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Summary. In epidemiologic studies, there is often interest in assessing the relationship

between polymorphisms in functionally-related genes and a health outcome. For each candi-

date gene, single nucleotide polymorphism (SNP) data are collected at a number of locations,

resulting in a large number of possible genotypes. Because instabilities can result in analy-

ses that include all the SNPs, dimensionality is typically reduced by conducting single SNP

analyses or attempting to identify haplotypes. This article proposes an alternative Bayesian

approach for reducing dimensionality. A multi-level Dirichlet process prior is used for the

distribution of the SNP-specific regression coefficients within genes, incorporating a variable

selection-type mixture structure in the base measure to allow SNPs with no effect. This

structure allows simultaneous selection of important SNPs and clustering of SNPs having

similar impact on the health outcome. The methods are illustrated using data from a study

of pro- and anti-inflammatory cytokine polymorphisms and spontaneous preterm birth.

Keywords: Bayesian; Clustering; Dirichlet process; Hierarchical regression; Multiple Testing;

Nonparametric Bayes; Shrinkage prior.
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1. Introduction

In epidemiologic research, there is commonly interest in the association between multiple,

closely-related exposures and a health outcome. Some examples include drinking water dis-

infection by-products, agricultural chemicals, and single nucleotide polymorphisms (SNPs)

in candidate genes. When the number of exposures is large (e.g., 30+), and the exposures

are correlated (e.g., due to linkage disequilibrium between polymorphisms), it is well known

that maximum likelihood estimation can result in unstable estimates and inferences. For this

reason, analysts typically apply dimensionality reduction techniques, with the most common

being (1) consider exposures one at a time in univariate analyses; (2) collapse exposures into

class-specific summaries; and (3) run a model selection procedure, such as stepwise selection,

to obtain a parsimonious model upon which to base final inferences. There are clear prob-

lems with each of these approaches: (1) can produce misleading results by not adjusting for

correlated exposures; (2) can discard valuable information on variability in the effect within

a class; and (3) can result in overestimation of the regression coefficients due to selection

bias.

For these reasons, many authors have proposed hierarchical regression procedures, which

shrink the exposure-specific regression coefficients towards a common distribution, using

empirical Bayes (Thomas et al., 1985), “semi-Bayes” (Greenland, 1992; 1993) or fully Bayes

approaches. Greenland (1993) provides a review and demonstrates improved performance of

the empirical and semi-Bayes approaches relative to MLE-based methods. Such hierarchical

regression procedures have been used in numerous articles in the epidemiologic literature.

For example, De Roos et al. (2001) considered applications to multiple paternal occupational

exposures and neuroblastoma in the offspring, and Hung et al. (2004) considered applications

to genetic associations studies with multiple markers. For related methods for multiple

outcomes, refer to Meng and Dempster (1987) and Coull et al. (2001).

These methods are based on shrinking the exposure-specific regression coefficients to-
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wards a normal prior distribution, potentially with unknown mean and variance. Although

this shrinkage certainly improves the stability of estimates, many epidemiologists would

prefer to avoid the assumption that the regression coefficients for the different exposures

follow a normal distribution. In addition, there is typically interest in grouping or clustering

the different exposures based on their effects on the outcome. In particular, one wishes to

identify exposures having similar effects, including those that are not associated with the

outcome, in drawing mechanistic conclusions. Although grouping can be done subjectively

based on examination of estimated regression coefficients, it would be appealing to have a

formal clustering procedure.

This problem is somewhat related to subset selection in regression, which focuses on

identifying predictors with non-zero coefficients from among a potentially high dimensional

set of candidates (refer to George and McCulloch, 1997 and Clyde and George, 2004 for

reviews of Bayesian approaches). However, following standard epidemiologic practice, we

are at least as interested in estimating regression coefficients for the different exposures, and

in grouping exposures according to the magnitude of their effect, as we are in identifying

exposures that are associated with the response. Hence, the problem is one of clustering the

regression coefficients, incorporating information on the exposure class.

The Bayesian approach provides a natural framework for clustering of the exposures

in this manner. For a recent article on Bayesian variable selection and clustering in high-

dimensional data, refer to Tadesse, Sha and Vannucci (2005). Their focus was on clustering

samples of data into groups while simultaneously selecting discriminating variables. In con-

trast, our focus is on clustering not the data but the unknown exposure effects into groups,

while allowing an unknown subset to have no association with the outcome. A related prob-

lem was considered by Gopalan and Berry (1998), who used a Dirichlet process (DP) prior

(Ferguson, 1973; 1974) to cluster treatment groups in a clinical trial in order to adjust for

multiple comparisons. From a Bayesian perspective, the multiple comparison problem can
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be considered as an issue of appropriately choosing a prior to account for dependency in mul-

tiple, related hypotheses (refer to Westfall, Johnson and Utts, 1997; Berry and Hochberg,

1999; Gonen, Westfall and Johnson, 2003; Berry and Berry, 2004; Dunson, 2005)

Although the Gopalan and Berry (1998) approach could be directly modified to allow

clustering of the regression coefficients for the different exposures, such an approach would

not incorporate information on exposure class or allow identification of exposures having no

effect. To perform simultaneous variable selection and clustering, both within and across

exposure classes, the article proposes an alternative approach. In the one class case, the

approach relies on DP clustering, with the base measure chosen to have a mixture structure,

allowing the incorporation of a null cluster containing exposures with no effect. In the

multiple class case, a multi-level DP structure is chosen, allowing common clusters across

exposure classes, while also introducing class-specific clusters.

Section 2 motivates the problem through application to the problem of clustering of

polymorphisms in functionally-related genes. Section 3 describes the regression model and

proposes the hierarchical clustering prior. Section 4 develops methods for posterior com-

putation. Section 5 applies the method to data on cytokine polymorphisms and risk for

spontaneous preterm birth, while also presenting results from simulation studies. Section 6

contains a discussion.

2. Identifying Polymorphisms Predicting Disease

This article is motivated by the problem of selection and clustering of polymorphisms in

functionally-related genes. Using the nomenclature of Section 1, genes correspond to classes

and exposures to single nucleotide polymorphisms (SNPs). For a given gene, SNPs can be

collected within the coding region, which consists of the sequence of amino acids that codes

directly for the protein product of the gene, within regulatory regions upstream of the coding

region, or within intronic sequences. SNPs that occur within regulatory regions are thought
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to be much more likely to affect biologic function and gene expression.

For subject i (i = 1, . . . , n) and gene c (c = 1, . . . , C), the SNP data consist of a vector

xic = (xic1, . . . , xic,pc) of 0/1 indicators. The most commonly observed genotype at a given

locus is coded as a 0, while the less common variant is coded as a 1. In cases with more than

two variants, additional indicators are introduced, so that xic may correspond to less than

pc locations. This dummy coding scheme is flexible in allowing dominant or recessive effects

at each locus.

