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ABSTRACT

Observational data collected during the FIRE 1I experiment showing the existence of bimodal ice spectra
along with experimental evidence of the size dependence of riming are utilized in the development of a bimodal
ice spectrum parameterization for use in the RAMS model. Two ice classes are defined: pristine ice and snow,
each described by a separate, complete gamma distribution function. Pristine ice is small ice consisting of
particles with mean sizes less than 125 um, while snow is the large class consisting of particles greater than 125
pm. Analytical equations are formulated for the conversion between the ice classes by vapor depositional growth
(sublimation). During ice subsaturated conditions, a number concentration sink is parameterized for all ice
species. The performance of the parameterizations in a simple parcel model is discussed and evaluated against

an explicit Lagrangian parcel microphysical model.

1. Introduction

Increasingly, observational evidence is showing the
importance of ice crystals in upper tropospheric clouds.
The heat budgets, radiative properties, and microphys-
ical characteristics of these clouds can have significant
effects on the global climate feedback. Stephens et al.
(1990) showed the importance of the crystal asym-
metry parameter and the effective crystal size to radi-
ative calculations and climate feedback, two variables
that are not well known for cirrus clouds. Their model
results showed that ice water feedback on a CO, warm-
ing event could be either positive or negative depend-
ing upon the choices of the above variables. Stackhouse
and Stephens (1990) showed that variations in ice crys-
tal concentrations less than about 100 pm in size can
greatly affect the longwave absorption and shortwave
albedo of cirrus clouds. Mitchell and Amott (1994)
have shown the importance of ice habit in radiative
transfer calculations. Their results showed variations in
absorption, extinction, and scattering calculations de-
pending upon the ice habit. Even with these recent re-
sults showing the importance of cirrus clouds on global
climate feedback, there has been a lack of reliable mea-
surements upon which to base physical theories. Ex-
perimental field work, such as the First ISCCP Re-
gional Experiment, FIRE I and FIRE II, has done much
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to provide recent measurements of the physical char-
acteristics of these clouds systems.

A characteristic of cirrus clouds that may be impor-
tant to numerical modelers is observational evidence
showing the existence of a bimodal distribution of ice
particles. Heymsfield (1975) derived ice particle spec-
tra from measurements in cirrus uncinus clouds and
showed evidence of a bimodal spectrum with a sharply
peaked small-particle mode (sizes less than about 200
um) and a broader large-particle mode (sizes greater
than about 200 ym). Hein et al. (1993) showed evi-
dence for the possible existence of large numbers of
small, pristine ice crystals (D = 50 pm) in cirrus clouds
using a forward Monte Carlo method to calculate the
spectral variations of scattering and absorption of a cir-
rus layer. It was found that a large number of small,
pristine ice crystals was required to make their spectral
calculations conform to observation. This requirement
may mean that the radiative properties were not rep-
resented in a physically complete fashion; however, the
suggestion of a small ice class still exists. Arnott et al.
(1993) presented ice replicator and 2D-C probe data
showing that ice crystals in cirrus clouds can have a
bimodal representation; their data showed a small-ice
mode (sizes less than about 125 ym) with large number
concentrations and a mode that contains larger, more
massive, particles but lower number concentrations.

The above information points to the consideration of
small ice as a separate category in a mesoscale cloud
model such as the Regional Atmospheric Modeling
System (RAMS) or in other large-scale models. Other
information that also points us in this direction is the
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observational evidence of the size dependence of rim-
ing. Schlamp and Pruppacher (1977) and Pitter (1977)
showed that riming does not occur on small ice parti-
cles (ice smaller than 50—150 pym depending on the
crystalline habit); thus, these particles should only be
affected by vapor deposition and aggregation growth
processes. Our problem is, then, to develop ice classes
that conform to these observations with the ultimate
goal being implementation into a larger-scale numeri-
cal prediction model.

In past versions of RAMS (version 2c¢) microphys-
ical module only one class of vapor grown ice (pristine
ice) was considered (see Cotton et al. 1986). This ice
class was described mathematically by a monodisperse
distribution and was the source for all other ice cate-
gories. RAMS microphysics, as is true for many so-
called bulk microphysical packages, is designed around
the concept of using statistical distribution functions to
keep track of the concentration and mass mixing ratio
variation with size. In RAMS, we use the complete
gamma distribution function to describe the concentra-
tion and mass mixing ratio of the hydrometeor species;
this function is given by (Walko et al. 1995) as

N, (D\" 1 D

n(D) ) (Dn) D. exp( D,,) , (1)
where v is the distribution shape parameter (see Fig. 1
for an example of v variation), D, is the characteristic
diameter of the distribution,' N, is the number concen-
tration of hydrometeors of a given type, and I'(v) is
the gamma function of v and can easily be looked up
in mathematical tables. Many physical growth pro-
cesses affect the ice/liquid hydrometeor species, and
the difficulty related to this that arises in bulk micro-
physical modeling is how one keeps track of all of the
different growth processes using complete distribution
functions. If we used only a single distribution function
to mathematically describe all of the model ice, it is
easy to see that keeping track of the statistical percent-
age of mass mixing ratio and number concentration af-
fected by different growth processes would be nearly
impossible. One method, and the one that we use in
RAMS (see Walko et al. 1995), is to divide the hydro-
meteors into classes depending upon the processes that
affect them. In RAMS there are seven of these hydro-
meteor classes (cloud drops, rain, pristine ice, snow,
aggregates, graupel, and hail), and each is distributed
via the above-given gamma distribution function. In
this methodology a hydrometeor maintains its classifi-
cation (say, snow) if it is affected by a growth process
that does not change that identity. For the pristine ice
and snow categories this growth process is vapor depo-
sition; any other growth process that affects the pristine

' D, serves to nondimensionalize the distribution function and is
physically related to the mean particle size of the distribution.
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ice or snow category causes a transfer of the appropri-
ate mass mixing ratio and concentration to a new cat-
egory.

It seems feasible, in light of the above-given data,
that the aforementioned pristine ice class used in
RAMS is not a sufficient description of vapor-grown
ice. The data seems to suggest the inclusion of a second
ice class that originates in the pristine ice class, a class
that we will call snow. The snow class will include only
vapor-grown pristine ice and lightly rimed ice but not
aggregates of pristine ice since the RAMS model al-
ready accounts for this process with a separate distri-
bution of aggregated crystals (Walko et al. 1995).
Thus, we define a class of ice (pristine ice) in which
the mean size of the ice particles is less than 125 ym
and can grow only by vapor deposition and still main-
tain its identity as pristine ice. The pristine ice crystals
can aggregate and melt. If they do, the appropriate
number concentration and mass mixing ratio are trans-
ferred to other categories. The pristine ice category is
described mathematically by its own gamma distribu-
tion function (in keeping with Walko et al. 1995). A
larger ice class (snow) is defined in view of the above
evidence in which the mean ice particle size is greater
than 125 um and is composed of vapor-grown pristine
ice and lightly rimed ice. The snow category is also
described by its own gamma distribution function and
is allowed to rime cloud droplets, melt, and undergo
collection processes. The pristine ice and snow cate-
gories, therefore, define a bimodal spectrum of simi-
larly grown ice particles. It should be emphasized at
this point that both pristine ice and snow are mathe-
matically defined by separate complete gamma distri-
butions; thus the snow category overlaps into the sizes
smaller than 125 pm, while the pristine ice distribution
overlaps into the sizes greater than 125 pm. This arti-
ficial overlap is a consequence of using the complete
gamma distributions. It would be possible to use in-
complete gamma distributions that terminate at a given
size; however, these functions are computationally too
expensive to use in a bulk model.

During conditions of ice supersaturation and subsat-
uration a method is needed for finding the concentra-
tion and mass mixing ratio transferred between the pris-
tine ice and snow spectra. In section 2 analytical equa-
tions for this transfer process are derived. Since a
concentration sink is needed during ice subsaturated
conditions, a description of our parameterization of this
sink is described in section 3. Section 4 describes the
Lagrangian parcel model and the effects of the imposed
forcing on the ice spectra. Summary and conclusions
are given in section 5. In Part II we examine the pa-
rameterizations using two-dimensional tests with
RAMS on the 26 November 1991 FIRE II cirrus case.

