second factor compensated for person noninterviews occurring in subsequent interviews ($\mathrm{F}_{\mathrm{N} 2}$). We used a Duplication Control Factor (DCF) which adjusts for subsampling done in the field when the number of sample units is much larger than expected. We applied a Mover's Weight
(MW), which adjusts for persons in the SIPP universe who move into sample households after Wave 1. The last factor applied is the Second Stage Adjustment Factor ($\mathrm{F}_{2 \mathrm{~s}}$). This factor adjusts estimates to population controls and causes husbands' and wives' weights to be equal. See the next section on population controls for more information on how they are obtained.

Population Controls. This survey's estimation procedure adjusts weighted sample results to agree with independently derived population estimates of the civilian noninstitutional population of the United States. We control to independent population estimates in an attempt to reduce our mean square error by partially correcting for undercoverage. To obtain the controls, we take the CPS weights and do a "March type" family equalization. That is, we assign wives' weights to husbands and then proportionally adjust the weights of persons by month, rotation group, race, sex, age, and by the marital and family status of householders. Using these weights with CPS data, the controls for SIPP are obtained. These are prepared annually to agree with the most current set of population estimates that are released as part of the Census Bureau's population estimates and projections program.

The population controls for the nation are distributed by demographic characteristics in two ways:

- age, sex, and race (Non Black, Black) and
- age, sex, and Hispanic origin.

The estimates begin with the latest decennial census as the base and incorporate the latest available information on births and deaths along with the latest estimates of net international migration.

The net international migration component in the population estimates includes a combination of:

- legal migration to the U.S.,
- emigration of foreign born and native people from the U.S.,
- net movement between the U.S. and Puerto Rico,
- estimates of temporary migration, and
- estimates of net residual foreign-born population, which include unauthorized migration.

Because the latest available information on these components lag the survey date, to develop the estimate for the survey date, it is necessary to make short-term projections of these components.
The final cross-sectional weight is $\mathbf{F w}_{\mathbf{c}}=\mathbf{B W} \mathbf{x} \mathbf{D C F} \mathbf{x} \mathbf{F}_{\mathbf{n} \mathbf{1}} \mathbf{x} \mathbf{F}_{2 \mathrm{~S}}$ for Wave 1 and is $\mathbf{F w}_{\mathbf{c}}=\mathbf{I W} \times \mathbf{F}_{\mathbf{n} 2} \times \mathbf{F}_{2 \mathrm{~s}}$ for Waves 2+, where IW is either BW $\mathbf{x D C F} \mathbf{x F}{ }_{\mathrm{n} 1}$ or MW. James (1995) and Siegel (1995a) describe SIPP cross-sectional weighting in greater detail.

Researchers both inside and outside the Census Bureau conducted evaluations of SIPP weighting methodology and researched alternative methodologies. Several improvements to SIPP weighting methods were implemented beginning with the 1996 panel. They are described below.

- We dropped the first stage factor $\left(\mathrm{F}_{1 \mathrm{~s}}\right)$ from cross-sectional weighting. This factor adjusted for differences between the Census count of population and an estimate of that count based on Census data for sample PSUs. James (1994) found that it did not reduce variance as was previously believed. Jabine, et al (1990) describe the first stage factor used in earlier panels.
- We are using additional variables in nonresponse adjustment. We added high/low poverty stratum code to the Wave 1 nonresponse adjustment, and we added household income, geographic
division, and number of imputations for selected income and asset items to the nonresponse adjustment for Waves 2+. Research by Rizzo, et al (1994) and by Folsom and Witt (1994) pointed out the potential of the latter three variables in reducing nonresponse bias.
- We redefined nonresponse adjustment cells for Waves 2+ weighting. We formed the nonresponse cells by successively partitioning data from five panels by whichever variable most reduced the bias of the household income to poverty threshold ratio. We used data from a sixth panel to evaluate the results. We calculated the nonresponse bias of six variables at Waves 2 and 7 for both the new cells and the original cells using initial weights and data from the most recent interview in the calculations. The new cells had lower bias for five of the six variables (Siegel, 1995b).

Research was conducted on a number of promising weighting improvements. Allen and Petroni (1994) reported on an adjustment for mover attrition. Folsom and Witt (1994) and Rizzo, et al (1994) studied alternative nonresponse adjustments using response propensity models. Each study computed weights using an alternative methodology. The researchers then compared estimates of various items to benchmarks. The benchmarks came from administrative records and survey data with less nonresponse than the SIPP. The comparisons did not provide strong evidence of lower bias using the alternative weighting methods.

Additional Methodology

Use of Weights. Each household and each person within each household, on each core wave file has four weights. These four weights are reference month specific and therefore can be used only to form reference month estimates. Reference month estimates can be averaged to form estimates of monthly averages over some period of time.

Example, using the proper weights, one can estimate the monthly average number of households in a specified income range over November and December 2001. To estimate monthly averages of a given measure (such as, total, mean) over a number of consecutive months, sum the monthly estimates and divide by the number of months.

To form an estimate for a particular month, use the reference month weight for the month of interest, summing over all persons or households with the characteristic of interest whose reference period includes the month of interest. Multiply the sum by a factor to account for the number of rotations contributing data for the month. This factor equals four divided by the number of rotations contributing data for the month. For example, December 2000 data is only available from rotations 1, 2, and 3 for Wave 1 of the 2001 panel (See Table 2), so a factor of $4 / 3$ must be applied.

When estimates for months with less than four rotations worth of data are constructed from a wave file, factors greater than 1 must be applied, as above. However, when core data from consecutive waves are used together, data from all four rotations may be available, in which case the factors are equal to 1 .

These core wave files contain no weight for characteristics that involve a persons's or household's status over two or more months (such as, number of households with a 50 percent increase in income between December 2000 and January 2001).

Producing Estimates for Census Regions and States. The total estimate for a region is the sum of the state estimates in that region. Using this sample, estimates for individual states are subject to very high variance and may not be state representative due to the nature of the sample design. Therefore, estimates for individual states are not recommended. The state codes on the file are primarily of use in linking respondent characteristics with appropriate contextual variables (for example, state-specific welfare criteria) and for tabulating data by user-defined groupings of states.

ESTIMATES

SIPP estimates are based on a sample; they may differ somewhat from the figures that would have been obtained if a complete census had been taken using the same questionnaire, instructions, and enumerators. There are two types of errors possible in an estimate based on a sample survey: nonsampling and sampling. We are able to provide estimates of the magnitude of SIPP sampling error, but this is not true of nonsampling error. Found in the next sections are descriptions of sources of SIPP nonsampling error, followed by a discussion of sampling error, its estimation, and its effect in data analyses.

Nonsampling Error. Nonsampling errors can be attributed to many sources:

- inability to obtain information about all cases in the sample
- definitional difficulties
- differences in the interpretation of questions
- inability or unwillingness on the part of the respondents to provide correct information
- inability to recall information, errors made in the following: collection such as in recording or coding the data, processing the data, estimating values for missing data
- biases resulting from the differing recall periods caused by the interviewing pattern used
- and undercoverage.

Quality control and edit procedures were used to reduce errors made by respondents, coders and interviewers. More detailed discussions of the existence and control of nonsampling errors in the SIPP can be found in the SIPP Quality Profile, 1998 SIPP Working Paper Number 230, issued May 1999.

Undercoverage in SIPP results from missed living quarters and missed persons within sample households. It is known that undercoverage varies with age, race, and sex. Generally, undercoverage is larger for males than for females and larger for Blacks than for non-Blacks. Ratio estimation (second stage weight adjustment) to independent age-race-sex population controls partially corrects for the bias due to survey undercoverage. However, biases exist in the estimates to the extent that persons in missed households or missed persons in interviewed households have characteristics different from those of interviewed persons in the same age-race-sex group. Further, the independent population controls used have been adjusted for undercoverage in the Census.

A common measure of survey coverage is the coverage ratio, the estimated population before ratio adjustment divided by the independent population control. The Table below shows SIPP coverage ratios for age-sex-race groups for one month-February 2001 prior to the weighting adjustment. The SIPP coverage ratios exhibit some variability from month to month, but these are a typical set of coverage
ratios. Other Census Bureau household surveys (like the Current Population Survey) experience similar coverage.

Comparability with Other Estimates. Caution should be exercised when comparing data from this with data from other SIPP products or with data from other surveys. The comparability problems are caused by such sources as the seasonal patterns for many characteristics, different nonsampling errors, and different concepts and procedures. Refer to the SIPP Quality Profile for known differences with data from other sources and further discussions.

Sampling Variability. Standard errors indicate the magnitude of the sampling error. They also partially measure the effect of some nonsampling errors in response and enumeration, but do not measure any systematic biases in the data. The standard errors for the most part measure the variations that occurred by chance because a sample rather than the entire population was surveyed.

SIPP Coverage Ratios for February 2001
Age by Non-Black/Black Status and Sex

Non-Black

Black

Age	M	F	M	F
15	0.9175	1.1235	0.7044	0.7749
16-17	0.8640	0.9289	0.8826	0.9433
18-19	0.8620	0.8647	0.8274	0.8339
20-21	0.8848	0.8041	0.6255	0.9596
22-24	0.7859	0.8692	0.5857	0.6705
25-29	0.8022	0.8254	0.8504	0.8386
30-34	0.8721	0.9063	0.8792	0.7991
35-39	0.9212	0.9855	0.7119	0.8982
40-44	0.9058	0.9321	0.8059	0.9653
45-49	0.9009	0.9761	0.6856	0.7758
50-54	0.9667	0.9181	0.8993	1.2103
60-61	0.8405	0.8961	1.0210	0.9877
62-64	0.9866	1.0698	0.9914	0.9618
65-69	0.9304	0.9423	1.0646	0.7759
70-74	0.8836	0.9362	0.7896	1.3338
75-79	0.8952	1.0046	--------	0.9104
80-84	0.8974	0.9651	--------	--------
85+	0.9558	0.9669	--------	--------

USES AND COMPUTATION OF STANDARD ERRORS

Confidence Intervals. The sample estimate and its standard error enable one to construct confidence intervals, ranges that would include the average result of all possible samples with a known probability. For example, if all possible samples were selected, each of these being surveyed under essentially the same conditions and using the same sample design, and if an estimate and its standard error were calculated from each sample, then:

1. Approximately 68 percent of the intervals from one standard error below the estimate to one standard error above the estimate would include the average result of all possible samples.
2. Approximately 90 percent of the intervals from 1.6 standard errors below the estimate to 1.6 standard errors above the estimate would include the average result of all possible samples.
3. Approximately 95 percent of the intervals from two standard errors below the estimate to two standard errors above the estimate would include the average result of all possible samples.

The average estimate derived from all possible samples is or is not contained in any particular computed interval. However, for a particular sample, one can say with a specified confidence that the average estimate derived from all possible samples is included in the confidence interval.

Hypothesis Testing. Standard errors may also be used for hypothesis testing, a procedure for distinguishing between population characteristics using sample estimates. The most common types of hypotheses tested are 1) the population characteristics are identical versus 2) they are different. Tests may be performed at various levels of significance, where a level of significance is the probability of concluding that the characteristics are different when, in fact, they are identical.

To perform the most common test, compute the difference $X_{A}-X_{B}$, where X_{A} and X_{B} are sample estimates of the characteristics of interest. A later section explains how to derive an estimate of the standard error of the difference $X_{A}-X_{B}$. Let that standard error be $\mathrm{S}_{\text {DIFF }}$. If $X_{A}-X_{B}$ is between -1.6 times $\mathrm{S}_{\text {DIFF }}$ and +1.6 times $\mathrm{S}_{\text {DIFF }}$, no conclusion about the characteristics is justified at the 10 percent significance level. If, on the other hand, $X_{A}-X_{B}$ is smaller than -1.6 times $\mathrm{S}_{\text {DIFF }}$ or larger than +1.6 times $\mathrm{S}_{\text {DIFF }}$, the observed difference is significant at the 10 percent level. In this event, it is commonly accepted practice to say that the characteristics are different. Of course, sometimes this conclusion will be wrong. When the characteristics are the same, there is a 10 percent chance of concluding that they are different.

Note that as more tests are performed, more erroneous significant differences will occur. For example, at the 10 percent significance level, if 100 independent hypothesis tests are performed in which there are no real differences, it is likely that about 10 erroneous differences will occur. Therefore, the significance of any single test should be interpreted cautiously.

Note Concerning Small Estimates and Small Differences. Because of the large standard errors involved, there is little chance that estimates will reveal useful information when computed on a base smaller than 200,000. Care must be taken in the interpretation of small differences since even a small amount of nonsampling error can cause a borderline difference to appear significant or not, thus distorting a seemingly valid hypothesis test.

Calculating Standard Errors for SIPP Estimates. There are three main ways we calculate the Standard Errors for SIPP Estimates. They are as follows:

- Replicate Weighting Methods,
- Generalized Variance parameters (denoted as a and b),
- \quad Simplified tables using the a and b parameters.

SIPP uses the Replicate Weighting Method to produce Generalized Variance parameters. Using the Generalized Variance parameters, we create simplified tables.

Standard Error Parameters and Tables and Their Use. Most SIPP estimates have greater standard errors than those obtained through a simple random sample because PSUs are sampled and clusters of living quarters are sampled for the SIPP in the area and new construction frames. To derive standard errors that would be applicable to a wide variety of estimates and could be prepared at a moderate cost, a number of approximations were required. Estimates with similar standard error behavior were grouped together by characteristics at the person level and characteristics of households (including unrelated persons). Two parameters (denoted a and b) were computed for each characteristic in order to approximate the standard error behavior. These a and b parameters vary according to wave and characteristic as well as the demographic subgroup of the group to which the estimate applies. Because the actual standard error behavior was not identical for all characteristics and groups, the standard errors computed using these parameters provide an indication of the order of magnitude of the standard error estimate for a specific group. Table 3 provides tables of base a and b parameters by wave to be used for the 2001 panel estimates. There are four sets of parameters in Table 3: the first set of parameters per item is given to be used for calculations based on persons or households interviewed during Wave 1 the second set is for Waves 2 and 3, the third set is for Wave 4 to Wave 6, and the fourth set is for Wave 7 to Wave 9. Table 9 provides the base generalized variance a and b parameters for calculating 2001 topical module variances.

Table 2 lists the reference months for each interview month. Use Table 4 (if needed) to select the adjustment factor appropriate to the wave. Multiply this factor by the a and b base parameters of Table 3 to produce a and b parameters for the variance estimate for a specific subgroup and reference period. For example, the base a and b parameters for total number of households are -0.00003286 and 3546, respectively. Using Table 4 for Wave 1, the factor for November 2000 is 2 since only 2 rotation months of data are available. So the a and b parameters for the variance estimate of a white household characteristic in November 2000 based on Wave 1 are $-0.00003286 \times 2=-0.00006572$ and $3546 \times 2=$ 7,092, respectively.

