Use Of Geophysical Toolbox to Characterize Ground-Water Flow in Fractured-Rock

F.P. Haeni, U.S. Geological Survey Branch of Geophysical Applications and Support 860 - 487 - 7402 phaeni@usgs.gov http://water.usgs.gov/ogw/bgas

≊USGS

Toolbox Approach - Advantages

- Reduce uncertainty
- Improve models
- Sampling and testing locations

<mark>≊USGS</mark>

≪USGS

The Total Toolbox

Historical review of site Geology Surface Geophysics Drilling Cross-contamination prevention Borehole Geophysics Hydrologic testing and tracer tests Discrete interval completion Chemical sampling Modeling Integrated interpretation

Surface Geophysics

- DC Resistivity
- Electromagnetics
- Continuous Seismic Reflection/ GPR
- Seismic Reflection
- Surface Radar (GPR)

<section-header><section-header><section-header><section-header><section-header><section-header><text>

Disadvantages of DC-Resistivity Methods

- Pavement
- Underground utilities
- Needs open area
- Modeling not automated

<mark>≈USGS</mark>

Electromagnetics

• Inductive Terrain Conductivity

Reference: Powers, C.J., Singha, Kamini, and Haeni, F.P., 1999

Disadvantages of Electromagnetics

- Cultural Interference
- Small anomalies
- Non-unique Interpretation

≊USGS

Surface Geophysics Summary

- Areal information
- Optimize drill hole location
- Continuous profiles
- Collect data in difficult areas
- Determination of anisotropy

Reference: Powers, Wilson, Haeni and Johnson 1999

The Total Toolbox

Historical review of siteGeologySurface GeophysicsDrillingCross-contamination preventionBorehole GeophysicsHydrologic testing and tracer testsDiscrete interval completionChemical samplingModelingIntegrated interpretation

- Ambient flow can cause the spreading of contaminants in open boreholes.
- Chemical sampling can be misleading

<section-header><section-header><section-header><list-item><list-item><list-item>

Disadvantages of Well Socks

- Temporarily prevents integrated head measurements
- Makes integrated sampling more difficult
- Lots of water is moved around

The Total Toolbox

Historical review of site
Geology
Surface Geophysics
Drilling
Cross contamination prevention
Borehole Geophysics
Hydrologic testing and tracer tests
Discrete interval completion
Chemical sampling
Modeling
Integrated interpretation

Borehole-Wall Imaging Optical Televiewer

- Oriented video image and conventional fisheye
- Air- and water- filled holes (clear)
- Virtual Core
- Fracture and structural orientations
- Borehole deviation

Reference: Williams, J.H., and Johnson, C.D., 2000

≊USGS

Borehole Radar

Reflection and cross-hole methods

- Image beyond and between boreholes
- Estimate lateral extent of fractures and lithologic changes
- Can image features that do not intercept the borehole
- Reference: Olsson, O., Falk, L., Forslund, O., Lundmark, L., Sandberg, E., 1992, Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock, Geophysical Prospecting, Vol. 40 (2), pp. 109-142.

Borehole Geophysics Summary

- Strike and dip of transmissive fractures
- Ambient flow in borehole
- Design of discrete interval completions
- Sampling locations and methods
- Detection of features not intersecting the borehole
- Relation of geologic structure to transmissive fractures

≊USGS

The Total Toolbox

Historical review of site Geology Surface Geophysics Drilling Cross-contamination prevention Borehole Geophysics Hydrologic testing and tracer tests Discrete interval completion Chemical sampling Modeling Integrated interpretation

≈USGS

Summary: Benefits Of The Toolbox Approach

- Improved site characterization
- Sampling locations and model parameters
- Efficient remediation and monitoring design
- Determination of feasibility

F.P. Haeni U.S. Geological Survey Branch of Geophysical Applications and Support 860 - 487 - 7402 phaeni@usgs.gov jwlane@usgs.gov http://water.usgs.gov/ogw/bgas

≈USGS