2. Predictive equations

As was stated above, the ice crystals are divided into
two classes, pristine ice and snow, with the delineation
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between the classes defined by a boundary size (D,).
The two ice classes are described by separate, complete
gamma distributions as given by Eq. (1), where D
= D(t) for simplicity. A plot of the model represen-
tation of these distributions for pristine ice crystals and
snow is given in Fig. 1. This figure also illustrates how
the choice of the parameter v affects the shape of the

distribution; here, the pristine ice distribution uses v
= 1, and the snow distribution uses ¥ = 3. The total
mixing ratio, number concentration, and mean size of
a given distribution are described by
1 =3
r= ——f m(D)n(D)dD, 2)
pa (1]
N,=f n(D)dD, 3)
0
and
f Dn(D)dD
0
4)

D=————=uD,
f n(D)dD

0

where r is the mixing ratio of any ice spec1es N, is the
number concentration, p, is the dens1ty of air, m(D) is
the mass of any crystal with a maximum dimension of
D, and D is the mean hydrometeor size of the number
distribution. Note that D is related to D, by the distri-
bution shape parameter. The mass of a given hydro-
meteor is formulated in terms of a mass—dimensional
relation, which is a simple function of the maximum
axial length (Mitchell 1988; Mitchell and Arnott
1994),

(&)

where «,, and 3,, are numerical constants that vary with
crystal habit. Values of these constants can be found in
the mentioned references.

In developing the predictive equations for the bi-
modal ice spectrum, let us first consider the effects of
vapor depositional growth on the mixing ratio of any
given ice distribution. If we differentiate (2) with re-
spect to time, we find '

.1 7 (0m(D)
r—paJ; (_——Bt n(D) + m(D) ————

By using the appropriate relations (see appendix A for
details), we can derive the following:

p=l @n(D)dD
Pavo

m = a, D",

on(D)

Y >dD (6)

)]

The rate dm/dt is an equation for the mass growth of
the ice particles; here we are considering vapor growth
only, so dm/dt takes the form (Byers 1965)
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Fic. 1. Model representation of the bimodal ice distributions of
pristine ice (solid) and snow (dashed). The pristine ice distribution
has a shape factor of v = 1, while snow is v "= 3. The delineation
between the ice categories is defined by the cut diameter D;.

dm

>’ =4nCi(S; — 1)G:(T, P)f, .+

(8)

where C; is the crystal capacitance term, S; is the ice
saturation, f, ; - is the ventilation coefficient, and G, (T,
P) is a function of temperature and pressure. The func-
tion G;(T, P) is defined as (Pruppacher{and Klett

1978)
1) H_ , (9)

where R, is the gas constant for water vapor, 7T is the

environmental temperature, e;, is the saturatlon vapor
pressure over ice, D, is the diffusivity of water vapor,
L, is the latent heat of sublimation, and k, is the thermal
dlffusmty of air. The ventilation coefﬁmentmsed here
is for oblate spheroids and is given in Pruppacher and
Klett (1978) as

fie=1+014X2 for X =NYINKY. <
=0.86 + 028X for X =1,

G.(T.P) = [ RT L, < L

+
Esi Dv kzzT

(10)

where Ng.,« is the Reynolds number with the signifi-
cant dimension, L* being the ratio of the surface area
to the perimeter of the crystal, and Ns, is the Schmidt
number. The surface area and perimeter of plates and
hexagonal plates is easy to calculate. For a needle crys-
tal we use the perimeter formulation g1ven| in Prup-
pacher and Klett (1978) for a prolate sphermd of the
same aspect ratio of the needle crystal. The suﬁace area
of a needle is approximated as the surface area of the

)
'
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prolate spheroid; this value is easy to calculate by using
the area of a surface of revolution.

Recently, more accurate forms of the vapor deposi-
tional growth relation have been formulated (Srivas-
tava and Coen 1992) because the linear temperature
profile between the crystal and the environment as-
sumed by (8) above causes significant errors, espe-
cially when sublimation regimes are encountered. In-
stead of using the quadratic approximation to saturation
vapor density at the particle surface as derived by Sri-
vastava and Coen (1992), we use the method of Walko
et al. (1995), which uses a bounded value to the ref-
erence temperature in the expansion of the Clausius—
Clapeyron equation (see Walko et al. 1995 for details).

The capacitance term in (8) is a function of a max-
imum and minimum dimension, ¢ and a, respectively.
Simplification of the capacitance term is needed in or-
der to arrive at an analytical solution to (7). This may
be done by writing C; as a function of the aspect ratio
A = c/a and its maximum dimension ¢ = D. Therefore,

Ci =Ci(c,a)=g(A, D)= x(A)D, (11)

where x(A) is a function of the aspect ratio. The func-
tion x(A) is a constant function of a given aspect ratio,
which now allows the dm/dt equation to be integrated
over the distribution functions. Note that x(A) is also
a function of the crystalline habit. The aspect ratio of
any given ice crystal is not held constant throughout
the simulation, however. Bulk values of the aspect ratio
for the entire distribution of ice is determined by equat-
ing (5) to an equivalent volume (see appendix B for
details of x(A) and the bulk aspect ratio method).
Substituting Eqs. (8) and (11) in (7) gives

r= J‘“’ ¥Dn(D)dD, (12)
0

where

¥ = 4nx(A)(S: = DG(T, P)f,ue.  (13)
Using the definition of the complete gamma function
from Abramowitz and Stegun (1972)

I(n) = me"—' exp(—X)dX (14)

0

and the moments of the gamma distribution given by

I(P) = f D n(D)dD = —-N'—Dfl“(u + P), (15)
0

I'(v)
where P refers to the Pth moment of the distribution
function, then (12) can be written in a very simple final
form as

. U N, v
r=———DI(w+1)=—1I(1). (16)
‘7a I‘(l/) /7a
Equation (16) is the expression used for the vapor de-
positional growth of a given distribution of ice crystals.
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Calculations of the transfer of crystals between the
pristine ice and snow distributions can be accomplished
by considering the shift in the ice spectra due to the
growth or sublimation of the distribution given by Eq.
(16). Consider Fig. 2, where a given distribution of
pristine ice has evolved during a model time step At.
In this time the distribution has broadened and some
pristine ice mass and number concentration has been
transferred across the boundary given by D,. By cal-
culation of the number concentration and mass mixing
ratio fluxes across this boundary, it is possible to de-
scribe the crystal number concentration and mixing ra-
tio that should be transferred between the distributions.
This transfer is dependent upon the ice supersaturation,
which will determine the direction of the number con-
centration and mixing ratio fluxes. In an ice supersat-
urated regime the transfer of number concentration and
mixing ratio from the pristine ice to the snow distri-
bution can be described by the following relation:

o0

a1 m(D)n,(D)dD

oy —
r =
? dt Pa¥D,

(17)

and

. df”
Nf =<

g J,, DD,

(18)

where the above describe the change in the number
concentration and mass mixing ratio in the region D,
— o (the region defined as snow). For example, during
ice supersaturated conditions, the number change in
this region must be due to crystals that were once

o
o
=

n.@) (number/m3/pm)

" ) . s
[} 100 200

D (um)

FiG. 2. The time change in the complete gamma distribution for v
= 3. The distribution at ¢ + At has undergone ice crystal growth by
vapor deposition.
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smaller than D, since no other source into this region
exists. The subscript p in the above equations is for
transfer from pristine ice to snow. By using Leibnitz’
rule, Eq. (42), and the chain rule, it is possible to arrive
at the following forms of the transfer equations; see
appendix C,

dD
1=l mo) (19)
D=Dy, .
and
1 dD
o = -
r, pam(D.b) dr D=Dhnp(Db)
1 [~ d
e L (D)dD. (20)
p, dt

Equation (19) is interpreted as the number concentra-
tion of pristine ice that grows by vapor deposition be-
yond the threshold size D, (this is graphically illus-
trated in Fig. 3a). This defines the flux of pristine ice
to snow. Equation (20) has two terms that describe the
total change in the region D, — . The first term in
(20) describes the amount of pristine ice mixing ratio
associated with smaller pristine ice crystals that grow
larger than D, and, thus, enter the region D, = . The
second term in (20) describes the vapor depositional
growth of pristine ice crystals larger than D,, (since this
is a complete distribution). Figure 3b illustrates this
process. In principle the transfer equations should not
include the second term because it does not describe a
mass transfer from the region 0 — D, to D, — = but
describes the vapor depositional growth of mass in D,
— oo, This term exists only because we are dealing with
complete distributions. We choose to include this
- growth term in the transfer equation because it is im-