Scientific interest focuses on assessing the relationship between the SNPs for C functionally-

related genes, xi = (x′i1, . . . ,x
′
iC)′, and a health outcome, yi, adjusting for potential con-

founders, zi = (zi1, . . . , ziq)
′. For example, we are interested in relating SNPs in cytokine

gene regulatory regions to risk for spontaneous preterm birth using data from the Pregnancy,

Infection and Nutrition (PIN) study (Savitz et al., 1999), which enrolled women between

24 and 29 weeks gestation, collecting blood at the intake visit. As shown in Table 1, there

are 12 cytokines (soluble proteins that mediate and regulate immunity and inflammation)

of interest, including IL1α, IL1β, IL2-IL6, IL10, IL13, LTA, TGFβ1 and TNF. The number

of sites within regulatory regions at which SNP data are collected ranges from one to three

per cytokine (22 total), with 3 genotypes per site, resulting in p = 66 − 22 = 44 indicator

variables in xi. The genotypes varied in frequency, with xch =
∑n
i=1 xich ∈ [8, 221], with

n = 447 (excluding women with missing genotype data). It is straightforward to generalize

the approach to account for genotypes that are missing at random by defining a model for

the genotype frequencies, and updating the associated parameters along with the missing

genotypes within an MCMC algorithm.

Results for one site at a time logistic regression analyses, with spontaneous preterm

birth (yi = 1 preterm, yi = 0 full term) as the outcome, are provided in Table 1. Results are

stratified on ethnicity (White, African American), because African American women have

higher rates of spontaneous preterm birth and potentially-different genetic factors. Although
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all three genotypes were represented in the study for each ethnic group, some categories had

no women with spontaneous preterm births, so certain genotype-specific odds ratios could

not be obtained. In addition, we were unable to obtain convergence for the full model with

all SNPs included simultaneously.

Focusing on a smaller group of common proinflammatory cytokines and two genotype

categories per SNP, Mulherin Engel et al. (2005a) reported an association with spontaneous

preterm birth based on a semi-Bayes analysis (refer also to Mulherin Engel et al., 2005b).

Our interest here is in identifying the specific SNPs predictive of spontaneous preterm birth,

while also clustering SNPs within and across cytokines that have a similar risk of spontaneous

preterm birth. Such clustering is not obvious from subjective examination of one site at a

time or semi-Bayes analyses.

3. Hierarchical Clustering of Genetic Polymorphisms

3.1 Model and Background

For simplicity, we will focus on the logistic regression model:

logit Pr(yi = 1 |xi, zi) = z′iκ+ x′iβ, (1)

where κ = (κ1, . . . , κq)
′ are unknown coefficients including the intercept and slopes for the

confounders, and β = (β′1, . . . ,β
′
C)′, with βc = (βc1, . . . , βc,pc)

′, are regression coefficients

for the different SNPs. Clearly, when p is large and nj =
∑n
i=1 xij is small for some j (as

is typically the case), maximum likelihood estimation of model (1) runs into difficulties. In

particular, the estimated regression coefficients, β̂, can be unstable, taking values known to

be unreasonable a priori, and the MLEs may not exist.

A natural solution to this type of problem is to use a shrinkage estimator for β, bor-

rowing information across SNPs for functionally-related genes. This can be accomplished by

assigning a prior distribution to the elements of β as follows:

βch ∼ Gc, for h = 1, . . . , pc and c = 1, . . . , C. (2)
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Here, Gc is the unknown distribution of the regression coefficients for SNPs in gene c, and

G = {Gc, c = 1, . . . , C} is the collection of unknown distributions for the SNPs in the different

genes.

Within a gene, dependency in the regression coefficients is accommodated by assuming

that the SNP-specific regression coefficients are drawn from a common distribution. This

will tend to shrink the coefficients towards each other in a manner dependent on the variance

and shape of the distribution Gc. Between genes, dependency is accommodated by assuming

that the different distributions in the collection G have similar features.

3.2 Simultaneous Variable Selection and Clustering

We first consider the case in which all the SNPs under study relate to a single gene, so

that C = 1. In this case, repressing the c subscript, we let βh
iid∼ G, for h = 1, . . . , p.

Then, to allow for uncertainty in G, while clustering the SNPs having identical regression

coefficients, we choose a DP prior, G ∼ DP (α0G0), with α0 a precision parameter and G0 a

base distribution. Following Sethuraman’s (1994) stick-breaking representation:

G =
∞∑
h=1

πhδθh
, where

πh∏h−1
l=1 (1− πl)

iid∼ beta(1, α0) and θh
iid∼ G0, (3)

for h = 1, . . . ,∞, with δθ denoting the degenerate distribution with all its mass at θ. The

distribution G can be shown to be almost surely discrete with probability one, with the

atoms Θ = {θh, h = 1, . . . ,∞} generated independently from the base distribution G0.

In contrast to common practice, which assumes that G0 is non-atomic so that clustering

arises solely from the discrete form of the DP (refer to Blackwell and MacQueen, 1973;

Antoniak, 1974; among others), we assume

G0 = π0δ0 + (1− π0)N(µ0, σ
2
0), (4)

which is a mixture distribution consisting of a point mass at 0, with probability π0, and a

normal distribution with mean µ0 and variance σ2
0. Related mixture distributions are used
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routinely as priors for regression coefficients in variable selection applications (George and

McCulloch 1997; Clyde and George, 2004). By incorporating a point mass at zero in the base

distribution of the DP, we assign atoms to θh = 0 with probability π0 instead of generating

distinct atoms with each new draw from G0.

Under (4), we can reexpress (3) as follows:

G =
∞∑
h=1

πh{π0δ0 + (1− π0)δθ∗
h
} = π0δ0

{ ∞∑
h=1

πh

}
+ (1− π0)

∞∑
h=1

πhδθ∗
h

= π0δ0 + (1− π0)
∞∑
h=1

πhδθ∗
h

= π0δ0 + (1− π0)G
∗, where θ∗h

iid∼ G∗
0, (5)

where G∗ ∼ DP (α0G
∗
0), with G∗

0 denoting the non-atomic N(µ0, σ
2
0) distribution. Hence,

the random distribution G can be formulated as a mixture of a degenerate distribution with

all its mass at zero and a DP with non-atomic base measure. Note that we assume G∗
0

corresponds to the normal distribution for concreteness, but the same concept could be used

for other non-atomic base distributions.

Because we are interested in clustering and previous theoretic results focus primarily on

clustering properties of the DP for non-atomic base measures, expression (5) is very useful.