Similarly, the factor for the last quarter of 2000 is 1.8519 (Table 4) since the only data available are the 6 rotation months from Wave 1 (namely, as indicated in Table 2, rotation 1 provides three rotation months, rotation 2 provides two rotation months, and rotation 3 provides one rotation month of data.) So the a and b parameters for the variance estimate of a white household characteristic in the last quarter of 2000 are $-0.00003286 \times 1.8519=-0.00006085$ and $3546 \times 1.8519=6,567$, respectively.

The a and b parameters may be used to calculate the standard error for estimated numbers and percentages. Because the actual standard error behavior was not identical for all estimates within a group, the standard errors computed from these parameters provide an indication of the order of magnitude of the standard error for any specific estimate. Methods for using these parameters for computation of
approximate standard errors are given in the following sections.
For those users who wish further simplification, we have also provided base standard errors for estimates of total and estimates of percentages in Tables 5 through 8. Note that these base standard errors only apply when data from all four rotations are used and must be adjusted by an f factor provided in Table 3. The standard errors resulting from this simplified approach are less accurate. Methods for using these parameters and tables for computation of standard errors are given in the following sections.

The procedures described below apply only to reference month estimates or averages of reference month estimates. Refer to the section "Use of Weights" for a more detailed discussion of the construction of estimates.

Variance stratum codes and half sample codes are included on the tapes (data sets) to enable the user to compute the variances directly and more accurately by methods such as balanced repeated replications (BRR). William G. Cochran provides a list of references discussing the application of this technique. (See Sampling Techniques, 3rd Ed., New York: John Wiley and Sons, 1977, p. 321.)

Standard Errors of Estimated Numbers. The approximate standard error, s_{x}, of an estimated number of persons, households, families, unrelated individuals and so forth, can be obtained in two ways. Both apply when data from all four rotations are used to make the estimate. However, only the second method (formula 2) should be used when less than four rotations of data are available for the estimate. Note that neither method should be applied to dollar values.

The standard error may be obtained by the use of the formula

$$
\begin{equation*}
s_{x}=f s \tag{1}
\end{equation*}
$$

where f is the appropriate f factor from Table 3, and s is the base standard error on the estimate obtained by interpolation from Table 5 or 6 . Alternatively, s_{x} may be approximated by the formula

$$
\begin{equation*}
s_{x}=\sqrt{a x^{2}+b x} \tag{2}
\end{equation*}
$$

from which the base standard errors in Tables 7 and 8 were calculated. Here x is the size of the estimate and a and b are the parameters from Table 4 which are associated with the characteristic being estimated (and the wave which applies). Use of formula 2 will generally provide more accurate results than the use of formula 1 .

Illustration.

Suppose SIPP estimates based on Wave 1 of the 2001 panel show that there were 1,700,000 black households with monthly household income above $\$ 4,000$ in January 2001. The appropriate parameters and factor from Table 3 and the appropriate general standard error from Table 5 are

$$
a=-0.00019168 \quad b=2,495 \quad f=0.84 \quad s=76,800
$$

Using formula 1 , the approximate standard error is

$$
s_{x}=(0.84)(76,800)=64,512
$$

Using formula 2, the approximate standard error is

$$
\sqrt{(-0.00019168)(1,700,000)^{2}+(2,495)(1,700,000)}=60,725
$$

Using the standard error based on formula 2, the approximate 90-percent confidence interval as shown by the data is from $1,600,107$ to $1,799,893$. Therefore, a conclusion that the average estimate derived from all possible samples lies within a range computed in this way would be correct for roughly 90% of all samples.

Standard Error of a Mean. A mean is defined here to be the average quantity of some item (other than persons, families, or households) per person, family or household. For example, it could be the average monthly household income of females age 25 to 34 . The standard error of a mean can be approximated by formula 3 below. Because of the approximations used in developing formula 3, an estimate of the standard error of the mean obtained from this formula will generally underestimate the true standard error. The formula used to estimate the standard error of a mean \bar{x} is

$$
\begin{equation*}
s_{\bar{x}}=\sqrt{\left(\frac{b}{y}\right) s^{2}} \tag{3}
\end{equation*}
$$

where y is the size of the base, s^{2} is the estimated population variance of the item and b is the parameter associated with the particular type of item.

The population variance s^{2} may be estimated by one of two methods. In both methods, we assume x_{i} is the value of the item for unit "i." (Unit may be person, family, or household). To use the first method, the range of values for the item is divided into "c" intervals. The upper and lower boundaries of interval j are Z_{j-1} and Z_{j}, respectively. Each unit is placed into one of "c" groups such that $Z_{j-1}<x_{i} \leq Z_{j}$.

The estimated population variance, s^{2}, is given by the formula:

$$
\begin{equation*}
s^{2}=\sum_{j=1}^{c} \quad p_{j} m_{j}^{2}-\bar{x}^{2}, \tag{4}
\end{equation*}
$$

where p_{j} is the estimated proportion of units in group j, and $m_{j}=\left(Z_{j-1}+Z_{j}\right) / 2$. The most representative value of the item in group j is assumed to be m_{j}. If group " c " is open-ended, or there is no upper interval boundary exists, then an approximate value for m_{c} is

$$
m_{c}=\frac{3}{2} Z_{c-1} .
$$

The mean, $\overline{\mathrm{x}}$ can be obtained using the following formula:

$$
\bar{x}=\sum_{j=1}^{c} p_{j} m_{j}
$$

In the second method, the estimated population mean, \bar{x}, and variance, s^{2} are given by

$$
\begin{align*}
& \bar{x}=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}} \\
& s^{2}=\frac{\sum_{i=1}^{n} w_{i} x_{i}^{2}}{\sum_{i=1}^{n} w_{i}}-\bar{x}^{2}, \tag{5}
\end{align*}
$$

where there are n units with the item of interest and w_{i} is the final weight for unit " I ". (Note that $\sum \mathrm{w}_{\mathrm{i}}=\mathrm{y}$ in formula 3.)

Illustration.

Suppose that based on Wave 1 data, the distribution of monthly cash income for persons age 25 to 34 during the month of January 2001 is given in Table 10.

Using formula 4 and the mean monthly cash income of $\$ 2,530$ the approximate population variance, s^{2}, is

$$
\begin{aligned}
s^{2}= & \left(\frac{1,371}{39,851}\right)(150)^{2}+\left(\frac{1,651}{39,851}\right)(450)^{2}+\ldots+ \\
& \left(\frac{1,493}{39,851}\right)(9,000)^{2}-(2,530)^{2}=3,159,887 .
\end{aligned}
$$

Using formula 3 and the appropriate base b parameter from Table 3, the estimated standard error of a mean \bar{X} is

$$
s_{\bar{x}}=\sqrt{\left(\frac{4,263}{39,851,000}\right)(3,159,887)}=\$ 18.39
$$

Standard error of an aggregate. An aggregate is defined to be the total quantity of an item summed over all the units in a group. The standard error of an aggregate can be approximated using formula 6.

As with the estimate of the standard error of a mean, the estimate of the standard error of an aggregate will generally underestimate the true standard error. Let y be the size of the base, s^{2} be the estimated population variance of the item obtained using formula (4) or (5) and b be the parameter associated with the particular type of item. The standard error of an aggregate is

$$
\begin{equation*}
s_{x}=\sqrt{(b)(y) s^{2}} \tag{6}
\end{equation*}
$$

Standard Errors of Estimated Percentages. The reliability of an estimated percentage, computed using sample data for both numerator and denominator, depends upon both the size of the percentage and the size of the total upon which the percentage is based. Estimated percentages are relatively more reliable than the corresponding estimates of the numerators of the percentages, particularly if the percentages are 50 percent or more, e.g., the percent of people employed is more reliable than the estimated number of people employed. When the numerator and denominator of the percentage have different parameters, use the parameter (and appropriate factor) of the numerator. If proportions are presented instead of percentages, note that the standard error of a proportion is equal to the standard error of the corresponding percentage divided by 100 .

There are two types of percentages commonly estimated. The first is the percentage of persons, families or households sharing a particular characteristic such as the percent of persons owning their own home. The second type is the percentage of money or some similar concept held by a particular group of persons or held in a particular form. Examples are the percent of total wealth held by persons with high income and the percent of total income received by persons on welfare.

For the percentage of persons, families, or households, the approximate standard error, $s_{(x, p)}$, of the estimated percentage p can be obtained by the formula

$$
\begin{equation*}
s_{(x, p)}=f s \tag{7}
\end{equation*}
$$

when data from all four rotations are used to estimate p.

In this formula, f is the appropriate f factor from Table 3 (for the appropriate wave) and s is the base standard error of the estimate from Table 7 or 8.

Alternatively, it may be approximated by the formula

$$
\begin{equation*}
s_{(x, p)}=\sqrt{\frac{b}{x}(p)(100-p)} \tag{8}
\end{equation*}
$$

from which the standard errors in Tables 7 and 8 were calculated. Here x is the size of the subclass of social units which is the base of the percentage, p is the percentage ($0<\mathrm{p}<100$), and b is the parameter associated with the characteristic in the numerator. Use of this formula will give more accurate results than use of formula 7 above and should be used when data from less than four rotations are used to estimate p.

Illustration.

Suppose that, in the month of January 2001, 6.7 percent of the $16,812,000$ persons in nonfarm households with a mean monthly household cash income of $\$ 4,000$ to $\$ 4,999$, were black. Using formula 8 and the b parameter of 4,475 from Table 3 and a factor of 1 for the month of January 2001 from Table 4, the approximate standard error is

$$
\sqrt{\frac{4,475}{(16,812,000)}(6.7)(100-6.7)}=0.41 \text { percent }
$$

Consequently, the 90 percent confidence interval as shown by these data is from 6.03 to 7.37 percent.
For percentages of money, a more complicated formula is required. A percentage of money will usually be estimated in one of two ways. It may be the ratio of two aggregates:

$$
\mathrm{p}_{\mathrm{I}}=100\left(\mathrm{X}_{\mathrm{A}} / \mathrm{X}_{\mathrm{N}}\right)
$$

or it may be the ratio of two means with an adjustment for different bases:

$$
\mathrm{p}_{\mathrm{I}}=100\left(\hat{\mathrm{p}}_{\mathrm{A}} \overline{\mathrm{X}}_{\mathrm{A}} / \overline{\mathrm{X}}_{\mathrm{N}}\right)
$$

where x_{A} and x_{N} are aggregate money figures, \bar{x}_{A} and \bar{x}_{N} are mean money figures, and $\hat{\mathrm{p}}_{\mathrm{A}}$ is the estimated number in group A divided by the estimated number in group N. In either case, we estimate the standard error as

$$
\begin{equation*}
S_{I}=\sqrt{\left(\frac{\hat{p}_{A} \bar{X}_{A}}{\bar{x}_{N}}\right)^{2}\left[\left(\frac{S_{p}}{\hat{p}_{A}}\right)^{2}+\left(\frac{S_{A}}{\bar{x}_{A}}\right)^{2}+\left(\frac{S_{B}}{\bar{X}_{N}}\right)^{2}\right]} \tag{9}
\end{equation*}
$$

where s_{p} is the standard error of $\hat{\mathrm{p}}_{A}, s_{A}$ is the standard error of $\overline{\mathrm{X}}_{\mathrm{A}}$ and S_{B} is the standard error of \bar{X}_{N}. To calculate s_{p}, use formula 8 . The standard errors of \bar{X}_{N} and \bar{X}_{A} may be calculated using formula 3.

It should be noted that there is frequently some correlation between $\hat{\mathrm{P}}_{\mathrm{A}}, \overline{\mathrm{X}}_{\mathrm{N}}$, and $\overline{\mathrm{X}}_{\mathrm{A}}$. Depending on the magnitude and sign of the correlations, the standard error will be over or underestimated.

Illustration.

Suppose that in January 2001, 9.8% of the households own rental property, the mean value of rental property is $\$ 72,121$, the mean value of assets is $\$ 78,734$, and the corresponding standard errors are $0.19 \%, \$ 5799$, and $\$ 2867$, respectively. In total there are $86,790,000$ households. Then, the percent of all household assets held in rental property is

$$
=100\left((0.098) \frac{72121}{78734}\right)=9.0 \%
$$

Using formula (9), the appropriate standard error is

$$
\begin{aligned}
& \quad S_{I}=\sqrt{\left(\frac{(0.098)(72121)}{78734}\right)^{2}\left[\left(\frac{0.0019}{0.098}\right)^{2}+\left(\frac{5799}{72121}\right)^{2}+\left(\frac{2867}{78734}\right)^{2}\right]} \\
& =0.008=0.8 \%
\end{aligned}
$$

Standard Error of a Difference. The standard error of a difference between two sample estimates is approximately equal to

$$
\begin{equation*}
S_{(x-y)}=\sqrt{S_{x}^{2}+S_{y}^{2}} \tag{10}
\end{equation*}
$$

where s_{x} and s_{y} are the standard errors of the estimates x and y. The estimates can be numbers, percents, ratios, etc. The above formula assumes that the correlation coefficient between the
characteristics estimated by x and y is zero. If the correlation is really positive (negative), then this assumption will tend to cause overestimates (underestimates) of the true standard error.

Illustration.

Suppose that SIPP estimates show the number of persons age 35-44 years with monthly cash income of $\$ 4,000$ to $\$ 4,999$ was $3,186,000$ in the month of January 2001 and the number of persons age 25-34 years with monthly cash income of $\$ 4,000$ to $\$ 4,999$ in the same time period was $2,619,000$. Then, using parameters from Table 3 and formula 2, the standard errors of these numbers are approximately 115,689 and 105,029 , respectively. The difference in sample estimates is 567,000 and using formula 10 , the approximate standard error of the difference is

$$
\sqrt{(115,689)^{2}+(105,029)^{2}}=156,253
$$

Suppose that it is desired to test at the 10 percent significance level whether the number of persons with monthly cash income of $\$ 4,000$ to $\$ 4,999$ was different for persons age 35-44 years than for persons age 25-34 years. To perform the test, compare the difference of 567,000 to the product $1.645 \times$ $156,253=257,036$. Since the difference is greater than 1.645 times the standard error of the difference, the data show that the two age groups are significantly different at the 10 percent significance level.

Standard Error of a Median. The median quantity of some item such as income for a given group of persons, families, or households is that quantity such that at least half the group have as much or more and at least half the group have as much or less. The sampling variability of an estimated median depends upon the form of the distribution of the item as well as the size of the group. To calculate standard errors on medians, the procedure described below may be used.