Nuuber Pristine Iee

Number Transfer
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FiG. 3a. Illustration of the concentration transfer from pristine ice
to snow. Equation (19) describes the concentration in a region of the
distribution (that is dependent upon dD/dt) that will be transferred

beyond the bounding size D,.
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FiG. 3b. Illustration of the mass mixing ratio transfer, from pristine
ice to snow. This illustrates the two parts of Eq. (20) that affect the
sizes larger than D,. The first term on the right-hand side of Eq. (20)
describes the mass transferred, while the second term |describes the
growth of the particles larger than D,

portant to keep the percentage of mass in the distribu-
tion tail to a minimum. Since we are dealingwith com-
plete distributions, it is impossible to reduce to zero
any mass or number concentrations that overlap. Keep—
ing this growth term avoids excessive accumulatlon in
the pristine ice distribution and tends to keep the mean
diameters of both pristine ice and snow within realistic
bounds. \

In order to solve (19) and (20) we mvoke the defi-
nition of the incomplete gamma function from Abra-
mowitz and Stegun (1972)

I'(n,Y) = wa"“’ exp(—X)dX (21)

and define the moments of the incomplete gamma dis-
tribution as

T,(P,Y)= fy D*n/(D)dD

N Y
! Df,r<u,+PD , (22)

F( ) nl
where T;(P, Y) is the Pth moment of the iélcomplete
gamma distribution I. Combining (6) and (8), we get
an expression for dD/dt as

dD

— = ®D?* li,,.
dt

(23)

where

4ry
mﬂm

By using these expressions in Egs. (19) and|(20), the
final forms become

o = (S; — 1)G(T, P)f, ;- (24)
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g
= kol a,Din,(D,) + — T,(v + 1, D,/D,)

a a

(25)

and

N/ = ®D* Pun, (D). (26)

These equations are the prognostic equations for the
transfer of pristine ice mixing ratio and number con-
centration to snow during ice supersaturated condi-
tions. Use of these equations requires the calculation of
the incomplete gamma functions every time step,
which is computationally inefficient in a bulk model.
We, therefore, choose to make lookup tables of these
functions for code efficiency. Since v and D, are con-
stant throughout any simulation, we need only con-
struct a one-dimensional table of the form

T(D,) = 1“<y +1, —%) ) (27)

D,

Our table only needs to contain realistic increments of
and range over realistic values of D,.

In the case of ambient conditions that are subsatu-
rated with respect to ice, the transfer of snow number
concentration and mass mixing ratio to the pristine ice
crystal class can be described by considering the shift
of the snow distribution in the region 0 — D,. This
process is graphically similar to the processes portrayed
in Figs. 3a and 3b except that the region 0 — D,, of the
snow distribution is considered. The change in the
snow distribution in the region 0 — D, can be written

s d1 >
r! =E’D_ . m(D)nS(D)dD (28)

and
. d >
N_{(D)=-—f n,(D)dD. (29)
dt Jy

Using Leibnitz’ rule, (42), and the chain rule, it is pos-
sible to cast the snow transfer equations into the fol-
lowing forms:

. D
f= -2 (D 3
N 7 D=Dhn.( ) (30)
and
1
i =-Lmoy |
i dt |,
1 (* d
+— | Zaydp. 1)
pa 0 1

Equation (30) is a simple function of the rate of change
in particle size evaluated at the boundary. This gives
the change in concentration that occurs in the region 0
— D,, which must be due to snow transfer since there
is no other process that affects N, built into these equa-
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tions. Equation (31), as (25) above, has two distinct
physical parts: The first term in (31) describes the
change in the snow distribution in the region 0 = D,
due to the transfer of mass mixing ratio from the region
D, — o, The second term on the right-hand side of (31)
describes the loss of snow mass mixing ratio in the
region 0 — D, due to sublimation. This term represents
loss of snow mass mixing ratio to the vapor state, which
is accounted for in Eq. (16); hence, we choose to drop
this term since we are interested in the transfer of snow
to pristine ice.

This may seem mathematically inconsistent with our
choice to keep the term describing the vapor deposi-
tional growth of pristine ice larger than D, in size. This
choice is, however, physically consistent since in the
ice supersaturated case the mass growth of the pristine
ice that is greater than D, in size is a source of ice mass
and is actually in the region defined as snow. The case
of ice subsaturation is distinctly different since the sec-
ond term in (31) describes snow sublimation that is a
source of vapor.

The solution to Egs. (30) and (31) above, using
(23), becomes

P
r{ = - alezzns(Db)

a

(32)

and
N{ = —®D} Prn,(D,). (33)

Equations (32) and (33) describe the flux of number con-
centration and mass mixing ratio from the snow to the
pristine ice class in conditions that are subsaturated with
respect to ice. Equations (16), (25), (26), (32), and (33)
make up the full set of transfer equations for the two
moment predictions of the bimodal ice distributions.
Under ice subsaturated conditions, however, some of
the mass that is lost to vapor comes from crystals that
sublimate completely to vapor. This constitutes a number
concentration sink and is discussed in the next section.

3. Sublimational number concentration loss of ice to
vapor

A parameterization of the process of sublimational
concentration loss from the ice distributions is consid-
ered in this section. Conditions that are ice subsaturated
cause a buildup of pristine ice number concentrations
unless a sink is defined. Physically, the smallest ice
crystals in the distribution will disassociate to vapor in
some time step At. It is possible to describe number
concentration loss by finding the largest size crystal,
D, that will sublimate completely to vapor in a given
time step At by using the vapor depositional growth
equation and then integrate the number distribution
function to this size. This procedure would, again, be
computationally expensive since it would require cal-
culation of the incomplete gamma function at every
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time step. Tabulation of the above functions would also
not be very feasible because a two-dimensional table
of dimensions (D,.., D,) would have to be created.
Since both D, and D, vary widely, the table would
have to be quite large. This method might have been
feasible if our cloud model had only one ice species;
however, RAMS has seven different hydrometeor spe-
cies to consider, and a two-dimensional table for each
species would increase computational costs.”

Our approach centers around the hypothesis that the
fractional number concentration loss

number lost to sublimation  nAt
total concentration Aot

(34)

is a strong function of the fractional mass loss (7At#/
ro). Here, we are hypothesizing that a certain mass
loss to vapor from the distribution will give rise to a
certain concentration of small ice that will sublimate in
a time step. To test this hypothesis we have set up a
bin representation of the various distributions and allow
them to slowly sublimate over time.

Consider the established distribution shown in Fig.
4 with v = 3. To initialize the bin representation, the
range of the distribution (0 — D,,,,) is divided into a
certain number of bins (MN,;,;) by defining each bin in
terms of a specific diameter range, AD, where AD
= Nyins/ Dmax and i denotes the ith bin. To complete the
bin representation of the distribution, the number and
mass in each bin needs to be specified. This is accom-
plished by the use of the following relations:

N; = n(D)AD

1 D\ 1 D,
- (ZYy L _9i\A
O] (D,,> Df"p< D,,> b (%)

(36)

and
1
M(D;) = p_ m(D;)N;,

where n(D;) is the normalized gamma distribution, m(D,)
is defined by using (3), and D; is the mean size in the
given bin. The total mass in the distribution is also needed
-in order to define the mass loss ratio and is defined by

Nbins
Tot = ZO M(D;). (37)
- Note that, since (35) is normalized, n, = 1.

Using this representation, the model is run using time
steps (chosen by the model) that are small enough to
resolve a user-defined increment of X% in the rAt/r,
and nAt/n,, ratios. During these runs values of S;, D,,,
T, P, v, and the crystal habit are held constant. The
total time for the run is found by integrating (23) to
find the time needed to completely sublimate the largest
crystal (D,,,,) in the distribution.