Let p = p0 + p1, with p0 =
∑p
h=1 1(βh = 0) denoting the number of SNPs having zero

regression coefficients. Then, for βh
iid∼ G, it follows directly from (5) that

Pr(p0 = h |π0, α0, p) =

(
p

h

)
πh0 (1− π0)

p−h, h = 1, . . . , p, (6)

so that, conditional on π0, the prior distribution for the number of SNPs having zero co-

efficients is binomial. We refer to the group of SNPs having zero coefficients as the null

cluster.

Theorem 1. Assume βh
iid∼ G, for h = 1, . . . , p, withG defined by expressions (3) and (4).

Then, letting k∗ denote the number of unique, non-zero elements of β, the prior distribution

for k∗ is

Pr(k∗ = k |π0, α0, p) =
p∑

h=0

(
p

h

)
(1− π0)

hπp−h0

ah(k) α
k
0

α
(h)
0

, (7)
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where ah(k) are the absolute values of Stirling numbers of the first kind (refer to Abramowitz

and Stegun, 1964, page 833), and α(h) = α(α+1) . . . (α+h−1). The proof is straightforward

using expressions (5) - (6) and the result of Antoniak (1974), page 1161.

From theorem 1, it is clear that the number of non-null clusters, which are defined as

groups of SNPs have identical non-zero regression coefficients, increases stochastically with

α0 and decreases with π0. Hence, α0 and π0 are key hyperparameters controlling the cluster-

ing of SNPs into null and non-null groups. Note also that the number of clusters increases

automatically as the number of SNPs under consideration, p, increases. It is also appar-

ent that the approach performs simultaneous variable selection and clustering, classifying a

subset of SNPs as having no effect while clustering the remaining SNPs. There is a clear

biological justification for clustering of the regression coefficients in this manner, because

many polymorphisms occur together due to the presence of haplotypes. This constrains the

possible unique sequences in xi, causing the number of possible genotypes to be much less

than 2p.

To obtain additional insight into the clustering process, we derive prior probabilities of

the coefficients β falling into different C classes, with β belongs to class C(m0,m1, . . . ,mp)

if there are m0 elements of β equal to zero, m1 non-zero elements of β that occur once,

m2 non-zero elements that occur twice, up to mp non-zero elements that occur p times. It

follows that k = 1(m0 > 0) +
∑p
h=1mh = 1(m0 > 0) + k∗ is the number of unique elements

of β, denoted θ = (θ1, . . . , θk)
′.

Theorem 2. Assume βh
iid∼ G, for h = 1, . . . , p, with G defined by expressions (3) and

(4). Then, the prior probability that β belongs to class C(m0,m1, . . . ,mp) is

Pr{β ∈ C(m0,m1, . . . ,mp)}

=

[ p∑
m0=0

(
p

m0

)
πm0

0 (1− π0)
p−m0

{
(p−m0)!∏p−m0

h=1 hmh(mh!)

}{
α
∑p−m0

h=1
mh

0

α
(p−m0)
0

}]
(8)

This theorem follows from proposition 3 of Antoniak (1974) after appropriate modification
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to allow the non-atomic base measure.

Theorem 2 can be used to derive the prior probabilities corresponding to a number of

interesting special cases. For example, the probability that none of the SNPs have an effect

is simply Pr{β ∈ C(p, 0, . . . , 0)} = πp0. The probability that all the SNPs have an equivalent

non-null effect is

Pr{β ∈ C(0, . . . , 0, 1)} = (1− π0)
p α0(p− 1)!∏p

h=1(α0 + h− 1)
.

Other class probabilities corresponding to different numbers of null and non-null SNPs, and

various clustering in the non-null SNPs, can be calculated easily. Potentially, π0 and α0 can

be chosen subjectively based on back-calculating from these probabilities.

3.3 Semiparametric Hierarchical Clustering

We now consider the case in which SNPs occur within different, functionally-related genes,

and interest focuses on variable selection and clustering within and across genes. In partic-

ular, it is appealing to develop a method that allows SNPs for different genes to be assigned

to the same cluster, while also allowing clusters to be gene-specific. Such a structure is con-

sistent with the clustering the would arise from haplotypes within genes, and genes within

biological pathways. One approach would be to extend the prior of Section 2.2 to incorporate

a c subscript on G and then account for dependency in the elements of {Gc : c = 1, . . . , C}

by applying the dependent Dirichlet process (DDP) of MacEachern (1999; 2000) (see also,

De Iorio et al., 2004). This could be accomplished by defining parallel sticking breaking

formulations for each Gc, and modeling dependency through a stochastic process for the

atoms.

This DDP approach allows for dependency in the coefficients between genes, but does not

allow clustering of SNPs in different genes. Therefore, we propose an alternative formulation:

βch = ψc + γch, h = 1, . . . , pc, c = 1, . . . , C
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γch
iid∼ F, F ∼ DP (α0F0), F0 = δ0N(π0, µ0, σ

2
0), ∀h, c

ψc
iid∼ H, H ∼ DP (α1H0), H0 = δ0N(π1, µ1, σ

2
1), ∀c, (9)

where ψc is a gene-specific factor, γch is a SNP-specific factor, and δ0N(π, µ, σ2) is shorthand

for the mixture distribution consisting of a point mass at zero with probability π and a

N(µ, σ2) distribution with probability 1− π. This multi-level formulation allows clustering

of SNPs both within and across genes.

There are kΓ ≤ p =
∑C
c=1 pc unique values Γ = (Γ1, . . . ,ΓkΓ)′ of the SNP-specific factor

γ = (γ ′1, . . . ,γ
′
C), with γc = (γc1, . . . , γc,pc)

′ for c = 1, . . . , C. There are also kΨ ≤ C unique

values Ψ = (Ψ1, . . . ,ΨkΨ)′ of the gene-specific factor ψ = (ψ1, . . . , ψC)′. Due to the masses

at zero, one of the unique values of each of these vectors will typically correspond to zero,

so we let Γ1 = 0 and Ψ1 = 0, without loss of generality. From this characterization, SNPs

from the same gene (say SNPs c, h and c, h′) belong to the same cluster if γch = γch′ , while

SNPs from different genes (say SNPs c, h and c′, h′) belong to the same cluster if γch = γc′h′

and ψc = ψc′ . In particular, given that the SNPs are not null, the probabilities of belonging

to the same cluster are, respectively:

Pr(βch = βch′ | βch 6= 0, βch′ 6= 0) =
1

α0 + 1
, Pr(βch = βc′h′ | βch 6= 0, βc′h′ 6= 0) =

π2
1

α0 + 1
. (10)

It follows that SNPs from the same gene are clustered together with higher probability than

SNPs from different genes. Such within-gene dependency is often biologically reasonable. As

a rule of thumb, SNPs in different regulatory regions for the same cytokine should have a

higher chance of belonging to the same cluster than SNPs for different cytokines, because the

biologic action of cytokines can vary. In addition, linkage disequilibrium can cause clustering

within a gene, but would more rarely contribute to clustering in different genes occurring on

the same chromosome.