An approximate method for measuring the reliability of an estimated median is to determine a confidence interval about it. (See the section on sampling variability for a general discussion of confidence intervals.) The following procedure may be used to estimate the 68 -percent confidence limits and hence the standard error of a median based on sample data.

1. Determine, using either formula 7 or formula 8, the standard error of an estimate of 50 percent of the group.
2. Add to and subtract from 50 percent the standard error determined in step 1.
3. Using the distribution of the item within the group, calculate the quantity of the item such that the percent of the group with more of the item is equal to the smaller percentage found in step 2. This quantity will be the upper limit for the 68 -percent confidence interval. In a similar fashion, calculate the quantity of the item such that the percent of the group with more of the item is equal to the larger percentage found in step 2 . This quantity will be the lower limit for the 68-percent confidence interval.
4. Divide the difference between the two quantities determined in step 3 by two to obtain the standard error of the median.

To perform step 3 , it will be necessary to interpolate. Different methods of interpolation may be used. The most common are simple linear interpolation and Pareto interpolation. The appropriateness of the method depends on the form of the distribution around the median. If density is declining in the area, then we recommend Pareto interpolation. If density is fairly constant in the area, then we recommend linear interpolation. Note, however, that Pareto interpolation can never be used if the interval contains zero or negative measures of the item of interest. Interpolation is used as follows. The quantity of the item such that p percent have more of the item is

$$
\begin{equation*}
X_{p N}=\exp \left[\left.\left(\operatorname{Ln}\left(\frac{p N}{N_{1}}\right) / \operatorname{Ln}\left(\frac{N_{2}}{N_{1}}\right)\right) \operatorname{Ln}\left(\frac{A_{2}}{A_{1}}\right) \right\rvert\, A_{1}\right. \tag{11}
\end{equation*}
$$

if Pareto Interpolation is indicated and

$$
\begin{equation*}
X_{p N}=\left\lfloor\frac{P N-N_{1}}{N_{2}-N_{1}} \quad\left(A_{2}-A_{1}\right)+A_{1}\right\rfloor \tag{12}
\end{equation*}
$$

if linear interpolation is indicated, where

N	is the size of the group,
A_{1} and A_{2}	are the lower and upper bounds, respectively, of the interval in which X_{pN} falls
N_{1} and N_{2}	are the estimated number of group members owning more than A_{1} and A_{2}, respectively
\exp	refers to the exponential function and
$L n$	refers to the natural logarithm function

Illustration.

To illustrate the calculations for the sampling error on a median, we return to Table 10, and suppose that the income tabulated for this group is for January 2001. The median monthly income for this group is $\$ 2,158$ in January 2001. The size of the group is $39,851,000$.

1. Using formula 8 (with $b=4,263$ for Wave 1), the standard error of 50 percent on a base of $39,851,000$ is about 0.5 percentage points.
2. Following step 2, the two percentages of interest are 49.5 and 50.5 .
3. By examining Table 10, we see that the percentage 49.5 falls in the income interval from 2000 to 2499 . (Since 55.5% receive more than $\$ 2,000$ per month, the dollar value corresponding to 49.5 must be between $\$ 2,000$ and $\$ 2,500$). Thus, $A_{1}=\$ 2,000, A_{2}=\$ 2,500, N_{1}=22,106,000$, and $N_{2}=16,307,000$.

In this case, we decided to use Pareto interpolation. Therefore, the upper bound of a 68% confidence interval for the median is

$$
\$ 2,000 \exp \left[\left(\operatorname{Ln}\left(\frac{(.495)(39,851,000)}{22,106,000}\right) / \operatorname{Ln}\left(\frac{16,307,000}{22,106,000}\right)\right) \operatorname{Ln}\left(\frac{2,500}{2,000}\right)\right]=\$ 2174
$$

Also by examining Table 10 , we see that 50.5 falls in the same income interval. Thus, A_{1}, A_{2}, N_{1} and N_{2} are the same. We also use Pareto interpolation for this case. So the lower bound of a 68% confidence interval for the median is

$$
\$ 2,000 \exp \left[\left(\operatorname{Ln}\left(\frac{(.505)(39,851,000)}{22,106,000}\right) / \operatorname{Ln}\left(\frac{16,307,000}{22,106,000}\right)\right) \operatorname{Ln}\left(\frac{2,500}{2,000}\right)\right]=\$ 2142
$$

Thus, the 68-percent confidence interval on the estimated median is from $\$ 2142$ to $\$ 2174$. An approximate standard error is

$$
\frac{\$ 2174-\$ 2142}{2}=\$ 16
$$

Standard Errors of Ratios of Means and Medians. The standard error for a ratio of means or medians is approximated by:

$$
\begin{equation*}
s_{\frac{x}{y}}=\sqrt{\left(\frac{x}{y}\right)^{2}\left[\left(\frac{s_{y}}{y}\right)^{2}+\left(\frac{s_{x}}{x}\right)^{2}\right]} \tag{13}
\end{equation*}
$$

where x and y are the means or medians, and s_{x} and s_{y} are their associated standard errors. Formula 13 assumes that the means are not correlated. If the correlation between the population means estimated by x and y are actually positive (negative), then this procedure will tend to produce overestimates (underestimates) of the true standard error for the ratio of means.

Standard Errors Using SAS or SPSS. Standard errors and their associated variance, calculated by SAS or SPSS statistical software package, do not accurately reflect the SIPP's complex sample design. Erroneous conclusions will result if these standard errors are used directly. We provide adjustment factors by characteristics that should be used to correctly compensate for likely under-estimates. The factors called DEFF available in Table 3, must be applied to SAS or SPSS generated variances. The square root of DEFF can be directly applied to similarly generated standard errors. These factors approximate design effects which adjust statistical measures for sample designs more complex than simple random sample.

Table 1-2001 Panel Topical Modules

$\begin{aligned} & \mathrm{W} \\ & 1 \end{aligned}$	- Recipiency History - Employment History	W6	- Assets, Liabilities, Eligibility - Medical Expenses/Health Care Usage - Work-related Expenses - Child Support Paid - Child Care Poverty
$\begin{aligned} & \text { W } \\ & 2 \end{aligned}$	- Work Disability - Education \& Training History - Marital History - Migration History - Fertility - Household Relationships	W7	- Annual Income \& Retirement Accounts - Taxes - Retirement \& Pension Plan - Home Health Care - Child Well-Being
$\begin{aligned} & \mathrm{W} \\ & 3 \end{aligned}$	- Assets, Liabilities, Eligibility - Medical Expenses/Health Care Usage - Work-related Expenses - Child Support Paid - Child Care Poverty	W8	- Adult Well-Being - Child Support Agreements - Support for Non-household members - Functional Limitations/Disabilities-Adult - Functional Limitations/Disabilities-Child - Welfare Reform
$\begin{aligned} & \mathrm{W} \\ & 4 \end{aligned}$	- Annual Income \& Retirement Accounts - Taxes - Work Schedule - Child Care	W9	- Assets, Liabilities, Eligibility - Medical Expenses/Health Care Usage - Work-related Expenses - Child Support Paid - Child Care Poverty
$\begin{aligned} & \mathrm{W} \\ & 5 \end{aligned}$	- School Enrollment \& Financing - Child Support Agreements - Support for Non-household members - Functional Limitations/Disabilities-Adult - Functional Limitations/Disabilities-Child - Employer-Provided Health Benefits		

Table 2 - SIPP Panel 2001 Reference Months (horizontal) for Each Interview Month (vertical)

Table 3² - SIPP Panel 2001 - Indirect Generalized Variance Base Parameters for Wave 1

Characteristics	Parameters			
PERSONS	a	b	DEFF	f
Total or White				
16+ Poverty and Program Participation				
Both Sexes	-0.00002444	5,342	2.21	0.87
Male	-0.00005077	5,342	2.21	0.87
Female	-0.00004712	5,342	2.21	0.87
16+ Income and Labor Force				
Both Sexes	-0.00001950	4,263	1.76	0.78
Male	-0.00004051	4,263	1.76	0.78
Female	-0.00003760	4,263	1.76	0.78
Other Person Items				
Both Sexes	-0.00002511	7,002	2.89	1.00
Male	-0.00005145	7,002	2.89	1.00
Female	-0.00004903	7,002	2.89	1.00
Black				
Person Items				
Both Sexes	-0.00012805	4,475	1.85	0.80
Male	-0.00027985	4,475	1.85	0.80
Female	-0.00023605	4,475	1.85	0.80
Hispanic				
Person Items				
Both Sexes	-0.00019658	6,515	2.69	0.96
Male	-0.00038425	6,515	2.69	0.96
Female	-0.00040250	6,515	2.69	0.96
HOUSEHOLDS				
Total or White	-0.00003286	3,546	1.47	1.00
Black	-0.00019168	2,495	1.03	0.84
Hispanic	-0.00035803	3,323	1.37	0.97

[^0]Table 3 (Continued) - SIPP Panel 2001 - Indirect Generalized Variance Base Parameters for Wave 2 and Wave 3

Characteristics	Parameters			
PERSONS	a	b	DEFF	f
Total or White				
16+ Poverty and Program Participation				
Both Sexes	-0.00003113	6,828	2.40	0.81
Male	-0.00006469	6,828	2.40	0.81
Female	-0.00006001	6,828	2.40	0.81
16+ Income and Labor Force				
Both Sexes	-0.00002458	5,391	1.90	0.72
Male	-0.00005108	5,391	1.90	0.72
Female	-0.00004738	5,391	1.90	0.72
Other Person Items				
Both Sexes	-0.00003130	8,753	3.08	0.92
Male	-0.00006415	8,753	3.08	0.92
Female	-0.00006112	8,753	3.08	0.92
Black				
Person Items				
Both Sexes	-0.00019935	7,002	2.47	0.82
Male	-0.00043655	7,002	2.47	0.82
Female	-0.00036690	7,002	2.47	0.82
Hispanic				
Person Items				
Both Sexes	-0.00030514	10,371	3.65	1.00
Male	-0.00059697	10,371	3.65	1.00
Female	-0.00062417	10,371	3.65	1.00
HOUSEHOLDS				
Total or White	-0.00003723	4,028	1.42	0.93
Black	-0.00028036	3,618	1.27	0.88
Hispanic	-0.00047316	4,626	1.63	1.00

Table 3 (Continued) - SIPP Panel 2001 - Indirect Generalized Variance Base Parameters for Wave 4 to Wave 6

Characteristics	Parameters			
PERSONS	a	b	DEFF	f
Total or White				
16+ Poverty and Program Participation				
Both Sexes	-0.00003417	7,517	2.65	0.84
Male	-0.00007096	7,517	2.65	0.84
Female	-0.00006591	7,517	2.65	0.84
16+ Income and Labor Force				
Both Sexes	-0.00002684	5,905	2.08	0.75
Male	-0.00005574	5,905	2.08	0.75
Female	-0.00005178	5,905	2.08	0.75
Other Person Items				
Both Sexes	-0.00003322	9,359	3.30	0.94
Male	-0.00006786	9,359	3.30	0.94
Female	-0.00006506	9,359	3.30	0.94
Black				
Person Items				
Both Sexes	-0.00020885	7,354	2.59	0.83
Male	-0.00045725	7,354	2.59	0.83
Female	-0.00038444	7,354	2.59	0.83
Hispanic				
Person Items				
Both Sexes	-0.00029967	10,568	3.72	1.00
Male	-0.00058335	10,568	3.72	1.00
Female	-0.00061623	10,568	3.72	1.00
HOUSEHOLDS				
Total or White	-0.00003787	4,122	1.45	0.88
Black	-0.00027786	3,789	1.33	0.84
Hispanic	-0.00049604	5,322	1.87	1.00

Table 3 (Continued) - SIPP Panel 2001 - Indirect Generalized Variance Base Parameters for Wave 7 to Wave 9

Characteristics	Parameters			
PERSONS	a	b	DEFF	f
Total or White				
16+ Poverty and Program Participation				
Both Sexes	-0.00003367	7,581	2.67	0.77
Male	-0.00006944	7,581	2.67	0.77
Female	-0.00006537	7,581	2.67	0.77
16+ Income and Labor Force				
Both Sexes	-0.00002657	5,983	2.11	0.69
Male	-0.00005480	5,983	2.11	0.69
Female	-0.00005159	5,983	2.11	0.69
Other Person Items				
Both Sexes	-0.00003508	10,020	3.53	0.89
Male	-0.00007151	10,020	3.53	0.89
Female	-0.00006885	10,020	3.53	0.89
Black				
Person Items				
Both Sexes	-0.00022157	7,953	2.80	0.79
Male	-0.00048801	7,953	2.80	0.79
Female	-0.00040583	7,953	2.80	0.79
Hispanic				
Person Items				
Both Sexes	-0.00034664	12,746	4.49	1.00
Male	-0.00067557	12,746	4.49	1.00
Female	-0.00071195	12,746	4.49	1.00
HOUSEHOLDS				
Total or White	-0.00004011	4,502	1.59	0.85
Black	-0.00030905	4,350	1.53	0.84
Hispanic	-0.00055052	6,204	2.18	1.00

Table 4 - Factors to be Applied to Table 3 Base Parameters to Obtain Parameters for Various Reference Periods
Number of Available
Rotation Months ${ }^{3}$ Factor
Monthly Estimate
1 4.0000
2 2.0000
3 1.3333
4 1.0000
Quarterly Estimate
6 1.851981.4074
9 1.2222
10 1.0494
11 1.0370
121.0000

[^1]Table 5 - Base Standard Errors of Estimated Numbers (in thousands) of Households, Families, and Households of Unrelated Residents

Size of Estimate	Base Standard Error	Size of Estimate	Base Standard Error
200	27	25,000	264
300	33	30,000	281
500	42	40,000	303
750	52	50,000	314
1,000	60	60,000	314
2,000	84	70,000	303
3,000	103	75,000	293
5,000	131	80,000	280
7,500	159	90,000	242
15,000	181	100,000	180
15,000	216	105,000	129

Notes: (1) This table is developed based on Wave 1. To account for sample attrition, multiply the base standard error by a factor of 1.09 for estimates including data from Wave 2 and/or Wave 3, a factor of 1.13 for estimates including data from Wave3 and/or Wave 4 and/or Wave 6, and a factor of 1.17 for estimates including data from Wave 7 and/or Wave 8 and/or Wave 9.
(2) Multiply the base standard error in this table by an appropriate f factor provided in Table 3 to obtain the final standard error estimate.