Tabulation of the relationship-between the FA#/r,,
and rnAt/n,, ratios is accomplished by using the growth
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FiG. 4. Bin representation: An example of the bin representation
of the gamma distribution. The distribution is divided into x number
of bins of a given diameter defined by D; = D;_, + AD.

equations (8) and (23). Mass is lost to vapor during
each time step using Eq. (8). This loss in mass causes
the sizes of the crystals in each bin to decrease. Number
concentration losses occur by considering the largest
size crystal (or the largest mass) that will completely
dissociate into vapor during a given time step' At. Since
this size will rarely be the same as any bin{ boundary
size, we must consider the concentration lost from the
fraction of a bin. This is easily accomplished by con-
sidering the maximum size that dissociates and the
equation for the distribution, n(D). From ithese two
quantities we can get a ADy,. by considering the bin
within which the calculated maximum size éxists and,
then, using the lower bound to calculate ADy,.. For
example, if the maximum size that will dlSSIOClatB in a
time step is glven by Dy and it lies between two
bounding bin sizes, D; and D, , then we can calculate
ADy,. = Dy, — D;. The fraction of numbe'r concen-
tration from the bin can then be calculated by finding
n(D)AD,m, where D is the mean size in D = Dyjigs-

By summing the concentration of crystals that disas-
sociate to vapor in each bin and forming the ratio of
this to the total concentration, we can dcvefop a one-
dimensional table of the concentration loss as it de-
pends on FA#/ 1.

The sensitivity of the physical parameters S;, T, P,
D,, v, and crystal habit to the mass and number loss
ratios were tested in simulations in which these phys-
ical parameters were varied over a wide range of val-
ues. Figure 5a shows the generated curves of|mass loss
ratios plotted against number concentration loss ratios.
In these simulations temperature, pressure, and mean
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FiG. 5a. Plots of (FAD/r, vs (nAf/n,,: Curve 1 is for needles, and
curve 2 is for hexagonal plates. Variation is over the range §; = 0.1
- 0.9.

diameter were all held fixed; also the runs were done
for needles and for hexagonal plates. The variation in
S; for needles is most important for small mass loss
ratios where variation can be as large as 50%—-75%
with respect to a given value of S;. We choose to accept
this since such a low loss of concentration will not af-
fect results too largely. The most important variations
are where 7At/r, gets larger, and at these points the
parameterization works well. Note that this S; variation
does not have as large an impact in the case of hex-
agonal plates.

Figure 5b shows a plot of the mass loss and number
concentration loss curve with variation over ranges in
P, T,and D; §; was set to 0.8 and the distribution shape
was assumed to be Marshall-Palmer (v = 1). Simu-
lations were done over these different ranges in order
to test as many cases as possible that may cause devi-
ations in the curve. Note, however, that there is little
variation in the curve for the sublimational loss ratios
over the given ranges. The widest variations shown are
due to the diameter variation; the error bars indicate the
maximum variation due to changes in D,. Still, it is
possible to parameterize the number concentration loss
lookup tables with values of these parameters set at
values that define the bulk average of the curve. Errors
associated with the removal of D from the tables are
around a maximum of about 38%. Similar results can
be shown for different values of the v and for different
habits; however, these are not produced here.

The parameters that do cause significant shifts in the
loss curves are v and the crystal habit. Here, P, T, D,
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FiG. 5b. Plots of (FAD/r, vs (11AD/n,: This simulation was con-
ducted for needle crystals only. Model variations in external param-
eters are over the ranges of pressure P = 600 — 200 mb, temperature
T = —30 - 30°C, and distribution mean diameter D = 10 = 300 um.

and S; were held fixed so that the variation due to habit
and v is pronounced. Figure 6a shows plots of the mass
loss and number concentration loss ratios for different
values of v. As v increases, the mass loss ratio needed
for significant concentration loss increases. This is be-
cause as v increases, the concentration is weighted
more to the larger sizes and, therefore, to larger masses.

Figure 6b shows the sensitivity of the mass loss ratio
versus number concentration loss ratio to the choice of
habit. Again, note the shift in the curve due to this
choice. Of particular interest is that for spheres the per-
centage number concentration loss is larger initially for
any given percentage mass loss, with this tendency re-
versing as the ratios approach 1. The opposite trend is
observed for needles, with large initial percentage mass
losses being needed in order to see any appreciable
change in the percentage number concentration loss.
The reason for this shift in the curve due to the different
habits is related to the mass—diameter relationship,
given by Eq. (5), for spheres, §,, = 3, while for needles
B, = 1.8 (Mitchell 1988). This power influences the
way in which the given crystals evaporate. The equa-
tion for dD/dt, (23), is a function of D>~ P~ and is the
reason for the observed shifts in the curves. For
spheres, 2 — ,, = —1 giving a 1/D dependence, while
for needles 2 — B,, = 0.2 giving a D°? relationship.
Since the bin model allows for the sublimation of the
smallest crystals first, the spheres that have a 1/D
growth relationship will loose larger concentrations
than the D®? relationship for needles. Thus, for a given
percentage mass loss ratio (below about 0.50) the per-
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FIG. 6a. Evaporation ratio for varying v: Curve 1 describes evap-
oration for v = 1, curve 2 describes evaporation for v = 2, up to v
= 6. For these simulations 7 = 273.15 K, P = 400 mb, D = 30 pm,
and S; = 0.8. Crystal habit: needles.

centage number concentration loss will be larger for
the sphere than for the needle habit.

4. Tests using a Lagrangian parcel model

The evolution of the ice spectra is examined in this
section with the use of a Lagrangian parcel model as
described in Tripoli and Cotton (1981 ). The test model
consists of the following general structure: the ice lig-
uid water potential temperature 8, which is the model
conservative variable; initial conditions that consist of
the initial parcel temperature; the total parcel mixing
ratio r,; the model top and bottom (defined by two pres-
sure levels); and an initial updraft profile.

The model is initiated with initial model top and bot-
tom pressures, P,,, and Py, ; an initial temperature T;
and an initial total mixing ratio defined as

rh=r,+r,+r, (38)

where r, is the mixing ratio of water vapor, r, is the
mixing ratio of pristine ice, and r, is the mixing ratio
of snow. A constant model ascent is assumed during
simulations in order to isolate the transfer process. A
model pressure increment AP is assumed and, using
the hypsometric equation, it is possible to get a height
scale AZ from the AP increment. This height incre-
ment and the model ascent are used simply as a way
of estimating a model time step:

At =—,

w

(39
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F1G. 6b. Evaporation ratio for varying crystal habit: Curve 1 de-
scribes evaporation for needles and for long columns curve 2 for
hexagonal plates, curve 3 for short columns, and curve 4 for spheres.
Simulations 7, P, S;, and D are the same as above. A shape parameter
of v = 3 used.

Model temperature at the given pressure level is diag-
nosed from the conservative variable 6, as described in
Tripoli and Cotton (1981). Since §; is conse‘i'ved under
phase changes of water but not for precipitating pro-
cesses, we choose to allow all of the initial water spe-
cies to travel with the parcel and not allow fluxes of
any species into or out of the parcel.

Model ice is allowed to form through the heteroge-
neous, deposition/condensation freezing ice nucleation
formulation of Meyers et al. (1992):

N; = exp{a + b[100(S; — 1)1}, (40)

where N, is the number concentration nucleated (m™?),
S; is the ambient saturation with respect to 1ce and a
and b are empirical constants derived from fits to nu-
cleation data with a = 0.639 and b = 12.96|(mks).

In order to test the feasibility of our parameterization
of the transfer processes and the subhmatlon]al number
concentration loss schemes, we compare the parame-
terized processes to those calculated with a “‘bin re-
solving’’ methodology. This method is similar to the
method illustrated in Fig. 4. We assume that|the trans-
fers and concentration losses calculated |with this
method are the ‘‘truth’’ and use the results as a com-
parison basis. We calculated the transfers hsing this
method by dividing up the pristine ice (or s:now) dis-
tribution into N, = 20 000 bins of width AD; with the
bins remaining fixed in time. The spacing,| AD, de-
creases as D, and D = 0 are approached so that accurate
calculations of the transfer processes and the; sublima-
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tional loss can be calculated. During ice crystal growth
(sublimation) we can find the appropriate number con-
centration and mass mixing ratio that is transferred be-
tween the distributions by calculating the change in size
and mass of the particles in each bin. As particles are
grown, the bins in the region of D, are checked to see
if their sizes have increased beyond (below) D, due to
vapor growth (sublimation). If this condition is true,
the concentration and mass associated with that bin are
transferred to the snow (pristine ice) class. In the case
where a fraction of a bin must be moved, the same
procedure as was adopted in finding the sublimational
concentration loss values is employed. For the case
where the parcel is subsaturated with respect to ice, not
only crystal transfers occur, but so do losses of con-
centration to vapor. In this case we invoke the same
methodology as described above.

