Measuring Inter-Industry Financial Transmission of Shocks by Daniel Paravisini

> Discussion by Matt Pritsker Federal Reserve Board

Center for Financial Research 2006 Fall Workshop

► **Goal**: Identify if adverse shocks to lenders' financial positions reduce the supply of loans to borrowers, i.e. test if lenders propagate shocks?

► **Goal**: Identify if adverse shocks to lenders' financial positions reduce the supply of loans to borrowers, i.e. test if lenders propagate shocks?

• Old Approaches:

 $Y_i = \beta \times \mathbf{1}_{\{LFP_1 < K\}} + [DS + U_i]$

► **Goal**: Identify if adverse shocks to lenders' financial positions reduce the supply of loans to borrowers, i.e. test if lenders propagate shocks?

► Old Approaches:

$$Y_i = \beta \times \mathbf{1}_{\{LFP_1 < K\}} + [DS + U_i]$$

Problem: DS and Lenders Financial Position are correlated.

► **Goal**: Identify if adverse shocks to lenders' financial positions reduce the supply of loans to borrowers, i.e. test if lenders propagate shocks?

• Old Approaches:

$$Y_i = \beta \times \mathbf{1}_{\{LFP_1 < K\}} + [DS + U_i]$$

Problem: DS and Lenders Financial Position are correlated.

► This paper

 $Y_j = DS + U_j$

► **Goal**: Identify if adverse shocks to lenders' financial positions reduce the supply of loans to borrowers, i.e. test if lenders propagate shocks?

• Old Approaches:

$$Y_i = \beta \times \mathbf{1}_{\{LFP_1 < K\}} + [DS + U_i]$$

Problem: DS and Lenders Financial Position are correlated.

• This paper

$$Y_j = DS + U_j$$

$$Y_i - Y_j = \beta \times \mathbf{1}_{\{LFP_1 < K\}} + [U_i - U_j]$$

Measures of LFP

Should condition on indicators of whether lenders are likely to be constrained in lending.

Measures of LFP

Should condition on indicators of whether lenders are likely to be constrained in lending.

 \Rightarrow Should not condition on losses alone, but on the financial health of the bank and how it is affected by the losses.

 \Rightarrow Need to condition on "abnormal losses."

Measures of LFP

Should condition on indicators of whether lenders are likely to be constrained in lending.

- \Rightarrow Should not condition on losses alone, but on the financial health of the bank and how it is affected by the losses.
- \Rightarrow Need to condition on "abnormal losses."
- Conditioning on bank size and liquidity go in appropriate direction, but more could be explored.
- Additional analysis on role of credit derivatives usage is needed, i.e. is it capturing hedging, is it correlated with financial health of the banks, or with outliers in the data?

Substitute Lenders

The effects of lender distress on borrowers depend on borrowers ability to find substitute sources of funds.

Example: specification with one substitute lender:

 $Y_i = [\beta \times 1_{\{LFP_2 < K\}}] \times 1_{\{LFP_1 < K\}} + [DS + U_i]$

Substitute Lenders

The effects of lender distress on borrowers depend on borrowers ability to find substitute sources of funds.

Example: specification with one substitute lender:

$$Y_i = [\beta \times \mathbf{1}_{\{LFP_2 < K\}}] \times \mathbf{1}_{\{LFP_1 < K\}} + [DS + U_i]$$

Failure to account for substitution may generate time and statedependence in β estimates.

Substitute Lenders

The effects of lender distress on borrowers depend on borrowers ability to find substitute sources of funds.

Example: specification with one substitute lender:

$$Y_i = [\beta \times \mathbf{1}_{\{LFP_2 < K\}}] \times \mathbf{1}_{\{LFP_1 < K\}} + [DS + U_i]$$

Failure to account for substitution may generate time and statedependence in β estimates.

Example: Estimating relationships at a time when the stock-market is depressed may also introduce time-dependence.

► Missing data

- 72% of lenders shares' observations are missing.
- 90% of repayment schedule observations are missing.
- Both are imputed for many observations.

► Missing data

- 72% of lenders shares' observations are missing.
- 90% of repayment schedule observations are missing.
- Both are imputed for many observations.

► **Question**: How does the missing data affect inference?

- Biases due to data imputation?
- Biases due to *non-classical* measurement error?
- Are standard errors corrected for data imputation?

► Missing data

- 72% of lenders shares' observations are missing.
- 90% of repayment schedule observations are missing.
- Both are imputed for many observations.

► **Question**: How does the missing data affect inference?

- Biases due to data imputation?
- Biases due to *non-classical* measurement error?
- Are standard errors corrected for data imputation?
- Suggestion: Do a monte-carlo study of how imputation affects inference.
- **Suggestion:** Do specification tests on the imputation procedure.

_

Data Description

Table 1: Fraction of Bank Lending to Largest Defaults during 2002

		Fraction of Loan Portfolio to		
2002q1	stat	Defaulted firms	Communications Industry	
	n	36	35	
	Mean	.0170	0.0459	
	SD	.1161	0.0504	
	Median	0.0005	0.0088	

Data Description

Table 1: Fraction of Bank Lending to Largest Defaults during 2002

		Fraction of Loan Portfolio to		
2002q1	stat	Defaulted firms	Communications Industry	
	n	36	35	
	Mean	.0170	0.0459	
	SD	.1161	0.0504	
	Median	0.0005	0.0088	

Remarks:

- Exposures to defaulted firms are highly skewed.
- ► Want to know more about largest exposures.
- ► Want to know relation of largest exposures to bank health.

Conclusion

Suggestions:

- **1.** Plot the distribution of the exposures.
- 2. Cross-tab of lender exposure with borrower leverage.
- 3. Cross-tabs of exposures with bank health indicators.
- 4. Cross-tabs of exposures with derivatives usage indicators.

Conclusion

Wrap-Up

▶ Paper has a very good idea.

▶ Paper is very new.

▶ More needs to be done with the empirical analysis.