Table 6 - Base Standard Errors of Estimated Numbers (in Thousands) of People

Size of Estimate	Base Standard Errors	Size of Estimate	Base Standard Errors
200	38	90,000	657
300	46	100,000	675
500	59	110,000	688
750	73	120,000	697
1,000	84	130,000	703
2,000	118	140,000	705
3,000	145	150,000	703
5,000	186	160,000	698
7,500	227	170,000	690
10,000	261	180,000	677
15,000	316	190,000	661
25,000	401	200,000	640
30,000	435	210,000	614
40,000	492	220,000	583
50,000	539	230,000	546
60,000	577	240,000	501
70,000	609	250,000	446
75,000	623	260,000	376
80,000	636	275,500	208

Notes: (1) This table is developed based on Wave 1. To account for sample attrition, multiply the base standard error by a factor of 1.09 for estimates including data from Wave 2 and/or Wave 3, a factor of 1.13 for estimates including data from Wave3 and/or Wave 4 and/or Wave 6, and a factor of 1.17 for estimates including data from Wave 7 and/or Wave 8 and/or Wave 9.
(2) Multiply the base standard error in this table by an appropriate f factor provided in Table 3 to obtain the final standard error estimate.

Table 7 - Base Standard Errors of Estimated Percentages of Households, Families, and Households of Unrelated Residents

Base of Estimated Percentage (in Thousands)	Estimated Percentages					
	$\leq \mathbf{1}$ or $\geq \mathbf{9 9}$	$\mathbf{2}$ or 98	$\mathbf{5}$ or 95	$\mathbf{1 0}$ or 90	$\mathbf{2 5}$ or 75	$\mathbf{5 0}$
200	1.34	1.88	2.93	4.03	5.82	6.72
300	1.09	1.54	2.39	3.29	4.75	5.49
500	0.85	1.19	1.85	2.55	3.68	4.25
750	0.69	0.97	1.51	2.08	3.00	3.47
1,000	0.60	0.84	1.31	1.80	2.60	3.00
2,000	0.42	0.59	0.93	1.27	1.84	2.12
3,000	0.35	0.49	0.76	1.04	1.50	1.73
5,000	0.27	0.38	0.59	0.81	1.16	1.34
7,500	0.22	0.31	0.48	0.66	0.95	1.10
10,000	0.19	0.27	0.41	0.57	0.82	0.95
15,000	0.15	0.22	0.34	0.47	0.67	0.78
25,000	0.12	0.17	0.26	0.36	0.52	0.60
30,000	0.11	0.15	0.24	0.33	0.48	0.55
40,000	0.09	0.13	0.21	0.29	0.41	0.48
50,000	0.08	0.12	0.19	0.25	0.37	0.42
60,000	0.08	0.11	0.17	0.23	0.34	0.39
70,000	0.07	0.10	0.16	0.22	0.31	0.36
75,000	0.07	0.10	0.15	0.21	0.30	0.35
80,000	0.07	0.09	0.15	0.20	0.29	0.34
90,000	0.06	0.09	0.14	0.19	0.27	0.32
100,000	0.06	0.08	0.13	0.18	0.26	0.30
105,000	0.06	0.08	0.13	0.18	0.25	0.29

Notes: (1) This table is developed based on Wave 1. To account for sample attrition, multiply the base standard error by a factor of 1.09 for estimates including data from Wave 2 and/or Wave 3, a factor of 1.13 for estimates including data from Wave3 and/or Wave 4 and/or Wave 6, and a factor of 1.17 for estimates including data from Wave 7 and/or Wave 8 and/or Wave 9..
(2) Multiply the base standard error in this table by an appropriate f factor provided in Table 3 to obtain the final standard error estimate.

Table 8 - Base Standard Errors of Estimated Percentages of People

Base of Estimated Percentage (in Thousands)	Estimated Percentages					
	$\leq \mathbf{1}$ or $\geq \mathbf{9 9}$	$\mathbf{2}$ or 98	$\mathbf{5}$ or 95	$\mathbf{1 0}$ or $\mathbf{9 0}$	$\mathbf{2 5}$ or 75	$\mathbf{5 0}$
200	1.87	2.63	4.09	5.63	8.13	9.39
300	1.53	2.15	3.34	4.60	6.64	7.67
600	1.08	1.52	2.36	3.25	4.69	5.42
1,000	0.84	1.18	1.83	2.52	3.64	4.20
2,000	0.59	0.83	1.29	1.78	2.57	2.97
5,000	0.37	0.53	0.82	1.13	1.63	1.88
7,500	0.31	0.43	0.67	0.92	1.33	1.53
10,000	0.26	0.37	0.58	0.80	1.15	1.33
15,000	0.22	0.30	0.47	0.65	0.94	1.08
20,000	0.19	0.26	0.41	0.56	0.81	0.94
25,000	0.17	0.24	0.37	0.50	0.73	0.84
30,000	0.15	0.21	0.33	0.46	0.66	0.77
50,000	0.12	0.17	0.26	0.36	0.51	0.59
75,000	0.10	0.14	0.21	0.29	0.42	0.48
100,000	0.08	0.12	0.18	0.25	0.36	0.42
125,000	0.07	0.11	0.16	0.23	0.33	0.38
150,000	0.07	0.10	0.15	0.21	0.30	0.34
200,000	0.06	0.08	0.13	0.18	0.26	0.30
225,000	0.06	0.08	0.12	0.17	0.24	0.28
250,000	0.05	0.07	0.12	0.16	0.23	0.27
260,000	0.05	0.07	0.11	0.16	0.23	0.26
275,500	0.05	0.07	0.11	0.15	0.22	0.25

Notes: (1) This table is developed based on Wave 1. To account for sample attrition, multiply the base standard error by a factor of 1.09 for estimates including data from Wave 2 and/or Wave 3, a factor of 1.13 for estimates including data from Wave3 and/or Wave 4 and/or Wave 6, and a factor of 1.17 for estimates including data from Wave 7 and/or Wave 8 and/or Wave 9.
(2) Multiply the base standard error in this table by an appropriate f factor provided in Table 3 to obtain the final standard error estimate.

Table 9 - Topical Module Generalized Variance Parameters for the SIPP Panel 2001

Characteristics	Parameters	
	a	b
Employment History, Wave 1		
Both Sexes 18+ Males 18+ Females 18+	$\begin{aligned} & -0.00001950 \\ & -0.00004051 \\ & -0.00003760 \end{aligned}$	$\begin{aligned} & 4,263 \\ & 4,263 \\ & 4,263 \end{aligned}$
Recipiency History, Wave 1		
Both Sexes 18+ Males 18+ Females 18+	$\begin{array}{r} -0.00002444 \\ -0.00005077 \\ -0.00004712 \end{array}$	$\begin{aligned} & 5,342 \\ & 5,342 \\ & 5,342 \end{aligned}$
Fertility History, Wave 2		
Women Births	$\begin{array}{r} -0.00003819 \\ -0.00006964 \end{array}$	$\begin{aligned} & 4,349 \\ & 7,929 \end{aligned}$
Education Attainment, Wave 2	-0.00002699	5,923
Marital Status and Person's Family Characteristics, Wave 2		
Some Household Members All Household Members	$\begin{aligned} & -0.00004087 \\ & -0.00003773 \end{aligned}$	$\begin{array}{r} 8,963 \\ 10,892 \end{array}$
Child Support		
Wave 5 Wave 8	$\begin{array}{r} -0.00006353 \\ -0.00007893 \end{array}$	$\begin{aligned} & 7,283 \\ & 9,245 \end{aligned}$
Support for Non-Household Members		
Wave 5 Wave 8	$\begin{array}{r} -0.00003295 \\ -0.00004094 \end{array}$	$\begin{aligned} & 7,283 \\ & 9,245 \end{aligned}$
Health and Disability		
Wave 5 Wave 8	$\begin{aligned} & -0.00003139 \\ & -0.00002892 \end{aligned}$	$\begin{aligned} & 9,113 \\ & 8,446 \end{aligned}$

Characteristics

Parameters	
a	
-0.00009227	6,437

Child Care, Age 0 to 15, Wave 4

Welfare History and AFDC
Both Sexes 18+ (Wave 5)
Males 18+ (Wave 5)
Females 18+ (Wave 5)
Both Sexes 18+ (Wave 8)
Males 18+ (Wave 8)
Females $18+$ (Wave 8)

-0.00007451	15,858
-0.00015497	15,858
-0.00014375	15,858
-0.00007804	16,849
-0.00016172	16,849
-0.00015088	16,849

Assets and Liabilities

Wave 3	-0.00002722	5,980
Wave 6	-0.00002723	6,039
Wave 9	-0.00002943	6,637

Table 10 - Distribution of Monthly Cash Income Among People 25 to 34 Years Old (Not Actual Data and to Be Used for Only Calculation Illustrations)

	Interval of Monthly Cash Income												
	$\begin{aligned} & \text { Under } \\ & \$ 300 \end{aligned}$	$\begin{gathered} \$ 300 \\ \text { to } \\ \$ 599 \end{gathered}$	$\begin{gathered} \$ 600 \\ \text { to } \\ \$ 899 \end{gathered}$	$\begin{gathered} \$ 900 \\ \text { to } \\ \$ 1,119 \end{gathered}$	$\begin{gathered} \$ 1,200 \\ \text { to } \\ \$ 1,499 \end{gathered}$	$\begin{gathered} \$ 1,500 \\ \text { to } \\ \$ 1,999 \end{gathered}$	$\begin{gathered} \$ 2,000 \\ \text { to } \\ \$ 2,499 \end{gathered}$	$\begin{gathered} \$ 2,500 \\ \text { to } \\ \$ 2,999 \end{gathered}$	$\begin{gathered} \$ 3,000 \\ \text { to } \\ \$ 3,499 \end{gathered}$	$\begin{gathered} \$ 3,500 \\ \text { to } \\ \$ 3,999 \end{gathered}$	$\begin{gathered} \$ 4,000 \\ \text { to } \\ \$ 4,999 \end{gathered}$	$\begin{gathered} \$ 5,000 \\ \text { to } \\ \$ 5,999 \end{gathered}$	$\begin{gathered} \$ 6,000 \\ \text { and } \\ \text { Over } \end{gathered}$
Number of People in Each Interval (in thousands)	1,371	1,651	2,259	2,734	3,452	6,278	5,799	4,730	3,723	2,519	2,619	1,223	1,493
Cumulative of People with at Least as Much as Lower Bound of Each Interval (in thousands)	$\begin{gathered} 39,851 \\ \text { (Total } \\ \text { People) } \end{gathered}$	38,480	36,829	34,570	31,836	28,384	22,106	16,307	11,577	7,854	5,335	2,716	1,493
Percent of People with at Least as Much as Lower Bound of Each Interval	100	96.6	92.4	86.7	79.9	71.2	55.5	40.9	29.1	19.7	13.4	6.8	3.7

CONTROL COUNTS

Item S	ScFac	Total	NonNum	NegNum	Val-R	Val-D	Val-0	0	1	2	3	4	5	6	7	8	9
SSUSEQ	3	90408	0	0	0	0	0	1597	1852	1786	1695	1733	1745	1720	1660	1893	1762
SSUID	0	90408	90408	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPANEL	2	90408	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SWAVE	0	90408	0	0	0	0	0	0	90408	0	0	0	0	0	0	0	0
SROTATON	N 0	90408	0	0	0	0	0	0	22870	22657	22469	22412	0	0	0	0	0
TFIPSST	0	90408	0	0	0	0	0	0	1349	209	0	2016	738	10969	0	1038	1110
SHHADID	1	90408	0	0	0	0	0	0	90408	0	0	0	0	0	0	0	0
SINTHHID	D 1	90408	0	0	0	0	0	0	90408	0	0	0	0	0	0	0	0
EOUTCOME	E 1	90408	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RFID	1	90408	0	0	0	0	0	87731	2591	83	3	0	0	0	0	0	0
RFID2	1	90408	0	2841	0	0	0	85382	2099	83	3	0	0	0	0	0	0
EPPIDX	1	90408	0	0	0	0	0	90243	165	0	0	0	0	0	0	0	0
EENTAID	1	90408	0	0	0	0	0	0	90408	0	0	0	0	0	0	0	0
EPPPNUM	2	90408	0	0	0	0	0	0	90408	0	0	0	0	0	0	0	0
EPOPSTAT	T 0	90408	0	0	0	0	0	0	69549	20859	0	0	0	0	0	0	0
EPPINTVW	W 0	90408	0	0	0	0	0	0	45728	22554	1267	0	20859	0	0	0	0
EPPMIS4	0	90408	0	0	0	0	0	0	90408	0	0	0	0	0	0	0	0
ESEX	0	90408	0	0	0	0	0	0	43503	46905	0	0	0	0	0	0	0
ERACE	0	90408	0	0	0	0	0	0	72737	12826	1234	3611	0	0	0	0	0
EORIGIN	0	90408	0	0	0	0	0	0	394	887	5568	1141	388	8379	243	5101	2793
WPFINWGT	T 8	90408	0	0	0	0	2	90305	98	1	0	2	0	0	0	0	0
ERRP	0	90408	0	0	0	0	0	0	23898	11208	17826	28088	1570	902	941	1809	92
TAGE	0	90408	0	0	0	0	1228	0	1424	1422	1359	1361	1358	1353	1399	1439	1408
EMS	0	90408	0	0	0	0	0	0	36610	883	4547	6848	1634	39886	0	0	0
EPNSPOUS	S 2	90408	0	0	0	0	0	0	36610	0	0	0	0	0	0	0	0
EPNMOM	2	90408	0	0	0	0	0	0	29685	0	0	0	0	0	0	0	0
EPNDAD	2	90408	0	0	0	0	0	0	22405	0	0	0	0	0	0	0	0
EPNGUARD	D 2	90408	0	63240	0	0	0	0	26775	0	0	0	0	0	0	0	0
RDESGPNT	T 0	90408	0	20859	0	0	0	0	25422	44127	0	0	0	0	0	0	0
EEDUCATE	E 0	90408	0	20859	0	0	0	0	0	0	0	0	0	0	0	0	0
ELGTKEY	6	90408	0	0	0	0	0	1597	1852	1786	1695	1733	1745	1720	1660	1893	1762
ERCUNV	0	90408	0	73728	0	0	0	0	16680	0	0	0	0	0	0	0	0
EYBG120M	M 0	90408	0	89870	0	0	0	0	42	31	33	39	42	41	43	46	64
AYBG120M	M 0	90408	0	0	0	0	90245	0	0	24	139	0	0	0	0	0	0
TYBG120Y	Y 2	90408	0	89870	0	0	0	0	0	0	0	0	0	0	0	0	0
AYBG120Y	Y 0	90408	0	0	0	0	90342	0	0	0	66	0	0	0	0	0	0
EWBG120M	M 0	90408	0	89151	0	0	0	0	112	99	93	85	93	96	83	107	117
AWBG120M	M 0	90408	0	0	0	0	90178	0	0	47	183	0	0	0	0	0	0
TWBG120Y	Y 2	90408	0	89151	0	0	0	0	0	0	0	0	0	0	0	0	0
AWBG120Y	Y 0	90408	0	0	0	0	90310	0	0	16	82	0	0	0	0	0	0
EFBG120M	M 0	90408	0	88257	0	0	0	0	211	136	121	98	115	171	109	153	264
AFBG120M	M 0	90408	0	0	0	0	89639	0	0	376	393	0	0	0	0	0	0
TFBG120Y	Y 2	90408	0	88257	0	0	0	0	0	0	0	0	0	0	0	0	0
AFBG120Y	Y 0	90408	0	0	0	0	90119	0	115	0	174	0	0	0	0	0	0
TKCOVB1Y	Y 2	90408	0	89909	0	0	0	0	0	0	0	0	0	0	0	0	0
AKCOVB1Y	$Y 0$	90408	0	0	0	0	90075	0	0	0	333	0	0	0	0	0	0