Model results

Simulations were conducted in which the ability of
the above scheme could best be demonstrated against
the bin-calculated transfers. The results presented here
include variations in crystal habit and the shape param-
eter of the pristine ice distribution. Since crystal habit
has a large influence on the growth and the transfer of
crystals between distributions through its power for-
mulation [Eq. (5)], the two crystal habits that char-
acterize the maximum and minimum of the parameter
B, are used, which are needles, §,, = 1.8, and hexag-
onal plates, 3,, = 2.6. These two types represent the
extremes of crystal growth as a function of habit in the
model. Tests have been conducted with other crystal
types having values of the exponential parameter 3,
intermediate to those stated above. The model results,
expectedly, are intermediate to those that follow for
needles and plates. The shape of the distribution v also
has a large influence over the behavior of the given
system, and a model simulation in which different val-
ues of v are used is discussed. Three cases comprise
the results that follow: they are a case in which needle
crystals are utilized with a shape parameter of v = 3
for the pristine ice distribution, a case in which needle
crystals are utilized with a shape parameter of v = 1
for the pristine ice distribution, and a case in which
hexagonal crystals are utilized with a shape parameter
of v = 1. The snow distribution shape is held constant
at v = 3 for all of the simulations.

1) CASE 1: NEEDLE CRYSTALS WITH PRISTINE ICE
DISTRIBUTION SHAPE v = 3

Parcel ascent is initiated with enough water vapor (r,
= 0.0008 kg/kg) and at a sufficiently low temperature
(T = 243 K) so that ice supersaturation is realized in-
itially. A constant upward motion of w = 1 ms™' is
assumed, and this leads to a time step of At = 1.77 s.
Figure 7 shows the profile of S; during model ascent
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are denoted by curves 1 and 2, respectively.

and descent. Note that the ice supersaturation increases
rather quickly due to adiabatic cooling. This increase
is rapidly damped as the nucleated ice crystals grow by
vapor deposition and deplete the vapor supply. For de-
scent the parcel is initialized with a mixing ratio of
vapor (r, = 0.00007 kg/kg) that is low enough so that
ice subsaturated conditions are initially realized. Pro-
files for both model ascent and descent reach approxi-
mate ‘‘equilibrium’’ values, thus sustaining constant
growth (sublimation) of the model ice.

Figure 8 shows the evolution of the pristine ice (solid
lines) and snow (dashed lines) spectra during the ice
supersaturated ascent. The time for the full ascent from
400 to 200 mb is 2000 s with the time into the simu-
lation of each of the plotted distributions indicated in
the figure. Note that the initial pristine ice distribution
is quite narrow, being associated with high number
concentrations and low mass mixing ratios. This can
be seen in Figs. 9a and 9b; note that the concentration
peaks quickly because of the nucleation equation while
the mass mixing ratio of the pristine ice crystals is
small. The pristine ice distribution rapidly broadens to
the distribution shown at t = 171.69 s, and after this
time the change in the distribution of pristine ice is
rather slow since the profile of S; is decreasing. This
may be seen by examining Fig. 9c in which the profiles
of the mean particle sizes are plotted. The pristine ice
profile (solid line) rapidly reaches the delineating size
between pristine ice and snow (D,), which is the
bounding size of the pristine ice category. This empha-
sizes the rapid broadening of the pristine ice class.

This rapid increase in the mean size of the pristine
ice distribution is explained as follows. First, the nu-
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FiG. 8. Evolution of the ice spectra for case 1 during ascent. Pristine ice evolution is shown by
the solid set of curves, and snow is shown by the dashed set. The times during the simulation that

each spectrum was plotted is indicated near its respective distribution.

cleated particles are growing in a highly supersaturated
environment. Note that the most rapid increase in size
of the pristine ice particles occurs where 3; is increasing
rapidly. These high values of S; cause increased vapor
depositional growth rates. The growth rate affects the
maximum size of the ice particles in accordance with
the mass dimensional relationships (m = a,,D?"). The
important parameter here is the value of £,,, which has
a value of 1.8 for needle crystals. By examining Fig.
10a, one can see that for a given increase in mass there
is a larger increase in maximum size than for, say, the
ice sphere. The reason for this comparison is that we
are generally more accustomed to thinking of the
growth of spherical particles (drops, hailstones, etc.).
Of course, this mass-—dimensional relationship affects
the growth rate of the particles. Figure 10b shows how
this relation affects the growth of the major dimension
of the crystal; note that this figure shows only how dD/
dt varies with D and not how other variations affect
growth. For needle crystals (solid line with 8,, = 1.8)
note that the growth rate increases with D. Contrasting
this with the sphere (dot-dashed line with g8,, = 3.0),
one can see that, since the needle growth rate does not
decrease quickly with size (as does the sphere), distri-
bution broadening is facilitated.

l
Figure 9a, which shows the proﬁles of the total con-

centration of pristine ice (solid line) and slnow (long
dashed line) for model ascent, illustrates the parame-
terized transfer process developed above.|Note that
the pristine ice distribution initially peaks quickly due
to the high supersaturations during the initial stages
of the ascent. At these stages transfer of concentration
to snow begins. This halts the increase in pristine ice
concentration as the increasing growth rates causes
large concentration transfers to snow. The|profile of
the concentration transfer to snow (solid line) is
shown in Fig 11a, and, as we expect, transfer rates
are highest in the first few millibars of the 'ascent be-
cause of the peak in the S; profile. The transfer profile
drops rapidly with the profile of S, as we e)‘(pect The
crosses plotted in Fig. 11a are the transfers calculated
with the bin model. Note that there is quite good
agreement between the analytical calculations of
transfer rates and the bin calculations, which gives us
confidence in our method. Near # = 500 s the bin cal-
culations become discontinuous; this is becalglse the bin
method has discrete size boundaries. This can be made
less discontinuous by increasing the bin fesolution;
however, the increment used is good enough to illus-
trate the agreement.
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The profile of mass mixing ratio as shown in Fig. 9b
for pristine ice has qualitatively the same physical ex-
planations as the number concentration profiles dis-
cussed above. There is an initial peak in the mass mix-
ing ratio for pristine ice due to the initial spike in num-
ber concentration. This profile drops off as mass mixing
ratio is transferred to the snow distribution by the an-
alytical transfer equations (Fig. 11b, solid line). Again,
the transferred mass profile follows closely the S; pro-
file. Note the correspondence between the analytical
method and the bin method. Error analysis between the
two was performed by calculating the percent error be-
tween the analytical method and the bin method, which

was subsequently averaged. The error in these calcu-
lations was rarely over 10%, and the average was below
1% for both the number and mass transfers.

The snow distribution is plotted in Fig. 8 and is
shown for the times ¢ = 65.49, 171.69, and 1033.68 s
in order to illustrate its evolution. The snow distribu-
tion, like the pristine ice distribution, broadens rather
quickly during the initial stages of the ascent (first 30
mb) due to the high supersaturations. This is also de-
tectable in Fig. 9c, which shows the rapid increase in
the mean snow size during the ascent. Note that in Figs.
9a and 9b we see that the concentration of snow levels
off rather rapidly after the profile in S; drops off since
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Fig. 10. (a) Mass—dimensional relationships for different values
of B,,. (b) Growth rate dependence on crystalline maximum dimen-
sion, D, and S,,.

the transfer of pristine ice concentration is the only
source of snow concentration. However, the mass mix-
ing ratio of snow continually increases because it is
supplied not only by the transfer process but also by
vapor deposition. One can imagine that, if transfer of
pristine ice mass and concentration dominated the snow
mass source, then snow mean sizes should not increase
as quickly since the mass and concentration transferred
are associated with smaller sizes (about 125 ym). Va-
por growth can cause such increases in the mean size

VoL. 52, No. 23

because of the influence of the power £,, in|the mass—
dimensional relationship. As stated above a given
amount of mass distributed over the needle crystal will
cause a greater increase in the maximum S1ze as com-
pared to a sphere. This relation thus has an influence
on how the vapor growth equation “‘levels off > and
how this, then, affects distribution breadth. Flgure 10b
shows how the mass—dimensional relat10nsh1ps affect
the increase in maximum particle size. Note that for the
sphere (m x D?) the growth rate drops off rap1d1y with
size. For the needle crystals, however, this is not the
case: the growth rate initially increases rapidly; how-
ever, this increase drops off with size. This is/the reason
for the point at which the snow distribution reaches a
maximum mean size (of about 580 ym) in Fi'g. 9c. Note
that the maximum mean size of the snow fcrystals in
Fig. 9c begins to decrease after the 300-mb level is
reached. This shows the distribution narrowing caused
by smaller crystals whose maximum d1me'ns1ons are
growing faster than the larger particles coupled with
the addition of more smaller particles from the pristine
ice distribution.

