Biological Soil Crusts of the Mojave Desert

Jayne Belnap, Sue Phillips, David M. Miller, David Bedford and Alan Flint

What are Biological Soil Crusts?

Biological Soil Crusts are a community of:

Cyanobacteria Lichens Mosses

Physical Crusts

Chemical and mechanical, not biological

Restrict plant growth and water infiltration

Hot Deserts

Cool Deserts

Great Basin

Colorado Plateau

Aggregated Arid Ecoregions of the U.S.

Arid Semi-Arid

Subhumid Plains

Kenya

Alaska

Crusts are in a variety of habitats

Crust Types		Low Elevation		% Cover	
MORE		Idaho	100- 80- 60-		
Rainfall	evation	Oregon	40- 20- 0-		infall
		Southern	100 80-	j	
		Utah	60 - 40 - 20 -	er Ra	
			0 100 [
ctive	El	So. Arizona	80- 60-		
Effe		E. Mojave	40 20 0		
LESS		Death Valley	100- 80-		
		Disturbed	40- 20		
		Areas	0	Cyanobacteria Lichens/Mosses	

Retention Time:

Soil Surface Roughness

Rugose (2.5 cm)

Flat (0 cm)

Why are soil crusts important? Because they influence soils.

> Soil stability

- > Soil fertility
- Soil moisture

Soil surface roughness

Soil temperature

Soil Stability Then and Now Thin Soils

Easily lost Expands habitat

Soil Stability

Scattered Vegetation In deserts, plants give little protection to desert soils

Hill slopes Soils held beyond angle of repose

Soil Fertility

Crusts convert atmospheric N into bio-available forms

Chelators, growth factors, sticky sheaths

Plant tissue concentrations

Dust Capture
Dust contains high
levels of nutrients
Rough surface, sticky
organisms retain dust
Small particles hold
more moisture

Seed Capture

Organic Matter Capture

Plants in crusted soils have higher nutrient contents

Soil Moisture

PatchyEvenly SpacedVery AridSemi AridFlat CrustBumpy Crust

Albedo/Soil temperature

Potential Lichen/Moss Distribution

Location Altitude Slope Aspect **Quarternary Unit Parent Material Chemical Weathering Rate Pavement Formation Aeolian Sand Inputs Rockiness Index** Roughness % Disturbance **Rock Cover (3 Rock Size Classes)** Litter Cover (2 Litter Classes)

Lichen & Moss Cover (by Species) **Lichen & Moss Species Richness Cyanobacterial Cover Cyanobacterial Biomass Shrub** Cover **Annual Grass Cover Perennial Grass Cover** Soil Surface & Subsurface Chemistry (P, K, Zn, Fe, Mn, Cu, Ca, Mg, Na, N, CaCO3) Soil Texture **Sand Size Fractions Average Annual Precipitation Average Annual ET**

Mojave Ecosystem Potential Evapotranspiration

Parent Material Sedimentary (limestone) Igneous

Metamorphic

Where do biological soil crusts grow

<u>Region</u> NE Mojave SW Mojave

Soil Texture Silt + Very Fine Sand Medium Sand High Sand

Moderate Rock Cover

Low Rock Cover High Rock Cover

Parent Material

Sedimentary Igneous **Metamorphic**

Soil Texture

Low Sand **Medium Sand High Sand**

Where do **biological soil** crusts grow

NE Mojave SW Mojave

Pavement Development Low **Moderate** High (well-developed)

Where from here, for Mojave Crusts?

Map of predicted lichen distribution Verify in the field

•Enlarge database of dated disturbances to better predict recovery