

Spatial and Temporal Variability in the K_d-Secchi Conversion Coefficient Observed Among the Tidal Tributary Rivers of the Chesapeake Bay Watershed

Jurate M. Landwehr U.S. Geological Survey, Reston, VA 20192 USA (jmlandwe@usgs.gov

2005 ERF Chesapeake Research Colloquium A12

PROBLEM SUMMARY AND DISCUSSION

Ambient water quality criteria for water clarity in shallow-water bay grass designated use habitats in different salinity regimes of the Chesapeake Bay (CB) and its tidal tributaries have been defined in terms of the percent light available through the water column (PLW). (Environmental Protection Agency , 2003, p.96.) Percent available light is assessed by measuring photosynthetically active radiation (PAR 400-700 nm) at depth in the water column to establish the diffuse attenuation coefficient (K_a , in m⁻¹) and then applying the Lambuert-Bougert Law to obtain PLW = 100 exp(K_a Z), where Z refers to the relevant depth. Frequently, K_d is not available for a water sample, but a measurement of transparency, that is, Secchi depth, is. The criteria state that the K_d value can be converted to a Secchi depth (in meters) according to the relationship $K_d = C$ /Secchi depth using the conversion factor C = 1.45. Implicit in the unconditional definition of a single conversion factor C is the assumption that C is effectively constant both temporally, at one site throughout the year, and spatially, over all locations in the tidal CB system.

Difficulties with the assumption of a constant relationship both within and between freshwater lakes have been discussed by Effler (1985). Indeed, Cerco et al. (2004) have suggested that over the Chesapeake Bay region, values for C may range from 0.6 to 2.2. Fig. 1 illustrates how an incorrect assessment of meeting or not meeting the PLW criteria might be made if an incorrect value of C is assumed. Quasi-monthly data for concurrent measurements of K_d and Secchi are available for several CB tributary river systems from the CB Program website. (Fig.2) I used data from the major tributaries, namely James, York, Rappahannock, Potomac, Patuxent, Susquehanna, and Choptank, from 1985 through 2000 and compared the value of K_d * Secchi Depth to the given value = 1.45, both for samples taken in one location over time and between samples taken at different locations over the same season. Time intervals examined included the whole year, the period November through March when non-polyhaline submerged aquatic vegetation senesces, the entire growth period of April through October, and the separate growth periods of April through June, and July through October. Statistical testing (t-test, signed rank or sign test, as appropriate) showed that the hypothesis that the estimated C=1.45 fails in the majority of cases (Tables 1) . Regression analysis of K_d on 1/Secchi Depth was used to obtain a best estimate for C (Table 2). Results were both in excess and less than 1.45, suggesting that the transformations both over and underestimate PLW significantly.

CONCLUSIONS

This work demonstrates that the use of a single conversion coefficient to transform commonly available Secchi to light attenuation in order to assess the percent light through the water column may lead to an assessment of erroneous compliance or non-compliance with the ambient water quality criteria for water clarity for the tidal rivers of the CB.

REFERENCES

Cerco, C., M. Noel, and L.Linker, 2004, Managing for Water Clarity in Chesapeake Bay, Journal of Environmental Engineering, 130(1):631-642.

Effler, S., 1985, Attenuation versus Transparency, Journal of Environmental Engineering, v111(4):448-459.

United States Environmental Protection Agency, 2003, Ambient Water Quality Criteria for Dissolved Oxygen, Water Clarity and Chlorophyll a for the Chesapeake Bay and Its Tidal Tributaries, EPA 903-R-03-002, pp.231 (plus appendices).

Figure 1. PLW at 1 m as a function of C, in comparison to Water Quality Criteria

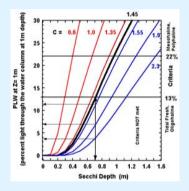


Figure 2. CBP water quality monitoring stations

Source:www.chesapeakebay.net/wqual.htm

Table 1. Hypothesis test of : K_d*SD -1.45 =0

R indicates rejection at p<0.05

Table 2. Coefficient for Regression of K, vs. 1/Secchi Depth.