The model subsaturated descent follows a similar
analysis. The distributions for model descent are not
plotted; however, all of the pertinent 1nfonpat10n can
be found in the figures of the mean particle size, num-
ber concentration, and mass mixing ratio profiles. Ex-
amining the profiles of the mean sizes of pristine ice
(short-dashed line) and snow (long-short dashed line)
in Fig. 9c, two things can be duly noted. First, the size
of the pristine ice particles falls off slowly, lindicating
the narrowmg of the pristine ice dlstnbutlon Second,
the mean size of the snow crystals first i 1ncreases and
then decreases during the ice subsaturated descent in-
dicating broadening and then nan'owmg of ithe distri-
bution. The pristine ice mean crystal sizes decrease be-
cause, as can be noted by comparing Figs. 9a and 9b,
the concentration of pristine ice is increasing while the
mass mixing ratio is decreasing due to sublimation. The
concentration increase of pristine ice is due to the fact
that the transfer of concentration from the snow distri-
bution to the pristine ice distribution is larger than the
sublimational loss of concentration (which i 1s shown in
Fig. 12). Mass mixing ratio loss through sublimation
is larger for the pristine ice distribution than is the ad-

" dition of mass from the snow distribution. lThus we

have larger concentration with decreasing mass mixing
ratio leading to smaller sizes. Note that the sublima-
tional concentration loss plotted in Fig. 12| increases
toward the end of the model descent. This goes along
with Fig. 5a, which shows that large ratios of the sub-
limation rate to the total mixing ratio are needed for v
= 3 distributions before significant concentration will
be depleted. Obviously, this will only occur} when the
distribution is very narrow and not much mass is as-
sociated with the pristine ice crystals. Also plotted in
Fig. 12 are the calculations of concentratlon loss due
to sublimation with the bin methodology (represented
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by the solid line). The parameterized sublimational
loss of number concentration (crosses) follows the
shape of the bin-calculated profile (solid line) well with
some deviation that is due to the increment of mixing
ratio stored in the tables (recall we used 2%). Error
associated with this parameterization reach maximums
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FiG. 12. Sublimational concentration loss during parcel descent for
case 1. The crosses indicate the parameterized results, while the solid
line indicates the bin model results.

of about 48% with an error averaged over the entire
descent of about 10%.

For the snow distribution, initially during the de-
scent, concentration transfer to snow is greater than the
amount of mass mixing ratio lost to vapor or to pristine
ice through transfer; therefore, initially, mean snow
sizes increase. Once the 300-mb level is reached, how-
ever, the mean size of the snow crystals begins to de-
crease because the increase in the mass mixing ratio
loss to vapor and to pristine ice through transfer is over-
coming the transfer of snow crystal concentration to
pristine ice.

2) CASE 2: NEEDLES WITH PRISTINE ICE
DISTRIBUTION SHAPE v = |

Figure 13 is a plot of the evolution of the pristine ice
(solid lines) and the snow (dashed lines) distributions
during model ascent; times are indicated on the figure
for reference. Here, even though the distribution shape
of the pristine ice category has been chosen to be v = 1
to conform more with observations of the spectral
shape of small ice distributions, the evolution of the
spectra is similar to that given above. The pristine ice
distribution quickly broadens due again to growth in a
largely supersaturated region (see Fig. 7) and due to
the sensitivity of vapor growth to the 3, parameter in
the mass—dimensional relationship. Again, we see an
initial peak in the pristine ice number concentration
profile (Fig. 14a) followed by a rapid drop in pristine
ice concentration due to the fact that nucleation is lim-
ited by the number of crystals present and that concen-
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FiG. 13. Evolution of the ice spectra during parcel ascent for case 2.
The same curve delineations are used as in Fig. 8.
tration is being quickly transferred to the snow category cussed in the previous section with the mean pristine

(see Fig. 15a). The mass mixing ratio profile for pris-
tine ice during model ascent shown in Fig. 14b (solid
line) shows the same trends as those in the previous
section. The profiles of the mean particle sizes for the
pristine ice (solid line) and snow (long-dashed line)
categories during model ascent also show these similar
trends. Note that the snow category reaches smaller
mean distribution sizes during the evolution; this is def-
initely due to the fact that the transfer of concentration
and mass mixing ratio are from a differently shaped
pristine ice spectra. Figures 15a and 15b show the
model-parameterized transfers of number concentra-
tion and mass mixing ratio, respectively, as compared
to the bin calculations (crosses). Once again, the agree-
ment between the parameterization and the more ac-
curate bin model are in quite close agreement with er-
rors the same as given in the previous section.

The main difference between the above simulation
and the one presented in this section is in the descent
profiles. Figure 14¢ shows the evolution of the pristine
ice (short-dashed line) and the snow (long—short
dashed line) mean distribution sizes during the ice sub-
saturated descent. We note the same features as dis-

ice sizes decreasing during descent showing distribu-
tion narrowmg and the snow distribution mean crystal
size first increasing and then subsequently decreasmg
as descent continues. As before, the prlsnn'e ice cate-
gory is losing more mass to vapor than coricentration
since there are significant numbers of pristine ice crys-
tals associated with the larger, more massive sizes. This
is confirmed by examining Fig. 16, which shows the
concentration loss to sublimation (pmameteﬁization re-
sults are the crosses). Initially, the concentration loss
is low since sublimation rates are a very small fraction
of the total distribution mass. Toward the end of the
descent, however, the pristine ice mean distribution
size again begins to increase. Note that this increase
corresponds to the approximate point in Flgl 16 where
the concentration loss to sublimation begins to dip. This
increase also corresponds to the point where the snow
concentration begins to decrease more rapldly, this
point is at about 370 mb (short-long dashed lirie) in
Fig 14a. This shows that snow concentration and mass
mixing ratio transfers to pristine ice are 1ncreasmg,
thus, adding significant large (about 125 pm) crystals

to the pristine ice distribution. Of course, this will tend
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to increase the mean size of the pristine ice distribution.
This increased mass of pristine ice results in smaller
ratios of sublimation rates to total distribution mass and
is the reason that the dip in the sublimational loss pro-
file occurs where it does.

The sublimational concentration loss profile given in
Fig. 16 shows how the parameterized concentration
losses compare to accurate calculations using the bin-
resolving model (solid line). Note that the shapes of
the profiles are distinctly similar with some significant
deviations. Here, differences between the parameter-
ization and the bin model were somewhat less with
maximum error of 42% and error averaged over the
whole descent of only 5%.
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FiG. 14. Case 2: (a) concentration profiles, (b) mass mixing
ratio profiles, and (c) profiles of mean crystal size during par-
cel ascent and descent. The curves have the same delineations
as in Fig. 9.

3) CASE 3: HEXAGONAL PLATES WITH PRISTINE ICE
DISTRIBUTION SHAPE, v = 1

The evolution of the ice spectra during model ascent
is plotted in Fig. 17, with times indicated on the figure.
Again, both distributions, pristine ice (solid line) and
snow (dashed line ), broaden due to vapor depositional
growth. Note, however, that in this case the distribu-
tions broaden more slowly than the needle cases pre-
sented previously; by ¢ = 309.75 s, neither distribution
has broadened significantly. This fact is also elucidated
in Fig. 18a where the evolution of the mean particle
sizes of pristine ice (solid line) and snow (long-dashed
line) during model ascent are shown. The pristine ice
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FiG. 15. Case 2: (a) concentration transferred to snow and (b) mass mixing ratio transferred to snow
at each pressure during parcel ascent. The curves have the same delineations as in Fig. 15.

mean size increases slowly however; it never reaches
its maximum size of 125 um throughout the duration
of the ascent. The pristine ice distribution, thus, re-
mains quite narrow. The snow distribution shows sim-
ilar behavior; with very slow increases in the mean size
of the crystals during the initial stages of the ascent and
then some narrowing (decrease in the mean size ) above
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FiG. 16. Sublimational concentration loss during model ascent for
case 2. The crosses indicate the model parameterization, while the
solid line indicates the bin model calculations.
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about 365 mb. The initial increase in |distribution
breadth is due to the growth of particles by vapor depo-
sition in the highly ice supersaturated porltion of the

ascent (see S; profile). The later narrowing is due to
slowed growth rates of the larger particles and the ad-
dition of smaller particles from the pristine ice distri-
bution through the transfer process.