EKCOVB1M	0	90408	0	89909	0	0	0	0	39	46	46	42	35	49	43	40	42
AKCOVB1M	0	90408	0	0	0	0	90050	0	0	5	353	0	0	0	0	0	0
TKCOVB3Y	2	90408	0	90220	0	0	0	0	0	0	0	0	0	0	0	0	0
AKCOVB3Y	0	90408	0	0	0	0	90243	0	0	0	165	0	0	0	0	0	0
EKCOVB3M	0	90408	0	90220	0	0	0	0	19	14	11	17	10	17	16	15	26
AKCOVB3m	0	90408	0	0	0	0	90242	0	0	5	161	0	0	0	0	0	0
TKCOVB4Y	2	90408	0	90401	0	0	0	0	0	0	0	0	0	0	0	0	0
AKCOVB4Y	0	90408	0	0	0	0	90402	0	0	0	6	0	0	0	0	0	0
EKCOVB4M	0	90408	0	90401	0	0	0	0	1	0	0	1	0	0	1	0	2
AKCOVB4M	0	90408	0	0	0	0	90402	0	0	0	6	0	0	0	0	0	0

EKCOVB3M
AKCOVB3M
TKCOVB4Y TKCOVB4Y
AKCOVB4Y AKCOVB4Y AKCOVB4M

16	13	14	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	1	0	0	0	0
0	0	0	0	0	0	0

EKCOVB3M AKCOVB3M
TKCOVB4Y
AKCOVB4Y AKCOVB4Y AKCOVB4M AKCOVB4M 0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

| EKCOVB3M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AKCOVB3M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TKCOVB4Y | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AKCOVB4Y | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EKCOVB4M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AKCOVB4M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| EKCOVB3M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AKCOVB3M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TKCOVB4Y | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AKCOVB4Y | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EKCOVB4M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AKCOVB4M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

\pm	00 앙
\cdots	0000000000000000000000 g 000000000000000000000000000
\sim	$0000000000000000000000 N 000000000000000000000000000$ ㄱ
\cdots	$0000000000000000000000 N 000000000000000000000000000$ m
∞	0000000000000000000000 g000000000000000000000000000 긱
\bigcirc	0000000000000000000000 golo 000000000000000000000000
$\stackrel{\infty}{\sim}$	0000000000000000000000 n000000000000000000000000000 ㅇ
N	00
$\stackrel{\bullet}{\sim}$	$0000000000000000000000 寸 000000000000000000000000000$ *
$\stackrel{\sim}{\sim}$	00000000000000000000008000000000000000000000000000
ন	00 n
n	$0000000000000000000000 寸 000000000000000000000000000$ n
N	00 ก๊
-	$0000000000000000000000 \mathrm{m000000000000000000000000000}$ 곤
\bigcirc	00 군
¢	MONOOOHHTHHTHNOOOOOODOOONNNNOOVOOONOOONOOONONOOONO
$\begin{aligned} & \text { U } \\ & \text { E } \\ & \text { E } \\ & \underset{H}{4} \end{aligned}$	

| EKCOVB3M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AKCOVB3M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TKCOVB4Y | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AKCOVB4Y | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EKCOVB4M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AKCOVB4M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Item Sc		85	86	87	88	89	90	91	92	93	94	95	96	97	98	99
SSUSEQ	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SSUID	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPANEL	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SWAVE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SROTATON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TFIPSST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SHHADID	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SINTHHID	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EOUTCOME	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RFID	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RFID2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EPPIDX	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EENTAID	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EPPPNUM	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EPOPSTAT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EPPINTVW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EPPMIS4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ESEX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ERACE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EORIGIN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WPFINWGT	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ERRP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAGE	0	231	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EPNSPOUS	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	53798
EPNMOM	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	60723
EPNDAD	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	68003
EPNGUARD	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	393
RDESGPNT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EEDUCATE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELGTKEY	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ERCUNV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EYBG120M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AYBG120M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TYBG120Y	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AYBG120Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EWBG120M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AWBG120M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TWBG120Y	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AWBG120Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EFBG120M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AFBG120M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TFBG120Y	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AFBG120Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TKC0VB1Y	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AKC0VB1Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EKC0VB1M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AKC0VB1M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TKCOVB3Y	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AKCOVB3Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

| EKCOVB3M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AKCOVB3M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TKCOVB4Y | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AKCOVB4Y | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EKCOVB4M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AKCOVB4M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Item S	ScFac	Total	NonNum	NegNum	Va1-R	Va1-D	Va1-0	0	1	2	3	4	5	6	7	8	9
EARCUNV	0	90408	0	24882	0	0	0	0	65526	0	0	0	0	0	0	0	0
ECURFS	0	90408	0	87998	0	0	0	0	1045	1365	0	0	0	0	0	0	0
ACURFS	0	90408	0	0	0	0	90273	0	135	0	0	0	0	0	0	0	0
EAPLFS	0	90408	0	27292	0	0	0	0	5861	57255	0	0	0	0	0	0	0
AAPLFS	0	90408	0	0	0	0	86770	0	3638	0	0	0	0	0	0	0	0
ERECVFS	0	90408	0	84547	0	0	0	0	4661	1200	0	0	0	0	0	0	0
ARECVFS	0	90408	0	0	0	0	89948	0	460	0	0	0	0	0	0	0	0
EFSSTRMN	N 0	90408	0	84702	0	0	0	0	1060	492	518	405	360	799	341	365	428
AFSSTRMN	N 0	90408	0	0	0	0	87748	0	2660	0	0	0	0	0	0	0	0
TFSSTRYR	R 2	90408	0	84702	0	0	0	0	0	0	0	0	0	0	0	0	0
AFSSTRYR	R 0	90408	0	0	0	0	89436	0	578	102	292	0	0	0	0	0	0
EFSLM	0	90408	0	84702	0	0	0	0	484	599	620	553	476	545	283	363	428
AFSLM	0	90408	0	0	0	0	88069	0	2339	0	0	0	0	0	0	0	0
TFSLY	2	90408	0	84702	0	0	0	0	0	0	0	0	0	0	0	0	0
AFSLY	0	90408	0	0	0	0	89527	0	573	54	254	0	0	0	0	0	0
TFSTIMES	S 0	90408	0	84702	0	0	0	0	3762	905	326	164	176	373	0	0	0
AFSTIMES	S 0	90408	0	0	0	0	89558	0	850	0	0	0	0	0	0	0	0
ECURAFDC	C 0	90408	0	89815	0	0	0	0	199	394	0	0	0	0	0	0	0
ACURAFDC	C 0	90408	0	0	0	0	90310	0	98	0	0	0	0	0	0	0	0
EAPLAFDC	C 0	90408	0	76734	0	0	0	0	1850	11824	0	0	0	0	0	0	0
AAPLAFDC	C 0	90408	0	0	0	0	89899	0	509	0	0	0	0	0	0	0	0
ERCVAFDC	C 0	90408	0	88558	0	0	0	0	1538	312	0	0	0	0	0	0	0
ARCVAFDC	C 0	90408	0	0	0	0	90318	0	90	0	0	0	0	0	0	0	0
EAFDCSTM	M 0	90408	0	88671	0	0	0	0	386	138	139	105	117	188	102	124	123
AAFDCSTM	M 0	90408	0	0	0	0	89675	0	733	0	0	0	0	0	0	0	0
TAFDCSTY	Y 2	90408	0	88671	0	0	0	0	0	0	0	0	0	0	0	0	0
AAFDCSTY	Y 0	90408	0	0	0	0	90181	0	85	13	129	0	0	0	0	0	0
EAFDCLM	0	90408	0	88671	0	0	0	0	223	144	146	147	147	208	87	112	139
AAFDCLM	0	90408	0	0	0	0	89715	0	693	0	0	0	0	0	0	0	0
TAFDCLY	2	90408	0	88671	0	0	0	0	0	0	0	0	0	0	0	0	0
AAFDCLY	0	90408	0	0	0	0	90177	0	101	7	123	0	0	0	0	0	0
TAFDCTIM	M 0	90408	0	88671	0	0	0	0	1109	279	120	65	48	116	0	0	0
AAFDCTIM	M 0	90408	0	0	0	0	90151	0	257	0	0	0	0	0	0	0	0
ECURSSI	0	90408	0	88347	0	0	0	0	585	1476	0	0	0	0	0	0	0
ACURSSI	0	90408	0	0	0	0	89226	0	1182	0	0	0	0	0	0	0	0
EAPLSSI	0	90408	0	26943	0	0	0	0	1417	62048	0	0	0	0	0	0	0
AAPLSSI	0	90408	0	0	0	0	87991	0	2417	0	0	0	0	0	0	0	0
ERECVSSI	I 0	90408	0	88991	0	0	0	0	495	922	0	0	0	0	0	0	0
ARECVSSI	I 0	90408	0	0	0	0	90346	0	62	0	0	0	0	0	0	0	0
ESSISTRM	M 0	90408	0	89328	0	0	0	0	243	62	68	117	66	161	55	43	90
ASSISTRM	M 0	90408	0	0	0	0	89731	0	677	0	0	0	0	0	0	0	0
TSSISTRY	Y 2	90408	0	89328	0	0	0	0	0	0	0	0	0	0	0	0	0
ASSISTRY	Y 0	90408	0	0	0	0	89951	0	369	36	52	0	0	0	0	0	0
ESSILM	0	90408	0	89328	0	0	0	0	74	158	146	209	177	114	27	26	45
ASSILM	0	90408	0	0	0	0	89852	0	556	0	0	0	0	0	0	0	0
TSSILY	2	90408	0	89328	0	0	0	0	0	0	0	0	0	0	0	0	0
ASSILY	0	90408	0	0	0	0	89993	0	370	13	32	0	0	0	0	0	0
EAHIUNV	0	90408	0	20859	0	0	0	0	69549	0	0	0	0	0	0	0	0
TCDBEGYR	R 2	90408	0	84315	0	0	0	0	0	0	0	0	0	0	0	0	0
ACDBEGYR	R 0	90408	0	0	0	0	87814	0	2594	0	0	0	0	0	0	0	0

ECDBEGMO	0	90408	0	86380	0	0	0	0	505	293	275	236	180	890	181	332	261	
ACDBEGMO	0	90408	0	0	0	0	87665	0	2743	0	0	0	0	0	0	0	0	0
EHIALLCV	0	90408	0	38027	0	0	0	0	38811	13570	0	0	0	0	0	0	0	0
AHIALLCV	0	90408	0	0	0	0	87100	0	3308	0	0	0	0	0	0	0	0	0
THINOYR	2	90408	0	76838	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AHINOYR	0	90408	0	0	0	0	90004	0	0	32	372	0	0	0	0			