To obtain additional insight into the clustering properties, we focus on the null cluster

containing SNPs with zero coefficients. For greater flexibility, we choose hyperprior densities
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for π0 and π1 as follows:

π0 ∼ beta(a0, b0) and π1 ∼ beta(a1, b1). (11)

where a = (a1, a2)
′ and b = (b1, b2)

′ are pre-specified hyperparameters. Integrating out π0

and π1, the probability that SNP c, h is null (βch = 0) is

Pr(βch = 0 | a,b) =
∫ ∫

π0π1
πa0−1

0 (1− π0)
b0−1

B(a0, b0)

πa1−1
1 (1− π1)

b1−1

B(a1, b1)
dπ0 dπ1

=
(

a0

a0 + b0

)(
a1

a1 + b1

)
. (12)

Similarly, the probability that all the SNPs in the cth gene belong to the null cluster is

Pr(βc = 0 | a,b) =
a

(pc)
0

(a0 + b0)(pc)

(
a1

a1 + b1

)
, (13)

and the probability that all SNPs in all genes belong to the null cluster is

Pr(β = 0 | a,b) =
a

(p)
0

(a0 + b0)(p)

a
(C)
1

(a1 + b1)(C)
, (14)

To illustrate the dependency structure, note that the probability that SNP h in gene c is

null given another SNP h′ in gene c is null is

Pr(βch = 0 | βch′ = 0, a,b) =
Pr(βch = βch′ = 0 | a,b)

Pr(βch′ = 0 | a,b)
=

a0 + 1

a0 + b0 + 1
, (15)

which is always higher than Pr(βch = 0 | a,b). If we instead condition on knowledge that a

SNP in a different gene is null, we obtain

Pr(βch = 0 | βc′h′ = 0, a,b) =
Pr(βch = βc′h′ = 0 | a,b)

Pr(βc′h′ = 0 | a,b)
=
(

a0 + 1

a0 + b0 + 1

)(
a1 + 1

a1 + b1 + 1

)
, (16)

which is also higher than Pr(βch = 0 | a,b) (shown in expression 12), but is lower than the

probability in expression (15). Thus, the dependency between SNPs in a gene is higher

than the dependency between SNPs in different genes, with the magnitude of the difference

depending on the hyperparameters a and b. In the limit as a0 + b0 →∞ and a1 + b1 →∞,

holding a0/(a0 + b0) and a1/(a1 + b1) constant, expressions (12), (15) and (16) are equivalent
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and there is no borrowing of information across SNPs about the probability of membership

in the null cluster.

3.4 Prior Elicitation

Motivated by the cytokine application, we illustrate a strategy for prior elicitation. In

particular, in choosing a0, b0, a1, b1, we recommend back-calculating from prior probabilities

corresponding to different global and local hypotheses. For example, one can specify (i)

the prior probability that none of the SNPs are associated with spontaneous preterm birth,

Pr(β = 0 | a,b); (ii) the probability that a randomly-selected SNP is null, Pr(βch = 0 | a,b);

(iii) the probability that two SNPs within a gene are null, Pr(βch = βch′ = 0 | a,b); and (iv)

the probability that two SNPs within different genes are null, Pr(βch = βc′h′ = 0 | a,b). The

hierarchical structure implies that the probabilities are ordered (i) < (iv) < (iii) < (ii), so

one should choose values consistent with this constraint. Because (i)-(iv) are simple analytic

functions of a0, b0, a1, b1, it is straightforward to solve the system of non-linear equations

using numerical methods.

In the cytokine application, we let Pr(β = 0 | a,b) = 0.5 in order to set the probability

of the global null hypothesis equal to 0.5, corresponding to a 50% chance that any of the

SNPs are predictive of spontaneous preterm birth. This represents a Bayesian approach to

limit false positives that arise in multiple testing. We then let Pr(βch = 0 | a,b) = 0.8,

noting that the Bayesian Bonferroni approach (Westfall et al., 1997), which treats local

hypotheses as independent, ignoring correlation, would instead choose 0.51/44 = 0.984. An

approximately 1% chance that a SNP is important is unrealistically low, given that we are

studying promising candidate SNPs. In addition, such a low prior probability would result

in a very conservative procedure, requiring very large sample sizes to detect a health effect

of the magnitude that would be expected in this study (e.g., odds ratio between 0.5 and

2). As plausible values for probabilities (iii) and (iv), we choose 0.75 and 0.73, respectively.
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These values are chosen to be slightly lower than 0.8, with a modest degree of within-gene

dependency. In simulation studies, we have found a high degree of robustness to the specific

values chosen.

The precision parameters α0 and α1 are assigned gamma hyperprior distributions:

α0 ∼ gamma(aα0 , bα0) and α1 ∼ gamma(aα1 , bα1), (17)

where aα0 , bα0 , aα1 , bα1 are pre-specified hyperparameters. In choosing these values, we rec-

ommend letting aα0 = bα0 = aα1 = bα1 = 1, as a somewhat vague prior for the number of

global and local clusters, which favors smaller numbers of clusters.

For the hyperparameters characterizing the base distributions, µ0, σ
2
0, µ1, σ

2
1, we recom-

mend letting µ0 = µ1 = 0 and σ2
0 = σ2

1 = 1. By setting the means of the base distributions,

F0 and H0, equal to zero, we express our uncertainty about the directions of the associa-

tions between the SNP categories and the risk of spontaneous preterm birth. The variances

are chosen to assign a high probability to a plausible range for the SNP category-specific

odds ratios. Potentially, hyperprior densities could be chosen for the means and variances

for greater flexibility. This may be a useful strategy in cases in which there are very large

numbers of candidate genes and SNPs, and less is known about scientifically plausible values

for the regression coefficients.

4. Posterior Computation

For posterior computation, we propose a data augmentation Gibbs sampling algorithm.

First, let yi = 1(y∗i > 0), where y∗i = z′iκ + x′iβ + φiεi, with φi ∼ gamma(ν/2, ν/2) and

εi ∼ N(0, σ2), resulting in a t density for φiεi. Following O’Brien and Dunson (2004), setting

σ2 = π(ν − 2)/3ν and ν = 7.3 produces an almost exact approximation to the logistic

density. The algorithm alternates between (1) sampling y∗i and φi from their respective

truncated normal and gamma full conditional posterior distributions, for i = 1, . . . , n; and

(2) sampling unknowns related to β jointly with κ, assuming a N(κ0,Σκ) prior for κ. The
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first step is straightforward, so we focus our attention on step 2.