The reason for lesser broadening of the distributions

in comparison to the needle cases presented previously
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FiG. 17. Evolution of the pristine ice and snow spectra during
model ascent. The curves are delineated as in Fig. 8.
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is related to the mass—dimensional relationships used
for the hexagonal plates. For hexagonal plates the 3,
parameter is 2.6 and, as is shown in Fig. 10a, for these
particles as D increases, additional mass added to the
particle will affect D less when compared to the case
of needle crystals. This, therefore, is the reason for the
lessened broadening in comparison to the needle case.
The reduced broadening can also be explained in terms
of Fig. 10b; note that here the effect of the mass—di-
mensional relationship on the growth rate is plotted.
For the needle case higher growth rates are realized;
however, for the hexagonal plate and the sphere the
growth rate drops off rapidly with size.
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FiG. 18. Case 3: (a) evolution of the mean crystal size, (b)
evolution of the concentration, and (c) evolution of the mass
mixing ratio for pristine ice and snow during parcel ascent
and descent. The curves are delineated as in Fig. 14.

Because of differences in growth rates facilitated by
the mass~dimensional relationship and differences in
the capacitance term, less vapor is deposited on the
hexagonal plates than was on the needle crystals. This
is due mostly to the much smaller sizes of the hexag-
onal plates. As a result of this, less vapor is removed
from the parcel in the highly ice supersaturated portion
of the ascent and, therefore, more nucleation can take
place. This is shown in Fig. 18b where it can be seen
that the profile of the concentration of pristine ice dur-
ing the model ascent (solid line) continues to increase
for a short time. Compare this to the needle case where
the pristine ice profile sharply decreased after peaking.
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Note that the snow concentration profile during model
ascent (long-dashed line) increases very slowly. This
is because the transfer rate of concentration from the
pristine ice category is slow. This slow transfer to snow
is due to the narrow pristine ice spectrum and because
dD/dt, as shown in Fig. 10b, is quite small in the region
of 125 um where the transfer is occurring. Figure 19a
shows this slow transfer process; note that fewer crys-
tals are transferred to the snow distribution in this case
than in the case of needle crystals.

Another consequence of the mass—dimensional re-
lationship is its effect on the profiles of mass mixing
ratio. Figure 18c shows the profiles of pristine ice (solid
line ) and snow (long-dashed line ) during model ascent.
Because deposition of mass affects D less in the case
of hexagonal plates in comparison to needles, more
mass can be deposited on the pristine ice distribution
without increasing transfer to the snow category. The
mass mixing ratio profile shows this; note that the pro-
file of mass mixing ratio for the pristine ice class has
much higher values than did the previous needle cases.
This is also illustrated in Fig. 19b, which as in the case
of number transfer shows smaller mass mixing ratio
transfers for hexagonal plates than for the needle cases
when compared to the results presented in the previous
section,

Once again, bin model calculations of the transfers
of concentration and mass mixing ratio were calculated
and compared to the parameterized results. Examining
Figs. 19a and 19b, one can easily see that there is good
agreement between the parameterization (solid line)
and the bin model calculations (crosses). Again, there
are some discontinuities in the profile calculated with
the bin model that have to do with the specific size
delineation inherent in bin models. Errors here were as
large as 12% with errors averaged over the whole as-
cent of about 3%.

The model-induced ice subsaturated descent shows
similar features to those presented in previous sections
of this paper. The mean size of the pristine ice crystals
(short-dashed line in Fig. 18a) remains close to con-
stant during approximately the first half of the descent
(until about 300 mb) and then decreases, exhibiting the
narrowing of the pristine ice distribution. Figure 20
shows the profile of the concentration lost to sublima-
tion (crosses) from the pristine ice distribution. This is
partially the reason for the constant mean particle sizes
during the initial portions of model descent. During the
initial descent, the concentration lost to sublimation is
largest (since dD/dt increases rapidly as D decreases,
see Fig. 10b); however, at this time larger particles are
being added from the snow distribution during the larg-
est-ice subsaturations. These larger particles tend to
offset the loss of concentration, and thus smaller sizes,
from the distribution keeping the mean pristine ice sizes
fairly constant. As the bottom of the descent is ap-
proached (400 mb), note that in Fig. 18b the pristine
ice concentration (short-dashed line) is increasing
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while, as is shown in Fig. 18c, the mass m1x1ng ratio
of the pristine ice category (short-dashed line) contin-
ually decreases. This causes the mean particle size of
the pristine ice category to decrease; thus t;he distribu-
tion narrows. The reason for the increase in concentra-
tion near the bottom of the model descent is increased
transfer rates of concentration from the snow category
that cannot be offset by sublimational concentration
losses (as shown in Fig. 20, this is too small).

Figure 20 compares the parameterized| concentra-
tion loss (crosses ) to the more accurate bin model cal-
culations (solid line). Note that, again, |the profile
shapes are similar; however, the numbers|are not ex-
actly similar. Errors here became as large as 70%, with
errors averaged over the entire descent re'aching val-
ues of 13%.

The mean size of the snow category |(long-short
dashed line in Fig. 18a) increases throughout a large
portion of the descent until the parcel is below about
350 mb where the mean size begins to decrease. The
initial increase in mean size is due to a slower decline
in mass mixing ratio (as shown in Fig. 18cI short-long
dashed line) in comparison to concentratioﬂ transfer to
pristine ice. The loss of the smaller snow ’particles to
pristine ice during transfer causes the larger crystals in
the snow distribution to be weighted mor‘e, thus the
increase in mean size. After the 350-mb level has been
reached the snow category begins to lose mass more
rapidly (because of the increase in dD/dr with de-
creases in D). When this occurs, the SNOW particles
rapidly decrease in size and the distributioq narrows.

5. Summary and conclusions

In this paper we have presented an analytical method
for describing ice crystal transfer processes|due to va-
por depositional growth with a complete gamma dis-
tribution representatlon when predicting on two mo-
ments of the ice hydrometeor spectra. Equa‘1t10ns were
developed that describe the transfer of pris]tine ice to
snow when ambient conditions are ice sup?ersaturated
and for the transfer of snow to pristine ice| when am-
bient conditions are ice subsaturated. Since|ice crystal
number concentration ‘‘buildup’’ occurs during ice
subsaturated conditions, a parameterization|of a num-
ber concentration sink was described in which the frac-
tional number concentration loss is tabulated as a func-
tion of the fractional mass mixing ratio loss\ the shape
of the distribution v, and the habit of the ice crystal.

Tests of this scheme were accomphshed L\lsmg aLa-
grangian parcel model described in Tripoli and Cotton
(1981). The model allowed for the testmg‘of the pa-
rameterizations via comparison to fluxes and sublima-
tional concentration losses calculated with a bin-re-
solving model. The parameterization show]ed signifi-
cant sensitivity to both the value of the diistribution
shape parameter assumed (v) and especially to the
choice of crystalline habit (3, variation). Wlllen needle

|
|
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crystals are utilized in the model, the pristine ice and
snow size spectra broaden rapidly. This is a result of
the mass—dimensional relationship for needle crystals,
which allows the vapor depositional growth to affect
the maximum dimension of the crystals largely in com-
parison to ice spheres. In comparison, hexagonal plates
can be expected to be more narrow with larger concen-
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F1G. 20. Sublimational concentration loss profiles. The crosses in-
dicate the parameterized calculations, while the solid line indicates
the bin model calculations.

trations and mass mixing ratios associated with the pris-
tine ice spectrum, while the snow category will contain
much less mass and concentration in comparison to the
needle case. The mean sizes of the crystals in the dis-
tributions are greatly affected by the mass—dimen-
sional relationship through the vapor depositional
growth equation. Because of this relationship, needle
crystals can be expected to grow larger at a higher rate
than the plate crystals. This facilitates the broadening
of the pristine ice and snow spectra that are made up
of needles. For the case of hexagonal plates the mass—
dimensional relationship shows that these crystals be-
have more closely in a dimensional sense to spheres
than to needles. Therefore, the distributions do not
broaden much, staying narrow with larger concentra-
tions and mass mixing ratios of pristine ice in compar-
ison to the needle cases.