ECDBEGMO	0	276	308	291	0	0	0	0	0	0	0	0	0	0	0	0	
ACDBEGMO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
EHIALLCV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
AHIALLCV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
THINOYR	2	0	0	0	0	0	0	0	0	0	11963	1607	0	0	0	0	
AHINOYR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Item Sc		Tota 1	NonNum	NegNum	Val-R	Va1-D	Va1-0	0	1	2	3	4	5	6	7	8	9
EHINOMTH	0	90408	0	87708	0	0	0	0	217	107	177	151	199	267	201	284	332
AHINOMTH	0	90408	0	0	0	0	89971	0	147	32	258	0	0	0	0	0	0
EHIEVRCV	0	90408	0	73253	0	0	0	0	8676	8479	0	0	0	0	0	0	0
AHIEVRCV	0	90408	0	0	0	0	88530	0	1878	0	0	0	0	0	0	0	0
THICVYR	2	90408	0	81732	0	0	0	0	0	0	0	0	0	0	0	0	0
AHICVYR	0	90408	0	0	0	0	89665	0	0	36	707	0	0	0	0	0	0
EHICVMTH	0	90408	0	87104	0	0	0	0	245	160	178	149	184	318	202	254	416
AHICVMTH	0	90408	0	0	0	0	89720	0	177	36	475	0	0	0	0	0	0
EAEMUNV	0	90408	0	29178	0	0	0	0	61230	0	0	0	0	0	0	0	0
TLSTWRKY	2	90408	0	73674	0	0	2534	0	0	0	0	0	0	0	0	0	0
ALSTWRKY	0	90408	0	0	0	0	88455	0	1793	160	0	0	0	0	0	0	0
ELSTWRKM	0	90408	0	85889	0	0	0	0	351	229	274	266	277	485	364	597	520
ALSTWRKM	0	90408	0	0	0	0	89468	0	718	222	0	0	0	0	0	0	0
TPRVJBYR	2	90408	0	87863	0	0	242	0	0	0	0	0	0	0	0	0	0
APRVJBYR	0	90408	0	0	0	0	90098	0	207	103	0	0	0	0	0	0	0
EPRVJBMN	0	90408	0	88495	0	0	0	0	113	43	64	62	78	135	119	217	319
APRVJBMN	0	90408	0	0	0	0	89892	0	223	293	0	0	0	0	0	0	0
TFRMRYR	2	90408	0	78299	0	0	0	0	0	0	0	0	0	0	0	0	0
AFRMRYR	0	90408	0	0	0	0	88478	0	1801	129	0	0	0	0	0	0	0
EFRMRMN	0	90408	0	87058	0	0	0	0	558	273	260	284	363	518	230	237	213
AFRMRMN	0	90408	0	0	0	0	89511	0	698	199	0	0	0	0	0	0	0
TMAKMNYR	2	90408	0	31954	0	0	1036	0	0	0	0	0	0	0	0	0	0
AMAKMNYR	0	90408	0	0	0	0	84262	0	6086	0	60	0	0	0	0	0	0
EMNRESON	0	90408	0	86596	0	0	0	0	513	17	60	721	507	115	223	1443	213
AMNRESON	0	90408	0	0	0	0	89994	0	414	0	0	0	0	0	0	0	0
EYRSINCE	0	90408	0	33020	0	0	0	0	36074	21314	0	0	0	0	0	0	0
AYRSINCE	0	90408	0	0	0	0	86407	0	4001	0	0	0	0	0	0	0	0
EYRSINC2	1	90408	0	69094	0	0	0	11909	4534	1845	995	1072	943	16	0	0	0
AYRSINC2	0	90408	0	0	0	0	85745	0	4639	24	0	0	0	0	0	0	0
EWRK35HR	0	90408	0	32990	0	0	0	0	47493	9925	0	0	0	0	0	0	0
AWRK35HR	0	90408	0	0	0	0	87496	0	2912	0	0	0	0	0	0	0	0
EOFF6MTN	0	90408	0	42637	0	0	0	0	9027	38744	0	0	0	0	0	0	0
AOFF6MTN	0	90408	0	0	0	0	86168	0	4230	10	0	0	0	0	0	0	0
TNOWRKFR	2	90408	0	81381	0	0	0	0	0	0	0	0	0	0	0	0	0
ANOWRKFR	0	90408	0	0	0	0	89026	0	1138	53	191	0	0	0	0	0	0
TNOWRKTO	2	90408	0	81381	0	0	0	0	0	0	0	0	0	0	0	0	0
ANOWRKTO	0	90408	0	0	0	0	89073	0	1140	8	187	0	0	0	0	0	0
ENWRESN	0	90408	0	81381	0	0	0	0	8155	522	350	0	0	0	0	0	0
ANWRESN	0	90408	0	0	0	0	89580	0	828	0	0	0	0	0	0	0	0
EOTHTIME	0	90408	0	81381	0	0	0	0	1778	7249	0	0	0	0	0	0	0
AOTHTIME	0	90408	0	0	0	0	89595	0	813	0	0	0	0	0	0	0	0
ECNTOTHR	0	90408	0	88630	0	0	0	0	1026	408	175	67	47	13	10	4	4
ACNTOTHR	0	90408	0	0	0	0	89953	0	450	3	2	0	0	0	0	0	0
TFSTYRFR	2	90408	0	88630	0	0	0	0	0	0	0	0	0	0	0	0	0
AFSTYRFR	0	90408	0	0	0	0	89652	0	481	133	142	0	0	0	0	0	0
TFSTYRTO	2	90408	0	88630	0	0	0	0	0	0	0	0	0	0	0	0	0
AFSTYRTO	0	90408	0	0	0	0	89597	0	618	6	187	0	0	0	0	0	0
EFRSTRSN	0	90408	0	88630	0	0	0	0	1664	69	45	0	0	0	0	0	0
AFRSTRSN	0	90408	0	0	0	0	89951	0	457	0	0	0	0	0	0	0	0
FILLER	0	90408	0	0	0	0	17439	0	0	0	0	0	0	0	0	0	0

APPENDIX A

2001 SIPP WAVE 1 TOPICAL MODULE QUESTIONNAIRE
 Table of Contents

A. Recipiency History Topical Module . 1
B. Employment History Topical Module . 5

Section A. Recipiency History Topical Module

-CURFS-

Besides the food stamps you received during the last four months, have there been any other times when you were authorized to receive food stamps?
(1) Yes
(2) No
-APLFS-
Have you ever applied for the Federal Government's Food Stamp Program?
(1) Yes
(2) No

-RECVFS-

Have you EVER been authorized to receive food stamps?
(1) Yes
(2) No
-FSWHEN-
When did you first start receiving food stamps?
MONTH: \qquad
YEAR: \qquad
-TMFSLONG-

When did you last receive food stamps?
MONTH: \qquad
YEAR: \qquad

-TMFSTIME-

How many times in all have there been when you received food stamps?
-CURADC-

Besides the public assistance such as AFDC, TANF or [state's name public assistance] received during the last four months, have there been any other times when you were authorized to receive public assistance?
(1) Yes
(2) No
-APLAFDC-

Have you EVER applied for public assistance such as AFDC, TANF or [state's name public assistance]?
(1) Yes
(2) No
-RECVAFDC-
Have you EVER received any public assistance benefits such as AFDC, TANF or [state's name public assistance]?
(1) Yes
(2) No

-AFDCWHEN-

When did you first start receiving public assistance benefits such as AFDC, TANF or [state's name public assistance]?

MONTH:
YEAR: \qquad

-TMAFDCLG-

When did you last receive public assistance such as AFDC, TANF or [state's name public assistance]?

MONTH: \qquad
YEAR: \qquad
-AFDCTIME-

How many times in all have there been when you received public assistance such as AFDC, TANF or [state's name public assistance]?
-CURSSI-

Besides the Supplemental Security Income you received during the last four months, have there been any other times when you were authorized to receive Supplemental Security Income benefits?
(1) Yes
(2) No

-APLSSI-

Have you EVER applied for benefits from the program called SSI or Supplemental Security Income?
(1) Yes
(2) No

-RECVSSI-

Have you EVER received SSI benefits?
(1) Yes
(2) No
-SSIWHEN-
When did you first start receiving SSI benefits?
MONTH: \qquad
YEAR: \qquad
-TMSSILNG-
When did you last receive SSI?
MONTH:
YEAR: \qquad

End of Recipiency History Topical Module

Section B. Employment History Topical Module

-EMPHINTRO-

Now I have some questions about your previous jobs or businesses.
PRESS ENTER TO CONTINUE

-LSTWRKY1-

In what year did you last work at a paid job or business?
ENTER (N) FOR NEVER WORKED
YEAR: \qquad

-LSTWRKM1-

In what month was that?
MONTH: \qquad
-PRVJOBYR-
Before [reference month 1], in what year did you last work at a paid job or business?
ENTER (N) FOR NEVER WORKED AT ANOTHER JOB/BUSINESS

YEAR: \qquad
-PRVJOBMN-
In what month was that?
MONTH: \qquad
-FRMRYR-
In what year did you START that job or business?
YEAR: \qquad
-FRMRMN-
In what month was that?
MONTH: \qquad

-SIXMTHYR-

How old were you when you FIRST worked 6 straight months at some job or business?
IF THE RESPONDENT PROVIDES AN AGE, ENTER THE RESPONSE IN THE "AGE" SPACE; IF THE RESPONDENT PREFERS TO ANSWER IN TERMS OF A CALENDAR YEAR, ENTER THE YEAR (THAT IS, 19--) IN THE "YEAR" SPACE. PRESS ENTER TO MOVE TO "YEAR" SPACE.) WE ARE ONLY INTERESTED IN WORK AFTER AGE 15. ENTER AN AGE OR YEAR AFTER THE RESPONDENT TURNED 15.

ENTER (N) FOR NEVER WORKED MORE THAN 6 STRAIGHT MONTHS AT A JOB OR BUSINESS

AGE: \qquad OR YEAR: \qquad

-YRSIXMTH-

That would be around [calculated month/year]. Is that correct?
(1) Yes
(2) No

-SXMTHYR2-

I'm sorry. What year was it?
YEAR: \qquad

-NO6REASN-

What is the main reason you never worked at a paid job or business?
(1) Taking care of a minor child
(2) Taking care of an elderly family member
(3) Taking care of a disabled but non-elderly family member
(4) Other family or home responsibilities
(5) Own illness or disability
(6) Could not find work
(7) Did not want to work
(8) Going to school
(9) Other

-YRSINCE-

Did you work at least 6 straight months during each year?
(1) Yes
(2) No

-YRSINCE2-

There have been [\#] years since [calculated month/year].
In how many of those [\#] years did you NOT work 6 straight months?
ENTER NUMBER OF YEARS OR (A) FOR ALL
NUMBER OF YEARS: \qquad
-WRK35HR-
During the time you have worked, have you generally worked 35 or more hours per week?
(1) Yes
(2) No

-OFF6MTH-

Since [calculated month/year] have there been any periods lasting 6 months or longer when you did not work at a paid job or business because you were taking care of a child, an elderly person, or a disabled person?
(1) Yes
(2) No
-NOWRKSPL-

When was the MOST RECENT time period that this happened?
Please report the beginning and ending years of the period.
FROM: \qquad TO: \qquad

-NWRESN-

(ASK OR VERIFY)

At that time which ONE of the following were you taking care of ...?
READ ALL ANSWERS. ENTER ONLY ONE RESPONSE.
(1) A minor child
(2) An elderly family member
(3) A disabled but non-elderly family member

-OTHTIMES-

Since [calculated month/year] were there any other periods of 6 months or longer when you did not work at a paid job or business because you were taking care of a child, an elderly person, or a disabled person?
(1) Yes
(2) No
-CNTOTHR-
How many other times did this happen?

-FRSTYR-

When was the first time that this happened?
FROM: \qquad TO: \qquad
-FRSTRSN-

(ASK OR VERIFY)

At that time which ONE of the following were you taking care of ...?
READ ALL ANSWERS. ENTER ONLY ONE RESPONSE.
(1) A minor child
(2) An elderly family member
(3) A disabled but non-elderly family member

APPENDIX B

Working Papers

This appendix provides a list of SIPP Working Papers. These papers are available on the Census Bureau's Internet site http://www.census.gov

Old New

(8401) 1 (Update No. 1, Revised 12/85) "An Overview of the Survey of Income and Program Participation," D. NELSON, D. B. MCMILLEN, and D. KASPRZYK (Census Bureau)
(8501) 2 "The Survey of Income and Program Participation: Uses and Applications," K. S. SHORT (Census Bureau)
(8502) 3 "Applications of a Matched File Linking the Bureau of the Census Survey of Income and Program Participation and Economic Data," S. HABER (The George Washington University)
(8503) 4 "Using the Survey of Income and Program Participation for Research on the Older Population," D. B. MCMILLEN, C. M. TAEUBER, and J. MARKS (Census Bureau)
(8504) 5 "Summary of the Content of the 1984 Panel of the Survey of Income and Program Participation," D. T. FRANKEL (Census Bureau)
(8505) 6 "Enhancing Data from the Survey of Income and Program Participation with Data from Economic Censuses and Surveys," D. K. SATER (Census Bureau)
(8506) 7 "Methodologies for Imputing Longitudinal Survey Items," V. J. HUGGINS, L. WEIDMAN, and M. E. SAMUHEL (Census Bureau)
(8601) 9 "Some Aspects of SIPP," compiled and edited by R. A. HERRIOT and D. KASPRZYK (Census Bureau)
(8602) 10 "Nonsampling Error Issues in the SIPP," G. KALTON (University of Michigan), D. B. MCMILLEN, and D. KASPRZYK (Census Bureau)
(8603) 11 "An Investigation of Model-Based Imputation Procedures Using Data from the Income Survey Development Program," V. J. HUGGINS and L. WEIDMAN (Census Bureau)
(8604) 12 "Food Stamp Participation: A Comparison of SIPP with Administrative Records, S. CARLSON and R. DALRYMPLE (Food and Nutrition Service)

14 "A Comparison of Seven Imputation Procedures for the 1979 Panel of the Income Survey Development Program," V. J. HUGGINS (Census Bureau)

16 "Evaluation of Training Materials and Methods for the Survey of Income and Program Participation," M. HOLT (Survey Research Consultant)

17 "Patterns of Household Composition and Family Status Change," C. F. CITRO (ASA/Census Research Fellow), and H. W. WATTS (Department of Economics, Columbia University)

18 "Composite Estimation for SIPP:A Preliminary Report," R. P. CHAKRABARTY (Census Bureau)

19 "Longitudinal Household Concepts in SIPP: Preliminary Results," C. F. CITRO
"Longitudinal Household Concepts in SIPP: Preliminary Results," C. F. CITRO
(ASA/Census Research Fellow), D. J. HERNANDEZ, and R. A. HERRIOT (Census Bureau)
20 "Following Children in the Survey of Income and Program Participation," E. K. MCARTHUR, and K. S. SHORT (Census Bureau)

21 "SIPP Labor Force Transitions: Problems and Promises," P. RYSCAV AGE andK. S. SHORT (Census Bureau)

22 "Augmenting Data Reported in the Survey of Income and Program Participation with Administrative Record Data--A Brief Discussion," D. K. SATER (Census Bureau)

23 "Tracking Persons Over Time," A. C. JEAN and E. K. MCARTHUR (Census Bureau)

25 "Work Experience Data from SIPP," P. RYSCAVAGE and A. FELDMAN-HARKINS (Census Bureau)

26 "The Treatment of Person-Wave Nonresponse in Longitudinal Surveys," G. KALTON, J. LEPKOWSKI, S. HEERINGA, TING-KWONG LIN, and M. E. MILLER (Survey Research Center, University of Michigan)

27 "SIPP: Filling Data Gaps on the Poverty and Social Welfare Fronts," P. RYSCAVAGE (Census Bureau)

28 "Response Errors in Labor Surveys: Comparisons of Self and Proxy," D. HILL (University of Michigan)
"An Investigation of the Imputation of Monthly Earnings for the Survey of Income and Program Participation Using Regression Models," V. J. HUGGINS and L. WEIDMAN (Census Bureau)

24 "Preliminary Data from the SIPP 1983-84 Longitudinal Research File," J. F. CODER, D. BURKHEAD, A. FELDMAN-HARKINS, and J. MCNEIL (Census Bureau)
"Differences Between SIPP and Food and Nutrition Service Program Data on Child Nutrition and WIC Program Participation," L. KU and R. DALRYMPLE (Food and Nutrition Service, U.S. Department of Agriculture)
"Quality Profile for the Survey of Income and Program Participation," K. KING, R. PETRONI, and R. SINGH (Census Bureau)
(8709) 31 "Survey of Income and Program Participation (SIPP) Sample Loss and the Efforts to Reduce It," D. NELSON, C. BOWIE, and A. WALKER (Census Bureau)
"The Impact of Imputation Procedures on Distributional Characteristics of the Low Income Population," P. DOYLE (Mathematica Policy Research), and R. DALRYMPLE (Food and Nutrition Service, U.S. Department of Agriculture)
"Job Tenure, Lifetime Work Interruptions and Wage Differentials," J. MCNEIL, E. LAMAS (Census Bureau), and S. HABER (The George Washington University)

34 "Measuring the Bias in Gross Flows in the Presence of Auto-Correlated Response Errors," D. HUBBLE (Census Bureau), and D. JUDKINS (Westat, Inc.)