Letting the (ch) superscript denote a quantity obtained excluding element c, h, the con-

ditional prior distribution of γch given γ(ch) is

(
α0(1− π0)

α0 + p− p
(ch)
Γ0

− 1

)
N(µ0, σ

2
0) + π0δ0 +

k
(ch)
Γ∑
l=2

( p
(ch)
Γl

(1− π0)

α0 + p− p
(ch)
Γ0

− 1

)
δ
Γ

(ch)
l

, (18)

where p
(ch)
Γl

is the number of elements of γ(ch) equal to Γ
(ch)
l , Γ(ch) = (Γ

(ch)
l , l = 1, . . . , k

(ch)
Γ )′,

Γ
(ch)
1 = 0, Γ

(ch)
l for l = 2, . . . , k

(ch)
Γ denotes the unique non-zero values of γ(ch), and k

(ch)
Γ is

the number of atoms in (18). Expression (18) follows by applying the Pólya urn scheme of

Blackwell and MacQueen (1973), after placing F in the form of expression (5).

The conditional distribution of ψc given ψ(c) = (ψ1, . . . , ψc−1, ψc+1, . . . , ψC)′ is

(
α1(1− π1)

α1 + C − p
(c)
Ψ0
− 1

)
N(µ1, σ

2
1) + π1δ0 +

k
(c)
Ψ∑
l=2

( p
(c)
Ψl

(1− π1)

α1 + C − p
(c)
Ψ0
− 1

)
δ
Ψ

(c)
l

, (19)

where p
(c)
Ψl

is the number of elements of ψ(c) equal to Ψ
(c)
l , Ψ(c) = (Ψ

(c)
l , l = 1, . . . , k

(c)
Ψ )′,

Ψ1 = 0, Ψl for l = 2, . . . , k
(c)
Ψ denotes the unique non-zero values of ψ(c), and k

(c)
Ψ is the

number of atoms in (19).

As shorthand, let u(ch) = (u
(ch)
0 , u

(ch)
1 , . . . , u

(ch)

k
(ch)
Γ

)′ and w(c) = (w
(c)
0 , w

(c)
1 , . . . , w

(c)

k
(c)
Ψ

)′ denote

the probability weights on the respective mixture components in expressions (18) and (19).

Updating conditional priors (18) and (19) using information in the data, we obtain the

following full conditional posterior distributions:

(γch | − ) = U
(ch)
0 N(γch;E

(ch)
γ , V (ch)

γ ) +

k
(ch)
Γ∑
l=1

U
(ch)
l δ

Γ
(ch)
l

, (20)

(ψc | − ) = W
(c)
0 N(ψc;E

(c)
ψ , V

(c)
ψ ) +

k
(c)
Ψ∑
l=1

W
(c)
l δ

Ψ
(c)
l

, (21)

where ỹ
(c)
i = y∗i−z′iκ−xiγ−

∑
c′ 6=c xic′ψc′ , xic =

∑pc

h=1 xich, ỹ
(ch)
i = y∗i−z′iκ−x

(ch)′

i β(ch)−xichψc,

the conditional posterior means and variances in the normal components are

V (ch)
γ =

(
σ−2

0 +
n∑
i=1

σ−2
i x2

ich

)−1

, E(ch)
γ = V (ch)

γ

(
σ−2

0 µ0 +
n∑
i=1

σ−2
i xichỹ

(ch)
i

)
,
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V
(c)
ψ =

(
σ−2

1 +
n∑
i=1

σ−2
i x2

ic

)−1

, E
(c)
ψ = V

(c)
ψ

(
σ−2

1 µ1 +
n∑
i=1

σ−2
i xicỹ

(c)
i

)
,

and the updated mixture weights are defined as follows:

U
(ch)
0 = cu ×

u
(ch)
0 N(0;µ0, σ

2
0)
∏n
i=1 N(ỹ

(ch)
i ; 0, σ2

i )

N(0;E
(ch)
γ , V

(ch)
γ )

, U
(ch)
l = cu × u

(ch)
l

n∏
i=1

N(ỹ
(ch)
i ; Γ

(ch)
l , σ2

i ),

W
(c)
0 = cw ×

w
(c)
0 N(0;µ1, σ

2
1)
∏n
i=1 N(ỹ

(c)
i ; 0, σ2

i )

N(0;E
(c)
ψ , V

(c)
ψ )

, W
(c)
l = cw × w

(c)
l

n∏
i=1

N(ỹ
(c)
i ; Ψ

(c)
l , σ

2
i ),

where cu and cw are normalizing constants.

We follow West et al. (1994) and MacEachern (1994) in alternating between updating

(i) the cluster allocation; and (ii) the cluster-specific parameters. Let Sch = l if γch = Γ
(ch)
l ,

for l = 1, . . . , k
(ch)
Γ , and Tc = l if ψc = Ψ

(c)
l , for l = 1, . . . , k

(c)
Ψ , index the allocation of γch and

ψc to clusters. In addition, let Sch = 0 denote that γch /∈ Γ(ch), so that SNP c, h cannot be

grouped with the other SNPs and a new cluster needs to be introduced. Also, Tc = 0 denotes

that ψc /∈ Ψ(c), so that a new cluster is introduced for gene c. The conditional posterior

distributions of Sch and Tc are respectively:

(Sch |S(ch),T,Γ(ch),Ψ, data) = Multinomial
(
0, 1, . . . , k

(ch)
Γ ;U

(ch)
0 , U

(ch)
1 , . . . , U

(ch)

k
(ch)
Γ

)
,(22)

(Tc |S,T(c),Γ,Ψ(c), data) = Multinomial
(
0, 1, . . . , k

(c)
Ψ ;W

(c)
0 ,W

(c)
1 , . . . ,W

(c)

k
(c)
Ψ

)
. (23)

In step 2 (i), we sample from these multinomial distributions. When Sch = 0 a new value

for γch is drawn from N(E(ch)
γ , V (ch)

γ ), while when Tc = 0 a new value for ψc is drawn from

N(E
(c)
ψ , V

(c)
ψ ).

Then, in step 2 (ii) we update κ jointly with the cluster-specific parameters Γ∗ =

(Γ2, . . . ,ΓkΓ)′ and Ψ∗ = (Ψ2, . . . ,ΨkΨ)′ by sampling from the conditional posterior distri-

bution given the cluster allocation indicators, S,T, and number of clusters, kΓ, kΨ:

(Θ |S, kΓ, kΨ, data) = N(Θ̂, V̂Θ), (24)

where Θ = (κ′,Γ∗′ ,Ψ∗′)′, ΣΘ = block-diag(Σκ, σ
2
0IkΓ−1, σ

2
1IkΨ−1), Θ0 = (κ′0, µ01

′
kΓ−1, µ11

′
kΨ−1),

V̂Θ =
(
Σ−1

Θ +
n∑
i=1

σ−2
i x̃ix̃i

)−1

, Θ̂ = V̂Θ

(
Σ−1

Θ Θ0 +
n∑
i=1

σ−1
i x̃iy

∗
i

)
,
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x̃i = (z′i,x
′
Γ,i,x

′
Ψ,i)

′, xΓ,i = (xΓ,im,m = 2, . . . , kΓ)′, xΨ,i = (xΨ,il, l = 2, . . . , kΨ)′, xΓ,im =∑C
c=1

∑pc

h=1 xich1(Sch = m), and xΨ,il =
∑C
c=1

∑pc

h=1 xich1(Tc = l). This block updating proce-

dure should improve computational efficiency substantially over one at a time updating.