In general, the derived analytical expressions did
very well in simulating the transfer process. The pa-
rameterizations showed similar transfer profiles to
those calculated with a bin model, having maximum
errors around 13% and errors averaged over the entire
ascent of no greater than 5% with similar errors for the
case of model descent. The sublimational number con-
centration loss parameterization compared less favor-
ably to the bin model calculations than the flux param-
eterization. This is due to the simplification of this pro-
cess, allowing sublimational concentration loss to be
only a function of the shape parameter v and the ratio
of mass loss to vapor to total distribution mass. The
model parameterization of sublimational concentration
loss produced the shape of the bin model profile fairly
well; however, there were some significant errors as-
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sociated with the parameterizations deviation from the
bin profile. Errors for some points could be as high as
70%, with most errors being around 10%.

This parameterization scheme is a part of the new
RAMS two-moment microphysical module described
by Meyers (1995). The new microphysical module al-
lows for the prediction of concentration and mass mix-
ing ratio of the hydrometeor species. Part II of this pa-
per contains simulations of the 26 November 1991
FIRE II cirrus case with this new microphysical module
and comparisons of the results to significant lidar and
aircraft data taken on that day.
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APPENDIX A
Derivation of the Mass Growth Equation
Differentiating (2) with respect to time gives us
1 f’” om(D) on(D)
=— ——n(D) + m(D) ——)dD.
F p,,o< o (D) + m(D) =
(A1)

Since this is in Eulerian form (i.e., distribution rela-
tive), the term 9m(D)/dt = 0. For vapor depositional
growth only the change in the spectra can be written

_@n(D) 0 (dD
=" 3D { (D)} (A2)
which gives upon substitution into Eq. (6),
F= - ——f m(D ) (—n(D))dD (A3)
This may be written
9 . dD
r=— ;: ) (m(D) —En(D))dD
¥ Om(D) dD
o Jo oD Z n(D)dD. (A4)

The first term in (A4) goes to zero, which can be seen
by writing it as
1 6 daD
D)—n(D) )dD
~ o) o (m( ) n( ))

= llm(m(D) —D- n(D)>

D—0

- lim(m(D) %’tz n(D)) . (A5)

Do
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The function that we are taking the limit of can be
written as !

daD
m(D) ar n(D) !

N (DYTL D
T(v) D, P Dn>

D
= t DV+] —_ — s
(const) exp( D )

n

— a,,,Dﬂ"'@Dz B

(A6)

in which we have used the relation dD/dr = ®D* %,
right now we need only the D dependence, so do not
be alarmed if we do not define ® at this stage as this
will be done later in this section. The limit as D — 0 of
this function is zero, so is the limit as D|— o since
exp(—D/D,) goes to zero faster than D**'|goes to in-
finity as long as v is finite. The second term in (A4)
alone constitutes 7

1 {* 6m(D)dD
=— | ———n(D)dD. A7
o Tap a n(D) (A7)
Since
om(D) _ p-1
3D - amﬁmD ’ (As)
we can write
omD)dD _ ., dD _dm
oD dt %D d ar’ (A9)
and thus Eq. (A7) becomes
d
F=— —'" n(D)dD. (A10)
Pa
APPENDIX B
Crystal Capacitance
Recall that we had written the capacitance term as
Ci(c,a) = x(A)D, (B1)

where x(A) is a function purely of the crystalline as-
pect ratio. The capacitance terms of all of the crystals
that we are interested in can be written in this manner.
To see this, we write down the capacitance relations:

c
;= ———— dl
C = nacyay > meedles

ce
C = ——-——ll T el columns
In
1—-e
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= -Z_Fncf—‘(s , hexagonal plates
c .
C; = —, thin plates
T
c .
C = E , ice spheres (B2)

where
e=(1-a%*cH)". (B3)

By examining each of the above capacitance rela-
tions, it becomes obvious that the capacitance terms can
be written as a function of the given crystals aspect
ratio multiplied by the length of its maximum dimen-
sion. For example, C; for needles becomes

=x(A)c = x(A)D,  (B4)

(o4
G = In(4A)

where

x(A) = (BS)

In(4A) -
Obviously, assuming that x(A) = const is not a good
approximation since A varies across the distribution. In
a bulk model, however, it would add additional un-
wanted computational expense to store a and ¢ values
over ranges of D. Our way to compensate for this
somewhat is to calculate bulk values of A depending
upon how D (or &) changes in a time step. This is done
by approximating the mass of a crystal with roughly
equivalent volumes as is shown below,

The capacitance term in the vapor depositional
growth equation is accounted for by equating equiva-
lent volumes to the mass maximum length relation
given by (5). For needles we may approximate crystal
masses in the following manner:

m=pV, = Pi3 7rac (B6)
where p; is the bulk ice density, a is the minor axis and
¢ (D) is the major axis, and V; is the volume of an
ellipsoid. Substituting (5) into (A6) and rearranging
gives an equation for a in terms of c:

172
a= (32" co2.
4p,'7T

where D in (5) has been replaced by c.
When hexagonal plates are considered, the mass of
the crystal may be written as

V = (0.649)c%a
= p:(0.649)ca, (BS)

where V is found by considering the geometry of the
face of a hexagon. Substitution of (5) into the above
and rearrangement gives the minor axis a as

(B7)

m = Vp;;
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A

" 5:(0.649)

Using these formulas, bulk aspect ratios are calculated
for a given distribution of pristine ice crystals or snow
by using the mean crystal size D = ¢ and either (A7)
or (A9) above to calculate a. The aspect ratio A = ¢/
a is recalculated from these values.

¢ B2, (B9)

APPENDIX C
Derivation of the Transfer Equations for Pristine Ice

Starting with (17) and carrying out the differentia-

tion gives
= dm(D) On,(D)
<n,,(D) ———at + m(D) o )dD

o = —
r, =
i Y,

oD
— m(Dy)ny(Dy) = . (C1)
The term 9D,/0t is zero since D, is constant, and
Om(D)/0t is zero since the frame is Eulerian; thus,
(C1) becomes
Bn (D)
= — ——dD C2
r[’ Db at ( )
Substitution of (A2) into the above and use of the chain
rule allows (C2) to be written in the following form:

1 (8 dD
= {ap(”‘(D) n,,(D))

Om(D) dD
3D n,,(D)}dD. (C3)
Noting that
omD)dD _ ., dD _dm
b a P g = (Y
and that the integral
o a D
th 3D (m(D) n,,(D))dD
dD
= m(D,,)T n,(D,), (CS5)
t D,
we may write (C3) as
1 daD
o1 ab
Ff > m(D,) o Dhnp(Db)
1 * dm
P —n,(D)dD. (C6)

This is (19) in the text given above.
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The solution of (19) in the form of (25) given in the
text is quite straight forward. Substitution of (11) and
(8) into our above equation gives the following form:

1 dD
i =—m(D,) —

pi dt np(Db)

Dy,

1 =]
~+;)—\Ilf Dn,(D)dD. (CT)
i D),

Substitution of-the definition of the moments of the
incomplete gamma distribution given by (22) into the
above, along with the definitions for dD/dt and m(D),
gives the final solution of the transfer equation:
) w 5 v :
rf =-—a,Din(Dy) + —T,(1, D,/D,). (C8)
Pi Pi
Using similar techniques, equations for the number
concentration transfer of pristine ice to snow can be
derived; consider the following equation given in the
text:

., df”
Ni = —f n,(D)dD.
Dy,

dt
* on,(D oD
2o ()
Using the relation given in the text above,
on,(D 0 (dD
——”a(t——) 6D( n,,(D)) (C10)
then (C9) becomes
. * 9 (dD
f =
NP U"D,, BD ( n (D))
_ _{im[ 4P _4
= llDT.: I n,(D) | & Dbn,,(D) .
(C11)

The first term in the equation above goes to zero (as
discussed in section 2), so the transfer equation be-
comes

dD
N =<

dt np(Db).-

(C12)

One can use a similar analysis to derive the equations
for the transfers from snow to pristine ice during ice
subsaturated conditions. This is not done here [ for de-
tails of this see Harrington (1994)].
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