Red (blue) indicates that the value 1.45 is above (below) 95% Confidence Interval about the estimate

Stati	on All ?	Year	NDJFM	AMJ JA	SO AMJ	JASO		RIVER STA	TIO	N	All Year	NDJFM	AMJ	JASO AM	IJJASO
AMES								JAMES							
	TF5.2A	R	R	R	R	R		TF5	.2A	TF	1.648	1.646	1.651	1.663	1.656
	TF5.3	R	R	R	R	R		TF5	.3	TF	1.594	1.601	1.495	1.611	1.565
	TF5.4	R	R	R	R	R		TF5	.4	TF	1.613	1.626	1.687	1.556	1.602
	TF5.5	R		R	R	R		TF5		TF	1.526	1.458	1.544	1.671	1.616
	TF5.5A		R	R	R	R			.5A		1.706	1.761	1.642	1.759	1.733
	TF5.6	R		R		R		TF5		TF	1.356	1.270	1.570	1.569	1.569
	RET5.1		R		R	R			5.1/		1.686	1.710	1.635	1.678	1.658
	RET5.2								5.2		1.380	1.374	1.392	1.388	1.390
	LE5.1							LE5		OH	1.451	1.414	1.521	1.458	1.497
	LE5.2							LE5		MH	1.504	1.663	1.336	1.466	1.368
	LE5.3		R					LE5		MH	1.537	1.672	1.373	1.556	1.441
	LE5.4	R			R	R		LE5		PH	1.573	1.558	1.524	1.662	1.581
	LE5.5	R	R	R	R	R		LE5	.5	PH	1.098	1.257	0.919	1.159	1.049
ORK		_	_	_	_	_		YORK					0.699		1.009
	TF4.2	R	R R	R R	R R	R R		TF4		TF	1.222	1.698		1.895	
	TF4.4	R	R					TF4		TF	2.224	2.048	2.398	2.380	2.389
	RET4.1 RET4.2		R	R	R	R			[4.1 [4.2		1.628	1.532	1.611	1.889	1.705
	RET4.3			R						MH	1.768	1.886	1.603	1.581	1,559
	LE4.1			R				LE4		MH	1.599	1.589	1.610	1.591	1.603
	LE4.1 LE4.2	R				R		LE4		PH	1.704	1.729	1.812	1.591	1.688
	LE4.2 LE4.3	R	R	:	R	R		LE4		PH	1.634	1.662	1.587	1.641	1.617
			K			R			4.2		1.332	1.351	1.365	1.302	1.326
WE4.2 R R APPAHANNOCK							RAPPAHAN			1.332	1.551	1.505	1.502	1.520	
ALLA	TF3.1E			R		R			JE.		1.378	1.315	1.532	1.390	1.423
	TF3.1B								.1B		1.250	1.146	1.354	1.363	1.361
	TF3.1B							TF3		TF	1.229	1.230	1.262	1.209	1.228
	TF3.2A	R		•	•	- 1			.2A		1,434	1.441	1.365	1.489	1.424
	TF3.3			:	•	Ċ		TF3		он	1.369	1.379	1.406	1.326	1.356
	RET3.1									мн	1.638	1.764	1.572	1.362	1.482
	RET3.2									MH	1.330	1.284	1.434	1.261	1.366
	LE3.1							LE3	.1	MH	1,440	1.530	1.375	1.422	1.392
	LE3.2	R				R		LES	.2	MH	1.462	1.366	1.457	1.579	1.516
	LE3.3	R	R		R	R		LE3	.3	MH	1.607	1.578	1.498	1.750	1.618
	LE3.4	R	R		R	R		LE3	.4	MH	1.694	1.651	1.662	1.785	1.719
	LE3.6	R			R	R		LE3	.6	MH	1.263	1.260	1.251	1.272	1.263
отом	AC							POTOMAC							
	TF2.3	R		R		R		TF2	3	TF	1.136	0.953	1.237	1.337	1.287
	RET2.2		R	R	R	R				он	1.115	1.041	1.158	1.171	1.162
	LE2.2	R	R	R				LE2		MH	1.249	1.070	1.268	1.286	1.272
	LE2.3							LE2	3	MH	1.378	1.671	1.363	1.324	1.346
ATUX								PATUXENT							
	TF1.5				R	R		TF1		TF	1.316	1.062	1.450	1.490	1.468
	TF1.7	R	R	R				TF1		он	1.275	1.240	1.278	1.311	1.291
	LE1.1	R		R		R		LE		MH	1.371	1.292	1.260	1.501	1.385
USQUI	HANNA	١.		_				SUSQUEHA							
	CB1.1			R				CB		TF	1.193	0.796	1.415	1.581	1.460
HOPT.								CHOPTANK							
	ET5.1				-	- 1		ET:		ОН	1.334	1.169	1.477	1.361	1.415
	ET5.2	R		R	R	R		ET:	.2	MH	1.313	1.317	1.243	1.376	1.313

ACKNOWLEDGEMENTS

This work was supported by the USGS Chesapeake Bay Program and by the USGS National Research Program in Water Resources. The encouragement of Scott Phillips is appreciated.