The full conditional posterior distributions of π0 and π1 are, respectively:

(π0 |S,Γ,T,Ψ,κ,y∗) = beta
(
a0 +

C∑
c=1

pc∑
h=1

1(Sch = 1), b0 + p−
C∑
c=1

pc∑
h=1

1(Sch = 1)
)
,(25)

(π1 |S,Γ,T,Ψ,κ,y∗) = beta
(
a1 +

C∑
c=1

1(Tc = 1), b1 + C −
C∑
c=1

1(Tc = 1)
)
. (26)

In step 2 (iii) we sample from these conditionals. Finally, in step 2 (iv) we update α0 and

α1 by applying the approach of Escobar and West (1995),

5. Cytokines and Preterm Birth Application

5.1 Real Data Results

We applied the approach to data from the cytokines and spontaneous preterm birth appli-

cation introduced in Section 2. Using the approach to prior elicitation proposed in Section

3.4, we obtained a0 = 0.55, b0 = 0.10, a1 = 0.82, b1 = 0.049, which implies Pr(βch = 0) = 0.8

and Pr(β = 0) = 0.5. We ran analyses separately for African Americans (n = 195) and Cau-

casians (n = 252), following standard epidemiologic practice in this area. In each case, the

MCMC algorithm was run for 100,000 iterations, discarding a burn-in of 5,000 iterations and

collecting every 10th sample to thin the chain. Samples converged quickly to a stationary

distribution and mixing was rapid, suggesting that the proposed algorithm is efficient.

For whites, the posterior probability of the global alternative hypothesis that any of

the SNPs were predictive of spontaneous preterm birth was Pr(H1 | data) = 0.224, with

the corresponding Bayes factor being BF = 0.288. For African Americans, the values were

Pr(H1 | data) = 0.149 and BF = 0.176. Hence, the data support the null hypothesis that

cytokine polymorphisms are not predictive of spontaneous preterm birth. These results are

robust to moderate changes in the prior, and we repeated the analysis with Pr(β = 0) = 0.2
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and Pr(βch = 0) = 0.5 without change in the conclusion. Conclusions were also unchanged

running the analysis for blacks and whites combined. SNP-specific BFs (× marks) and

posterior means given inclusion in the model (o marks) are provided in Figures 1 and 2 for

Whites and African Americans. In each case, the SNP-specific BFs were well below one. In

general, the estimated coefficients given inclusion tend to parallel the results shown in Table

1, with the extreme estimates occurring at similar locations. However, the model-averaged

estimates (not shown) are all approximately zero, reflecting the low inclusion probabilities.

5.2 Simulation Study

A potential concern is that the approach may be overly-conservative, particularly in cases

in which there are effects only for one or two of the SNPs. In such cases, borrowing of

information across the SNPs regarding the probability of inclusion in the model can conceiv-

ably cause SNP-specific effects to be obscured. To assess whether the approach is capable

of detecting SNP-specific effects, we ran a small simulation study. In particular, using the

sample size and genotype data for the women in the PIN study but randomly permuting

the assignment of SNPs to subjects, we simulated the spontaneous preterm birth outcome

variable under four different scenarios: (i) null model (βch = 0 for all c, h); (ii) one SNP

positive (cytokine IL13, location -1112, genotype TC) positive (β83 = 1, βch = 0 for all

c, h 6= 8, 3); (iii) two SNPs positive (β83 = β91 = 1); and finally a more interesting case (iv)

in which there were two non-null clusters at β = 1 [SNPs {(2, 5), (3, 1), (5, 1), (7, 1), (9, 3)}]

and β = 1.5 [SNPs {(4, 3), (6, 1), (8, 3), (10, 3)}].

Under each scenario, we simulated 25 data sets, implementing the MCMC algorithm

as for the real data example in each case, but with the algorithm run for 10,000 iterations

with a 1,000 burn-in. Summaries of the results for cases (i)-(iii) are presented in Table 2.

In case (i), only 1/25 data sets had estimated Bayes factors greater than one for either the

global or local alternatives, suggesting that the approach does not tend to produce many

19



false positives. In case (ii), 24/25 of the data sets had BF8,3 > 1 and 20/25 data sets had a

global BF > 1, suggesting that the approach has good power to detect SNP-specific effects.

In addition, the posterior mean for the coefficient for the positive SNP was close to the true

value. Similar results were obtained for case (iii).

For the more complex case (iv), results are presented in Figures 3 and 4. Figure 3 shows

the estimated marginal inclusion probabilities for each of the SNPs, ordered so that 1-35

are in the null cluster, 36-40 are in the β = 1 cluster, and 41-44 are in the β = 1.5 cluster.

Values for each of the 25 simulated data sets are shown, with the horizontal line representing

the average inclusion probability across SNPs in a cluster and across data sets. Clearly, the

approach tends to assign substantially higher inclusion probabilities to the SNPs in the two

non-null clusters. Figure 4 shows the posterior means for βch for all c, h across the different

simulated data sets, using the means conditional on inclusion in the model. On average,

the null SNPs have estimated coefficients close to zero given inclusion in the model (the

model-averaged estimates are all very close to zero), while the non-null SNPs have estimated

coefficients close to the true value, with some evidence of shrinkage towards zero.

6. Discussion

This article has proposed a semiparametric Bayesian approach for simultaneous variable

selection and clustering in applications involving many, related predictors. There is a rapidly

expanding literature on methods for identifying important predictors from an extremely

high-dimensional set of candidates, primarily motivated by gene expression data (Efron et

al., 2001; Newton et al., 2001; Ibrahim et al., 2002 among many others). Our motivation

is somewhat different in that we are interested in more focused genetic studies that collect

genotype data at a moderate number of locations (e.g., 30+), corresponding to regulatory

or coding regions for functionally-related genes. Such studies are potentially conducted as

a second stage after preliminary identification of promising candidate genes through gene
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expression studies. Because we have a more modest number of predictors, we can be more

ambitious in attempting to address questions about overall significance and clustering of

effect sizes. Our method should also be useful in epidemiologic studies collecting information

for environmental exposures, such as pesticides or nutrients, that can be grouped into pre-

specified classes.

