

Swift X-ray Telescope Status & Observations of the Afterglow of GRB 041223

David Burrows - PSU

University Partners: PSU UL OAB

13 January 2005, AAS meeting, San Diego

O ASTRONOMICO

The Swift Observatory

Launched: 20 November 2004XRT turned on: 23 November 2004XRT First Light: 11 December 2004

First BAT Burst: 17 December 2004First XRT Afterglow: 23 December 2004

07

XRT First Light Observations

aay

07

77

GRB 041223

- •Discovered by BAT at 14:06:18 on 23 December 2004
- •XRT was in midst of thermal tests, taking data in PC mode
- •Slewed to GRB 4.6 hrs after burst as ToO
- •Observed on 3 consecutive orbits for total of about one hour on-target

Lightcurve

X-ray source was uncatalogued.

X-ray source faded rapidly.

Data extracted with *ximage* from 20" radius circle. Background extracted from 47" radius circle.

Only used times when pointing was stable and background was low.

520 counts in 3504 seconds.

Broad-band SED

For
$$F(t) = t^{-}$$
 and $F(_) = _{-}^{-}$

Band		—_	$t - t_0$
J	1.14 ± 0.08	0.40 ± 0.03	16 – 87
0.5-10 keV	1.72 ± 0.20	1.02 ± 0.07	4.6 – 7.9

(68% confidence errors)

Spectral break suggests that cooling frequency lies between the X-ray and optical bands.

(VLT observations from MISTICI collaboration)

Conclusions

- NIR and X-ray data are consistent with the following scenario:
 - •Jet has two components: narrow component that produces X-rays and broader component that produces optical
 - •Jet break of narrow component occurs before X-ray observations •Produces self-consistent model with electron power-law index of about 1.9 - 2.0

• XRT is working well and producing excellent data in spite of higher operating temperature

- Images are spectacular
- •Spectroscopy is better than Chandra at beginning of GTO phase
- •Spectroscopy expected to remain better than ASCA over life
- •High resolution timing available (up to 140 microseconds)

Co-Authors

Penn State: David Burrows Joanne Hill Judith Racusin Shiho Kobayashi Peter Meszaros John Nousek Jamie Kennea David Morris Claudio Pagani

OAB: Guido Chincarini Gianpiero Tagliaferri Sergio Campana Alberto Moretti Patrizia Romano Daniele Malesani Stefano Covino Paolo D'Avanzo

UL: Paul O'Brien Alan Wells Julian Osborne Tony Abbey Andy Beardmore Mike Goad Kim Page Dick Willingale GSFC: Neil Gehrels Lorella Angelini

UNLV: Bing Zhang

OAR (Rome): Luigi Stella Angelo Antonelli

ASDC: Paolo Giommi Milvia Capalbi