35 "Investigation of Possible Causes of Transition Patterns from SIPP," L. WEIDMAN (Census Bureau)

36 "Household and Income Sources: Monthly Averages for 1984," J. MOORMAN (Census Bureau)

37 "Creating SIPP Longitudinal Files Using OSIRIS IV," M. SERVAIS (University of Michigan)
38 "Transition In and Out of Poverty: New Data from the Survey of Income and Program Participation," P. RUGGLES (The Urban Institute), and R. WILLIAMS (Congressional Budget Office)

39 "On Their Own: The Self-Employed and Others in Private Business," S. HABER (The George Washington University), E. LAMAS (Census Bureau), and J. LICHTENSTEIN (U.S. Small Business Administration)

40 "Factors Associated with Household Net Worth," E. LAMAS and J. MCNEIL (Census Bureau)

41 "Exploring Changes in Health Care Coverage Using the SIPP Longitudinal Research File," D. BURKHEAD and A. FELDMAN and HARKINS (Census Bureau)

42 "The Analysis of Geographical Mobility and Life Events with the SIPP," D. DAHMANN and E. MCARTHUR (Census Bureau)

43 "A Review of the Use of Administrative Records in the Survey of Income and Program Participation," C. BOWIE and D. KASPRZYK (Census Bureau)
"Survey of Income and Program Participation Update," D. KASPRZYK (Census Bureau)
"Measuring Poverty with the SIPP and the CPS," R. WILLIAMS (Congressional Budget Office)
"The Statistical Invisible Minority Aged," C. TAEUBER (Census Bureau), and E. ATTAH (Atlanta University)

Old
(8802)
(8803)

New

47 "An Analysis of the SIPP Asset and Liability Feedback Experiment," E. LAMAS and J. MCNEIL (Census Bureau)

48 "The Impact of the Unit of Analysis on Measures of Serial Multiple Program Participation," P. DOYLE and S. K. LONG (Mathematica Policy Research, Inc.)

49 "Short-Term Fluctuations in Income and Their Impacts on the Characteristics of the LowIncome Population: New Data from the Survey of Income and Program Participation," P. RUGGLES (The Urban Institute)

50 "Residential Mobility of One-Person Households," J. WITTE and H. LAHMANN (German Institute for Economic Research)

51 "Year-Apart Estimates of Household Net Worth from the Survey of Income and Program Participation," J. MCNEIL and E. LAMAS (Census Bureau)

52 "Measuring Poverty and Crises: A Comparison of Annual and Subannual Accounting Periods Using the Survey of Income and Program Participation," M. DAVID and
J. FITZGERALD (Institute for Research on Poverty)

53 "Using Administrative Record Data to Evaluate the Quality of Survey Estimates,"
J. MOORE and K. MARQUIS (Census Bureau)

54 "The Wealth of the Aged and Nonaged, 1984," D. RADNER (Social Security Administration)

55
"Examining the Dynamics of Health Insurance Loss: A Tale of Two Cohorts, A. C. MONHEIT and C. L. SCHUR (National Center for Health Services Research)

56 "The Dynamics of Medicaid Enrollment," P. FARLEY-SHORT, J. A. CANTOR and A. C. MONHEIT (National Center for Health Services Research)

57 "The Discouraged Worker Effect: A Reappraisal Using Spell Duration Data, A. MARTINI (University of Wisconsin-Madison)

58 "Income as a Proxy for the Economic Status of the Elderly," D. J. CHOLLET and R. B. FRIEDLAND (Employee Benefit Research Institute)

59 "The SIPP: Data from the Social Security Administration's 1987 Annual Statistical Supplement."

60 "Participation in Industrial Training Programs," S. HABER (The George Washington University)

61 "A Methodological Study Using Administrative Records: The Special Frames Study of the Income Survey Development Program," W. J. LOGAN (Social Security Administration),. D. KASPRZYK and R. CAVANAUGH (Census Bureau)
"The Effect of Income Taxation on Labor Supply When Deductions are Endogenous, R. K. TRIEST (The Johns Hopkins University)
(8816) 63 "A Comparison of Gross Changes in Labor Force Status from SIPP and CPS," P. RYSCAVAGE and A. FELDMAN-HARKINS (Census Bureau)

65 "Welfare Recipient as Observed in the SIPP," J. CODER (Census Bureau) and P. RUGGLES (The Urban Institute)

66 "Reservation Wages and Subsequent Acceptance Wages of Unemployed Persons, P. RYSCAVAGE (Census Bureau)

67 "Selected References from the Income Survey Development Program (ISDP) and Survey of Income and Program Participation (SIPP)."

68 "Training, Wage Growth, Firm Size," S. HABER (The George Washington University) and E. LAMAS (Census Bureau)

69 "Defining and Measuring Nonmetro Poverty: Results from the Survey of Income and Program Participation," R. HOPPE (Economic Research Service, U.S. Department of Agriculture)

70 "Nonresponse Adjustment Methods for Demographic Surveys at the U.S. Bureau of the Census," R. SINGH and R. PETRONI (Census Bureau)

71 "Testing Telephone Interviewing in the Survey of Income and Program Participation and Some Early Results," S. DURANT and P. GBUR (Census Bureau)

72 "Excluding Sample that Misses Some Interviews from SIPP Longitudinal Estimates," L. R. ERNST and D. GILLMAN (Census Bureau)

73 "The Employment of Mothers and the Prevention of Poverty," M. HILL (University of Michigan) and H. HARTMANN (Rutgers University)

74 "Using Administrative Record Data to Describe SIPP Response Errors," J. MOORE and K. MARQUIS (Census Bureau)

75 "A Look at Welfare Dependency Using the 1984 SIPP Panel File," J. CODER, D. BURKHEAD, and A. FELDMAN-HARKINS (Census Bureau)
"Census Bureau Microdata: Providing Useful Research Data While Protecting the Anonymity of Respondents," G. GATES (Census Bureau)

77 "The Survey of Income and Program Participation: An Overview and Discussion of Research Issues," D. KASPRZYK (Census Bureau)

78 "Quality of SIPP Estimates," R. P. SINGH, L. WEIDMAN, and G. SHAPIRO (Census Bureau)
"Two Notes on Sampling Variance Estimates from the 1984 SIPP Public-Use Files," B. BYE and S. J. GALLICCHIO (Social Security Administration)
(8903) 80 "Longitudinal vs. Retrospective Measures of Work Experience," P. RYSCAVAGE and J. CODER (Census Bureau)
(8904) 81 "Analyzing the Characteristics of Blacks: A Comparison of Data from SIPP and CPS," R. FARLEY and L. J. NEIDERT (University of Michigan)
(8905)
(8906) 83 "Reflections on the Income Estimates from the Initial Panel of the Survey of Income and Program Participation (SIPP)," D. VAUGHAN (Social Security Administration)
(8907) 84 "Measuring Spells of Unemployment and Their Outcomes," P. RYSCAVAGE (Census Bureau)
(8908) 85 "Welfare Dependency and its Causes: Determinants of the Duration of Welfare Spells," P. RUGGLES (The Urban Institute)
(8909) 86 "Measuring the Duration of Poverty Spells," P. RUGGLES (The Urban Institute) and R. WILLIAMS (Congressional Budget Office)
(8910) 87 "Methods of Processing Unit Data Longitudinally on the SIPP," K. SMITH (Congressional Budget Office)
(8911) 88 "Composite Estimation for SIPP Annual Estimates," R. P. CHAKRABARTY (Census Bureau)
(8912) 89 "Research and Evaluation Conducted on the Survey of Income and Program Participation," R. PETRONI, T. CARMODY, and V. HUGGINS (Census Bureau)

90 "A Poisson Model of Response and Procedural Error Analysis of SIPP Reinterview Data," D. HILL (University of Michigan)

91 "The Economic Resources of the Elderly," S. CRYSTAL and D. SHEA (Rutgers University)
92 "Multivariate Analysis by Users of SIPP Micro-Data Files" R. P. CHAKRABARTY (Census Bureau)
(8916) 93 "A Resource-Based Model of Living Arrangements among the Unmarried Elderly," J. E. MUTCHLER and J. A. BURR (University of Buffalo)

94 "Measuring Household Change at the Individual Level Using Data from SIPP, " A. SPEARE, JR. and R. AVERY (Brown University)

95 "The Effect of Child Care Costs on Married Women's Labor Force Participation, R. CONNELLY (Bowdoin College)

96 "Income and Assets of Social Security Beneficiaries by Type of Benefit," S. GRAD (Social Security Administration)

101 "Measuring the Frequency and Consequences of Job Separations: Data from the Survey of Income and Program Participation," J. MCNEIL and E. LAMAS (Census Bureau)

102 "The Regular Receipt of Child Support: A Multi-Step Process," J. PETERSON and C. NORD (Child Trends, Inc.)

103 "The Potential for Comparative Panel Research Using Data from the Survey of Income and Program Participation and the German Socio-Economic Panel, J. C. WITTE (Harvard University)
"Offer Arrivals Versus Acceptance: Interpreting Demographic Reemployment Patterns in the Search Framework," T. J. DEVINE (The Pennsylvania State University)

105 "Findings from the SIPP Fringe Benefits Feasibility Study: Response Rates and Data Quality," S. HABER (The George Washington University)

106 "Recent Developments in the Survey of Income and Program Participation, C. BOWIE (Census Bureau)

107 "An Analysis of Leaving Home Using Data from the 1984 Panel of the SIPP, A. SPEARE, JR., R. AVERY, and F. GOLDSCHEIDER (Brown University)
"The Effect of the Marriage Market on First Marriages: Evidence from SIPP, J. FITZGERALD (Bowdoin College)
"Counting Spells of Unemployment," P. RYSCAVAGE and K. SHORT (Census Bureau)
"The Elderly and Their Sources of Income: Implications for Rural Development," R. HOPPE (Economic Research Service, U.S. Department of Agriculture)

111 "Alternative Estimates of Economic Well-Being by Age Using Data on Wealth and Income," D. RADNER (Social Security Administration)

112 "Longitudinal Analysis of Federal Survey Data," P. RUGGLES (Joint Economic Committee)
113 "Measurement Errors in SIPP Program Reports," K. H. MARQUIS and J. C. MOORE (Census Bureau)

114 "Handling Single Wave Nonresponse in Panel Surveys," R. SINGH, V. HUGGINS, and D. KASPRZYK (Census Bureau)

116 "The Seam Effect in Panel Surveys," G. KALTON, D. HILL, and M. MILLER (University of Michigan)

117 "The Effects of Being Uninsured on Health Care Service Use: Estimates from the SIPP," S. H. LONG and J. RODGERS (Congressional Budget Office)

118 "Wage Differential and Job Changes," S. SENINGER and D. GREENBERG (University of Maryland) From SIP

119 "Wages and Employment Among the Working Poor: New Evidence P, S. K. LONG (The Urban Institute) and A. MARTINI (Mathematica Policy Research)

120 "Pension Portability \& Labor Mobility: Evidence from SIPP," A. GUSTMAN (Dartmouth College) and T. STEINMEIER (Texas Tech University)

121 "Response \& Procedural Error Variance in Surveys: An Application of Poisson and Newman Type A Regression," D. HILL (University of Toledo)

122 "Aging and the Income Value of Housing Wealth," S. F. VENTI (Dartmouth College) and D. A. WISE (Harvard University)

123 "Welfare Participation and Welfare Recidivism: The Role of Family Events, S. K. LONG (The Urban Institute)

124 "Racial Differences in Health and Health Care Service Utilization: The Effect of Socioeconomic Status," J. E. MUTCHLER and J. A. BURR (State University of New York at Buffalo)

125 "Living Benefits: Closing the Gap for LTC Financing," D. G. SHEA (Pennsylvania State University)

126 "SIPP Record Check Results: Implications for Measurement Principles and Practice, K. H. MARQUIS and J. C. MOORE (Census Bureau)

127 "Workers with Disabilities in Large and Small Firms: Profiles from the SIPP," D. DRURY (Berkeley Planning Associates)

128 "Entry into Marriage and the Transition to Adulthood Among Recent Firth Cohorts of Young Adults in the United States and the Federal Republic of Germany," J. WITTE (Harvard University)

129 "The Saving Effect of Tax-Deferred Retirement Accounts: Evidence from the SIPP, S. VENTI (Dartmouth College) and D. A. WISE (Harvard University)

130 "Children and Welfare: Patterns of Multiple Program Participation," S. K. LONG (The Urban Institute)

131 "Household and Nonhousehold Living Arrangements in Later Life: A Longitudinal Analysis of A Social Process," J. E. MUTCHLER and J. A. BURR (University of Buffalo)

132 "The SIPP Event History Calendar: Aiding Respondents in the Dating of Longitudinal Process," R. KOMINSKI (Census Bureau)

133 "Estimates of Employer Contributions for Health Insurance by Worker Characteristics," S. HABER (George Washington University)

134 "Two Notes on Relating the Risk of Disclosure for Microdata and Geographic Area Size," B. GREENBERG and L. VOSHELL (Census Bureau)

135 "Childcare Effects on Social Security Benefits (91 ARC)," H. M. IAMS (Social Security Administration)

136 "The Effect of the Medicaid Program on Welfare Participation \& Labor Supply," R. MOFFIT (Brown University) and B. WOLFE (University of Wisconsin)

137 "Proxy Reports: Results from a Record Check Study," J. C. MOORE (Census Bureau)

138 "Spells Without Health Insurance: What Affects Spell Durations and Who are the Chronically Uninsured?," T. MCBRIDE and K. SWARTZ (The Urban Institute)

139
"Spells without Health Insurance: Distributions of Durations and their Link to Point-in-Time Estimates of the Uninsured," K. SWARTZ and T. MCBRIDE (The Urban Institute)

140 "Discrete Time Models of Entry into Marriage Based on Retrospective Marital Histories of Young Adults in the U.S. and the Federal Republic of Germany," J. WITTE (Harvard University)

141 "Trends in Income and Wealth of the Elderly in the 1980's," P. RYSCAVAGE (Census Bureau)

142 "The Impact of Survey and Questionnaire Design on Longitudinal Labor Force Measures," A. MARTINI (Mathematica Policy Research) and P. RYSCAVAGE (Census Bureau)

143 "Using SIPP to Analyze Black-White Differences in Youth Employment," G. C. CAIN and P. M. GLEASON (University of Wisconsin)

144 "A Random-Effects Approach to Attrition Bias in the SIPP Health Insurance Data,"
J. A. KLERMAN (The Rand Corporation)

145 "Alternative Samples for Welfare Duration in SIPP: Does Attrition Matter?,"
J. FITZGERALD (Census Bureau/Bowdoin College) X. ZUO (Census Bureau/Shanghai Academy of Social Science)

146 "Job-Exits and Job-to-Job Transitions in the United States: An Empirical Analysis Using SIPP," T. J. DEVINE (Pennsylvania State University)

147 "The Flow of Household Income in the 1984 Survey of Income and Program Participation," H. W. WATTS (Census Bureau/Columbia University), D. B. MCMILLEN (Census Bureau) and L. MOELLER (Census Bureau/Columbia University)

148 "The Survey of Income and Program Participation as a Source of Data on Children and Families: A Comparison of Estimates Derived from SIPP with Estimates from Other Sources," C. WINQUIST NORD and A. RHOADS (Child Trends, Inc.)