Our motivation was genetic epidemiology studies in which investigators preselect SNPs

based on presumed functionality judged from the literature. This extremely common strat-

egy tends to limit the number of SNPs that need to be genotyped, but can potentially

misrepresent variation within a gene. Technological advances now allow one to use a dense

collection of tagSNPs that may have no function in themselves, but are instead markers

of variability within a gene. TagSNPs can be selected to be approximately evenly spaced

across a gene, or they can be selected on the basis of estimates of linkage disequilibrium (LD)

which will result in a denser set of markers covering areas of low LD. Our proposed method

is promising as an approach for identifying regions of a gene that may contain a functional

SNP(s) from a field of anonymous tagSNPs. Otherwise, by relying on preselection of a small

number of SNPs, there is always the possibility that important variability exists at other

locations. Hence, inferences are necessarily limited by the SNPs chosen and one can not

make general conclusions about the importance of a particular gene in predicting a health

outcome.

We have proposed a particular strategy of prior elicitation that treats the different SNPs

as exchangeable within a gene, while also treating the genes as exchangeable. Although this

is a reasonable default strategy for many studies, in certain cases there may be information

available to suggest that certain genes and SNPs are particularly promising candidates, while

little or no information is available for others. In such cases, as noted by Wacholder et al.

(2004), the exchangeability assumption is implausible. Fortunately, it is straightforward to

modify our procedure to allow the prior probabilities of inclusion to vary for the different
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genes and SNPs under study.
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The Annals of Statistics, 1, 353-355.

Coull, B.A., Hobert, J.P., Ryan, L.M. and Holmes, L.B. (2001). Crossed random effect

models for multiple outcomes in a study of teratogenesis. Journal of the American

Statistical Association, 96, 1194-1204.

De Iorio, M., Müller, P., Rosner, G.L. and MacEachern, S.N. (2004) An Anova model

for dependent random measures. Journal of the American Statistical Association, 99,

205-215.

De Roos, A.J., Poole, C., Teschke, K. and Olshan, A.F. (2001). An application of hierar-

chical regression in the investigation of multiple paternal occupational exposures and

neuroblastoma in offspring. American Journal of Industrial Medicine, 39, 477-486.

Efron, B., Tibshirani, R., Storey, J.D. and Tusher, V.G. (2001). Empirical Bayes analysis

of a microarray experiment. Journal of the American Statistical Association, 96, 1151-

1160.

22



Dunson, D.B. (2005). Bayesian semiparametric isotonic regression for count data. Journal

of the American Statistical Association, 100, 618-627.

Ferguson, T.S. (1973) A Bayesian analysis of some nonparametric problems. The Annals

of Statistics, 1, 209-230.

Ferguson, T.S. (1974) Prior distributions on spaces of probability measures. The Annals of

Statistics, 2, 615-629.

Gonen, M., Westfall, P.H. and Johnson, W.O. (2003). Bayesian multiple testing for two-

sample multivariate endpoints. Biometrics, 59, 76-82.

Gopalan, R. and Berry, D.A. (1998). Bayesian multiple comparisons using Dirichlet process

priors. Journal of the American Statistical Association, 93, 1130-1139.

Greenland, S. (1992). A Semi-Bayes approach to the analysis of correlated multiple asso-

ciations, with an application to an occupational cancer-mortality study. Statistics in

Medicine, 11, 219-230.

Greenland, S. (1993). Methods for epidemiologic analyses of multiple exposures - A review

and comparative-study of maximum-likelihood, preliminary-testing, and empirical-

Bayes regression. Statistics in Medicine, 12, 717-736.

Greenland, S. (1994). Hierarchical regression for epidemiologic analyses of multiple expo-

sures. Environmental Health Perspective, 102, 33-39.

Hung, R.J., Brennan, P., Malaveille, C., Porru, S., Donato, F., Boffetta, P. and Witte,

J.S. (2004). Using hierarchical modeling in genetic association studies with multiple

markers: Application to a case-control study of bladder cancer. Cancer Epidemiology

Biomarkers & Prevention, 13, 1013-1021.

23



Ibrahim, J.G., Chen, M.-H., and Gray, R.J. (2002). Bayesian models for gene expression

with DNA microarray data. Journal of the American Statistical Association, 97, 88-99.

MacEachern, S.N. (1994) Estimating normal means with a conjugate style Dirichlet process

prior. Communications in Statistics: Simulation and Computation, 23, 727-741.

MacEachern, S.N. (1999) Dependent Nonparametric Processes. In ASA Proceedings of the

Section on Bayesian Statistical Science, Alexandria, VA: American Statistical Associ-

ation.

MacEachern, S.N. (2000) Dependent Dirichlet processes. Unpublished manuscript, Depart-

ment of Statistics, The Ohio State University.

Meng, C.Y.K. and Dempster, A.P. (1987). A Bayesian approach to the multiplicity problem

for significance testing with binomial data. Biometrics, 43, 301-311.

Mulherin Engel, S.A., Ericksen, H.C., Savitz, D.A., Thorp, J., Chanock, S.J. and Olshan,

A.F. (2005a), “Risk of Spontaneous Preterm Birth is Associated with Common Proin-

flammatory Cytokine Polymorphisms,” Epidemiology, 16, 469-477.

Mulherin Engel, S.A., Olshan, A.F., Savitz, D.A., Thorp, J., Ericksen, H.C. and Chanock,

S.J. (2005b), “Risk of Small-for-Gestational Age is Associated with Common Anti-

Inflammatory Cytokine Polymorphisms,” Epidemiology, 16, 478-486.

Newton, M.A., Kendziorski, C.M., Richmond, C.C., Blattner, F.R. and Tsui, K.W. (2001).

On differential variability of expression ratios: improving statistical inference about

gene expression changes from microarray data. Journal of Computational Biology, 8,

37-52.

Savitz, D.A., Dole, N., Williams, J. et al. (1999), “Determinants of Participation in an

Epidemiological Study of Preterm Delivery,” Paediatric and Perinatal Epidemiology,

24



13, 114-125.

Sethuraman, J. (1994), “A Constructive Definition of the Dirichlet Process Prior,” Statistica

Sinica, 2, 639-650.

Tadesse, M.G., Sha, N. and Vannucci, M. (2005). Bayesian variable selection in clustering

high-dimensional data. Journal of the American Statistical Association, 100, 602-617.

Thomas, D.C., Siemiatycki, J., Dewar, R., Robins, J., Goldberg, M. and Armstrong, B.G.

(1985). The problem of multiple inference in studies designed to generate hypotheses.

American Journal of Epidemiology, 122, 1080-1095.

Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L. and Rothman (2004). As-

sessing the probability that a positive report is false: an approach for molecular epi-

demiology studies. Journal of the National Cancer Institute, 96, 434-442.