149 "Health Insurance Coverage Among the Elderly," V. WILCOX-GOK (Department of Economics and Institute for Health) J. RUBIN (Health Care Policy, and Aging Research)

150 "A Cognitive Approach to Redesigning Measurement in the Survey of Income and Program Participation," K. H. MARQUIS, J. C. MOORE and K. E. BOGEN (Census Bureau)

151 "Effects of Measurement Error on Occupational Event History Analysis," D. H. HILL (University of Toledo)

152 "Record Use by Respondents," R. KOMINSKI (Census Bureau)
153 "Recipiency History and Left-Censored Spells of Program Participation in the SIPP," K. SHORT and J. EARGLE (Census Bureau)
"Receipt of Food Stamps by Longitudinal Households and Individuals in the SIPP," N. R. BURSTEIN (Abt Associates Inc.)
"Within-PSU Sort and Stratification Research to Improve Survey Efficiency," M. GORSAK, K. MANSUR, D. FENSTERMAKER and R. PETRONI (Census Bureau)

156 "Marital Separation and the Economic Well-Being of Children and Their Absent Fathers," S. M. BIANCHI (Census Bureau)

157 "Rationale for a SIPP-Based Microsimulation Model of SSI and OASDI," B. WIXON and D. R. VAUGHAN (Social Security Administration)

158 "Implementing an SSI Model Using the Survey of Income and Program Participation, D. R. VAUGHAN and B. WIXON (Social Security Administration)

159 "Local Labor Markets and Local Area Effects on Welfare Duration: Evidence from SIPP," J. FITZGERALD (Census Bureau) X. ZUO (Dowdoin College and Shanghai Academy of Social Science)

160 "Oversampling the Low-Income Population in the Survey of Income and Program Participation (SIPP)," G. D. WELLER, V. J. HUGGINS and R. P. SINGH (Census Bureau)

161 "Estimates of the Uninsured Population from the Survey of Income and Program Participation: Size, Characteristics, and the Possibility of Attrition Bias, K. SWARTZ (The Urban Institute)

162 "Changes in Parent-Child Coresidence in Later Life," A. SPEARE, JR. (Census Bureau/Brown University) and R. AVERY (Brown University)

163
"Who Helps Whom in Older Parent-Child Families," A. SPEARE, JR. (Population Studies and Training Center) R. AVERY (Brown University)
(9203) 164 "Testing Alternative Household Roster Questions for the Survey of Income and Program Participation," D. CANTOR and C. EDWARDS
"Pretest Results of an Alternative Measurement Design for the Survey of Income and Program Participation," K. BOGEN, J. C. MOORE and K. H. MARQUIS (Center for Survey Methods Research and Census Bureau)

166 "Dependent and Independent Data Collection in Panel Surveys: Analysis of 1985, 1986 SIPP Occupation and Industry Data," D. H. HILL (Survey Research Institute/University of Toledo)

167 "The Survey of Income and Program Participation in the 1990's," D. H. WEINBERG and R. J. PETRONI (Census Bureau)

168 "A Statistical Profile of At-Risk Children in the United States," C. WINQUIST NORD and A. RHOADS (Child Trends, Inc.)

169 "Social Security Earnings of Wives Relative to Their Husbands: A Cohort Analysis", H. M. IAMS (Social Security Administration)

170 "Private Health Insurance and the Utilization of Medical Care by the Elderly, V. WILCOX-GOK and J. RUBIN

171 "Analyzing Spells of Program Participation in the SIPP," G. KALTON, D. P. MILLER, AND J. LEPKOWSKI

172 "Time in Panel Effects in the SIPP," G. KALTON, J. M. LEPKOWSI, S. G. PENNELL, D. P. MILLER AND E. LUIS.

173 "Multiple Program Use in a Dynamic Context: Data from the SIPP," R. M. BLANK (Northwestern University) and P. RUGGLES (The Urban Institute)

174 "A Comparative Analysis of the Labor Force Activities of Ethnic Populations,"
F. D. WILSON (University of Wisconsin-Madison ASA/NSF/Census Fellow) and L. L. WU (University of Wisconsin-Madison)

175 "Variance Estimation by User of SIPP Micro-Data Files," R. P. CHAKRABARTY (Census Bureau)

176 "Measurements of Job Exits: What Difference Does Ambiguity Make?," T. J. DEVINE (Pennsylvania State University)

177 "The Seasonality of Moving: An Analysis of Data from the Survey of Income and Program Participation," D. DEARE (Census Bureau)

178 "The Quality of Census Bureau Survey Data Among Respondents with High Income," C. T. NELSON (Census Bureau)
"Modeling Food Stamp Participation in the Presence of Reporting Errors," C. R. BOLLINGER and M. DAVID (University of Wisconsin)

180 "The Seam Effect in SIPP's Labor Force Data: Did the Recession Make it Worse?," P. RYSCAVAGE (Census Bureau)

181 "Where's Papa? Fathers' Role in Child Care" M. O'CONNELL (Census Bureau)
"Effectiveness of Oversampling Low Income Households in the Survey of Income and Program Participation" T. ALLEN, R. PETRONI and R. SINGH

183 "Informal Mechanisms for Government Decision-Making: Case Study of a Team Approach to Redesigning the Survey of Income and Program Participation," D. H. WEINBERG (Census Bureau)

184 "The Earned Income Tax Credit: Participation, Compliance, and Antipoverty Effectiveness," J. K. SCHOLZ (University of Wisconsin-Madison)

185 "Effects of a Cognitive Interviewing Approach on Response Quality in a Pretest for the SIPP," K. H MARQUIS, J. C. MOORE and K. BOGEN (Census Bureau)

186 "Cross-Sectional Imputation and Longitudinal Editing Procedures in the Survey of Income and Program Participation," S. G. PENNELL (The University of Michigan)

187 "Who's Wealthy? Who's Not? Stability and Change in Sociodemographic Covariate Structures of Positive, Zero, and Negative Net Worth Data in the Survey of Income and Program Participation," K. C. LAND and S. T. RUSSELL

188 "Are College-Educated Young Persons Finding Good Jobs? A Look at Some of the Evidence" P. RYSCAVAGE (Census Bureau)

189 "A Comparison of Attrition in the Panel Study of Income Dynamics and the Survey of Income and Program Participation," J. E. ZABEL

190 "The Effect of Attrition on Income and Poverty Estimates from the Survey of Income and Program Participation (SIPP)," E. LAMAS, J. TIN and J. EARGLE

191 "An Analysis of Attrition in the PSID and SIPP with an Application to a Model of Labor Market Behavior," J. E. ZABEL

192 "Mover Nonresponse Adjustment Research for the Survey of Income and Program Participation," T. M. ALLEN and R. J. PETRONI

193 "Use of Administrative Data in SIPP Longitudinal Estimation," S. M. DORINSKI and H. HUANG
"Longitudinal Imputation of SIPP Food Stamp Benefits," A. TREMBLAY
195 "Testing a New Attrition Nonresponse Adjustment Method for SIPP," R. E. FOLSOM and M. B. WITT

196
"Oversampling in Panel Surveys," R. SINGH, R. J. PETRONI and T. M. ALLEN (U.S. Bureau of the Census)
(9409) 197 "An Experiment to Reduce Measurement Error in the SIPP: Preliminary Results," K. H. MARQUIS, J. C. MOORE and K. BOGEN (Census Bureau)
(9410) 198 "Changing Social Security Survivorship Benefits and the Poverty of Widows,"
M. D. HURD (State University of New York and D. A. WISE (Harvard University)
(9411) 199 "Weighting Schemes for Household Panel Surveys," G. KALTON and J. M. BRICK (Westat, Inc.)
(9412) 200 "Weighting Adjustments for Panel Nonresponse in the SIPP," L. RIZZO, G. KALTON and J. M. BRICK (Westat, Inc.)

201 "Overview of SIPP Nonresponse Research Data," S. MACK and R. PETRONI (Census Bureau)

202 "Regression Weighting Methods for SIPP Data," A. B. AN, F. J. BREIDT and W. A. FULLER (Iowa State University)

203 "The Redesign of the SIPP," V. J. HUGGINS and D. P. FISCHER (Census Bureau)

204 "Adjusting for Attrition in Event History Analysis," D. H. HILL (Survey Research Institute, University of Toledo)
(9502) 205 "Regression Adjustment for Nonresponse," A. B. AN and W. A. FULLER (lowa State University)
(9503) 206 "Nonresponse Research Plans for the Survey of Income and Program Participation," S. P. MACK and P. J. WAITE (Census Bureau)

207 "Income Poverty Times Series Data from the Survey of Income and Program Participation," V. J. HUGGINS and F. WINTERS (Census Bureau)
"Longitudinal Imputation of SIPP Food Stamp Benefits," A. TREMBLAY (Census Bureau)
"Continuing Research on Use of Administrative Data in SIPP Longitudinal Estimation," S. M. DORINSKI (Census Bureau)
(9507) 210 "Overview of Redesign Methodology for the Survey of Income and Program Participation," P. H. SIEGEL and S. P. MACK (Census Bureau)
(9508) 211 "Research on Characteristics of Survey of Income and Program Participation Nonrespondents Using IRS Data," M. R. HENDRICK, K. E. KING and J. B. BIENIAS (Census Bureau)

212 "The SIPP Cognitive Research Evaluation Experiment: Basic Results and Documentation," J. C. MOORE, K. H. MARQUIS and K. BOGEN (Census Bureau)

213 "The Effects of Special Saving Programs on Saving and Wealth," J. M. POTERBA, S. F. VENTI and D.A. WISE (National Bureau of Economic Research)
"Past is Prologue: Simulating Lifetime Social Security Earnings for the Twenty-First Century," H. M. IAMS and S. H. SANDELL (Office of Research \& Statistics, Social Security Administration)

217 "The Effect of the SIPP Redesign on Employment and Earnings Data," E. LAMAS, T. PALUMBO and J. EARGLE (Census Bureau)

218 "A Comparative Analysis of Health Insurance Coverage Estimated: Data from CPS and SIPP," R. L. BENNEFIELD
"Reducing the Welfare Dependence of Single- Mother Families: Health Related Employment Barriers and Policy Responses,"J. KIMMEL
"Who Moonlights and Why? Evidence from the SIPP," J. KIMMEL and K. S. CONWAY (Census Bureau)
"Changing Social Security Benefits to Reflect Child Care Years: A Policy Proposal Whose Time Has Passed," H. M. IAMS and S. SANDELL
"Comparing Certain Effects of Redesign on Data from the Survey of Income and Program Participation," E. C. HOCK and F. WINTERS
"The Structure and Consequences of Eligibility Rules for a Social Program: A Study of the Job Training Partnership Act (JTPA)," T. J. DEVINE and J. J. HECKMAN
"Developing Extended Measures of Well-Being: Minimum Income and Subjective Income Assessments," R. KOMINSKI and K. SHORT
"Surveys-On-Call: On-Line Access to Survey Data, S. FURUKAWA and E. LAMAS
"SIPP Quality Profile, 1998," G. KALTON (3 $3^{\text {rd }}$ Edition, Westat)
"Preliminary Estimates on Caregiving from Wave 7 of the 1996 Survey of Income and Program Participation," J. M. MCNEIL
"Evaluating the Quality of Income Data Collected in the Annual Supplement to the March Current Population Survey and the Survey of Income and Program Participation,"
J. CODER and L. SCOON-ROGERS (Census Bureau)
"Compensating for Missing Wave Data in the Survey of Income and Program Participation," T. R. WILLIAMS and L. BAILEY (Census Bureau) SIP, R.L.BENEFI
"Program Participation and Attrition: The Empirical Evidence," J. TIN (Census Bureau)
"The Survey of Income and Program Participation - Recent History and Future Developments," D.WEINBERG
"The Survey of Income and Program Participation - The Wealth of U.S. Families: Analysis of Recent Census Data," J. M. ANDERSON

234 "The Survey of Income and Program Participation (SIPP) Methods Panel Improving Income Measurement," PAT DOYLE, BETSY MARTIN, and JEFF MOORE

235 "Social Security Benefit Reporting in the Survey of Income and Program Participation and in Social Security Administration Records," JANICE A. OLSON
"Food Stamp Receipt: Those Who Left Versus Those Who Stayed in a Time of Welfare Reform, " JOHN J. HISNANICK, and KATHRINE G. WALKER
"Home Equity, Wealth, and Financial Assets of U.S. Households in 1995," JOSEPH M. ANDERSON
"The Assessment of Survey of Income and Program Participation (SIPP) Benefit Data Using Longitudinal Administrative Records," MINH HUYNH, KALMAN RUPP, and JAMES SEARS
"Type of OASDI Benefit and Year of Death based on an Exact Match to Social Security Administration Benefit Records, 1990 and 1991 Panels of the Survey of Income and Program Participation (SIPP): Description of the Development of the Data for Public Release and a Preliminary Evaluation of Data Quality," DENTON R. VAUGHAN
"Using the Survey of Income and Program Participation for Policy Analysis," DANIEL H. WEINBERG
"AAPOR Roundtable: Improving Income Measurement," PAT DOYLE
"Longitudinal Attrition in Survey of Income and Program Participation (SIPP) and Survey of Program Dynamics (SPD)," DENTON VAUGHAN

APPENDIX C

User Notes

This section is reserved for any information relevant to the SIPP 2001 Panel, Wave 1 Topical Module Microdata File that indicates specific problems with the data, or that becomes available after the file is released. Any such information should be filed behind this page.

[^0]: ${ }^{2}$ Use the "Total or White Other Person Items" parameters for (1) tabulations of people aged $0+$ in labor force, (2) retirement tabulations, (3) tabulations of Combined who are: aged $0+$ in program participation, benefits, and income, and (4) tabulation of characteristics not specifically specified in this table, for the total or white population.

[^1]: ${ }^{3}$ The number of available rotation months for a given estimate is the sum of the number of rotations available for each month of the estimates.