West, M., Müller, P. and Escobar, M.D. (1994). Hierarchical priors and mixture models,

with applications in regression and density estimation. In A Tribute to D. V. Lindley

(A.F.M. Smith and P.R. Freeman). John Wiley and Sons.

Westfall, P.H., Johnson, W.O. and Utts, J.M. (1997). A Bayesian perspective on the

Bonferroni adjustment. Biometrika, 84, 419-427.

Witte, J.S., Greenland, S., Haile, R.W. and Bird, C.L. (1994). Hierarchical regression-

analysis applied to a study of multiple dietary exposures and breast cancer. Epidemi-

ology, 5, 612-621.

25



Table 1. Summary of one site at a time logistic regression analyses with spontaneous

preterm birth as the outcome variable.
Cytokine Site Genotype Odds Ratio for Spontaneous Preterm Birth

White African American
IL1α +4845 GG 1.0 1.0

GT 1.1 (0.6, 1.9) 0.8 (0.5, 1.5)
TT 1.8 (0.6, 5.2) -†

IVS5-109 AA 1.0 1.0
AC 0.7 (0.4, 1.3) 1.1 (0.6, 1.9)
CC 0.4 (0.1, 1.7) 1.1 (0.4, 3.2)

IL1β 1061 CC 1.0 1.0
TC 1.8 (1.0, 3.3) 0.7 (0.3, 1.6)
TT 1.1 (0.4, 3.0) 1.1 (0.5, 2.5)

+3594 CC 1.0 1.0
CT 1.2 (0.7, 2.1) 0.9 (0.5, 1.7)
TT -† -†

-581 TT 1.0 1.0
TC 2.0 (1.1, 3.8) 0.6 (0.3, 1.4)
CC 1.0 (0.4, 2.8) 1.1 (0.5, 2.4)

IL2 -385 TT 1.0 1.0
TG 1.6 (0.9, 2.9) 0.7 (0.3, 1.6)
GG 1.1 (0.4, 2.9) -†

IL4 -589 CC 1.0 1.0
CT 0.8 (0.4, 1.6) 0.7 (0.3, 1.7)
TT 28.4 (3.3, 241.5) 0.9 (0.4, 2.0)

-1099 TT 1.0 1.0
GT 0.7 (0.3, 1.9) 1.8 (1.0, 3.3)
GG -† 0.5 (0.1, 3.9)

-33 CC 1.0 1.0
TC 0.8 (0.4, 1.7) 1.9 (1.0, 3.7)
TT 14.9 (2.9, 76.5) 1.7 (0.7, 4.0)

IL5 -746 TT 1.0 1.0
TC 1.4 (0.4, 5.0) 0.9 (0.5, 1.6)
CC 2.5 (0.7, 8.7) 0.7 (0.2, 3.6)

IL6 -174 GG 1.0 1.0
CG 1.1 (0.6, 2.1) 1.1 (0.5, 2.6)
CC 1.2 (0.5, 2.7) -†
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Table 1, continued
Cytokine Site Genotype Odds Ratio for Spontaneous Preterm Birth

White African American
IL10 -854 CC 1.0 1.0

TC 0.8 (0.5, 1.5) 0.9 (0.5, 1.7)
TT 1.0 (0.4, 2.9) 0.5 (0.2, 1.1)

-627 CC 1.0 1.0
0.8 (0.5, 1.5) 1.0 (0.5, 1.8)
0.7 (0.2, 2.2) 0.5 (0.2, 1.3)

-1082 AA 1.0 1.0
AG 1.5 (0.7, 3.1) 1.1 (0.6, 2.0)
GG 1.5 (0.7, 3.5) 1.2 (0.5, 3.1)

IL13 +2034 GG 1.0 1.0
AG 1.3 (0.7, 2.3) 0.8 (0.5, 1.5)
AA 5.4 (1.8, 16.3) 0.4 (0.0, 3.0)

-1112 CC 1.0 1.0
TC 1.6 (0.9, 2.9) 2.2 (1.2, 4.2)
TT 2.6 (0.9, 8.1) 1.1 (0.4, 3.0)

IVS3-24 CC 1.0 1.0
TC 1.3 (0.7, 2.3) 1.1 (0.4, 2.6)
TT 4.7 (1.6, 13.9) 0.9 (0.4, 2.2)

LTA IVS1+90 AA 1.0 1.0
AG 1.3 (0.7, 2.3) 1.4 (0.7, 2.8)
GG 1.8 (0.7, 4.4) 0.9 (0.4, 2.1)

IVS1-82 GG 1.0 1.0
CG 1.7 (0.9, 3.2) 1.3 (0.7, 2.3)
CC 1.3 (0.5, 3.2) 0.9 (0.2, 3.5)

TGFβ1 L10P TT 1.0 1.0
TC 0.8 (0.4, 1.4) 1.1 (0.6, 2.0)
CC 0.5 (0.2, 1.3) 1.2 (0.5, 2.7)

-1347 CC 1.0 1.0
CT 0.8 (0.4, 1.5) 1.2 (0.7, 2.1)
TT 0.5 (0.1, 1.7) 1.4 (0.3, 5.5)

TNF -308 GG 1.0 1.0
GA 1.6 (0.9, 2.9) 1.0 (0.5, 2.0)
AA 3.3 (0.9, 11.9) 0.5 (0.1, 3.9)

† no women with spontaneous preterm births in this category
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Table 2. Simulation results. [BF=global Bayes factor in favor of H1, BFc,h=local Bayes

factor in favor of H1,ch, (β−, BF−)=average coefficients and BFs for negative SNPs]

Summary across simulations
Case Quantity Mean Median [25th,75th] Proportion > 0
(i) logBF -1.92 -2.10 [-2.31 , -1.68] 0.04

logBF− -3.11 -3.25 [-3.52 , -2.83] 0.00
β− -0.028 -0.014 [-0.08 , 0.03] 0.44

(ii) logBF > 10 3.52 [0.73, 4.89] 0.80
logBF8,3 > 10 4.86 [1.96, 6.03] 0.96
logBF− -2.51 -2.53 [-2.70, -2.27] 0.00
β8,3 0.97 0.98 [0.85, 1.08] 1.00
β− -0.02 -0.02 [-0.06, 0.03] 0.28

(iii) logBF > 10 > 10 [> 10, > 10] 1.00
logBF8,3 > 10 8.18 [3.14, > 10] 1.00
logBF9,1 > 10 6.80 [4.32, > 10] 0.96
logBF− -2.07 -2.11 [-2.27, -1.88] 0.00
β8,3 0.98 1.01 [0.79, 1.14] 1.00
β9,1 0.99 0.96 [0.87, 1.11] 1.00
β− -0.01 0.00 [-0.05, 0.03] 0.52
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